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Abstract

A numerical framework for coupling arbitrary potential flow with fully nonlin-
ear, two–phase and turbulent Computational Fluid Dynamics model is presented
in this work, where the primary focus of this thesis is the development of viscous
model.

The model is implemented in arbitrary polyhedral Finite Volume method in
foam–extend, a community driven fork of the open source Open Field Operation
And Manipulation software.

The present model relies on the Ghost Fluid Method for discretisation of jump
conditions, yielding infinitesimally sharp density and pressure jumps across the
free surface. Interface capturing is achieved with implicitly redistanced Level Set
method derived from the Phase Field equation, yielding good conservation prop-
erties and rendering additional redistancing steps unnecessary. The potential and
viscous flow coupling is achieved via Spectral Wave Explicit Navier–Stokes Equa-
tions approach, where the solution is decomposed into incident potential flow so-
lution and perturbation components, facilitating wave transport. Wave reflection
is prevented by using relaxation zones with implicit treatment in the far–field.
All methodologies are mathematically or numerically reformulated to adhere to
strongly conservative, compact stencil, polyhedral Finite Volume method.

The numerical model is validated and verified on four sets of test cases: free
surface flow over a ramp, wave propagation, assessment of higher order forces on
a vertical cylinder due to wave diffraction and seakeeping of a ship in head and
oblique regular waves. The computational results compare well with analytical,
other numerical and experimental results. A strong emphasis is given to numer-
ous sensitivity studies addressing numerical uncertainties.

Keywords:
Marine hydrodynamics, Free surface flows, Ghost Fluid Method, Implicitly redis-
tanced Level Set method, Solution and domain decomposition, Polyhedral Finite
Volume method, OpenFOAM, Validation and verification





Prošireni sažetak

Ovaj rad predstavlja numerički model za spregu proizvoljnog potencijalnog stru-
janja s potpuno nelinearnim, dvofaznim i turbulentnim modelom računalne di-
namike fluida. Naglasak je stavljen na razvoj viskoznog modela dok se za spregu
s potencijalnim strujanjem koriste dobro utemeljene valne teorije.

I Matematički model

Kao osnova za razvoj numeričkog modela korištene su Navier-Stokesove jed-
nadžbe nestlačivog strujanja dvaju fluida, gdje se fluidi međusobno sprežu po-
moću skokovitih rubnih uvjeta na slobodnoj površini. Ovaj pristup je poznat
kao Ghost Fluid Method (GFM) koji je uspješno korišten za proračune dvofaznih
strujanja na strukturiranim proračunskim mrežama.

Za praćenje slobodne površine korištena je Level Set (LS) metoda izvedena
iz Phase Field (PF) jednadžbe, što omogućava implicitnu reinicijalizaciju LS
funkcije udaljenosti. Rezultirajuća LS metoda također ima dobra svojstva konz-
ervativnosti. Detaljno je predstavljena reformulacija izvornih članova u konvek-
cijske članove za LS transportnu jednadžbu. Također se pokazao način određi-
vanja difuzijskog parametra u LS jednadžbi te se pokazalo da je konačno rješenje
neosjetljivo na njegove promjene.

Sprega matematičkog modela viskoznog strujanja s potencijalnim strujan-
jem se zasniva na Spectral Wave Explicit Navier–Stokes Equations (SWENSE)
dekompoziciji rješenja, gdje se varijable rastavljaju na dio koji predstavlja rješenje
iz potencijalnog strujanja i na dio koji predstavlja perturbaciju oko rješenja po-
tencijalnog strujanja. Na taj su način članovi vezani za potencijalno strujanje koje
opisuje propagaciju vala u proračunskoj domeni unaprijed poznati, te se mogu
tretirati eksplicitno što olakšava numerički prijenos valova. Originalna SWENSE
metoda je reformulirana uzevši u obzir razmatranja koja se direktno odnose na
metodu kontrolnih volumena. Shodno razmatranjima polje dinamičkog tlaka se
nije rastavilo na potencijalnu i perturbacijsku komponentu jer bi to rezultiralo



s dvije eliptične jednadžbe tlaka koje predstavljaju proračunski najzahtjevniji
dio algoritma. SWENSE metoda predstavlja efikasan način unošenja i prijenosa
nailaznih valova u proračun, međutim ona ne spriječava neželjenu refleksiju valova
od otvorene granice domene.

U svrhu spriječavanja refleksije valova koriste se implicitne relaksacijske zone
postavljene kraj otvorenih granica proračunske domene. U relaksacijskim zonama
se postepeno smanjuje perturbacijski dio rješenja da bi se na samoj granici
domene dobilo rješenje potencijalnog strujanje, te na taj način spriječila refleksija.

II Numerički model

Numerički model se zasniva na poliedarskoj metodi kontrolnih volumena koja
je drugog reda točnosti. Cijeli model je implementiran u foam-extend paketu
koji predstavlja granu OpenFOAM programskom paketa otvorenog pristupa kodu
koja je orijentirana na prihvaćanje doprinosa iz zajednice korisnika.

Važan doprinos ovog rada je diskretizacija diskontinuiteta na slobodnoj površini
pomoću GFM pristupa, gdje se uzima u obzir skok u gustoći i dinamičkom tlaku
preko slobodne površine. Diskretizacija skokovitih rubnih uvjeta donosi set kori-
giranih interpolacijskih shema za članove u jednadžbama koji ovise o dinamičkom
tlaku i gustoći. Korigirane interpolacijske sheme se koriste samo u neposrednoj
blizini slobodne površine koristeći kompaktnu proračunsku molekulu. Kao što
je pokazano u radu, sheme rezultiraju simetričnom jednadžbom tlaka, poštujući
simetričnost Laplaceovog diferencijalnog operatora. Ove sheme implicitno sprežu
dva fluida (zrak i vodu) s inifinitezimalno razlučenim skokom gustoće i dinamičkog
tlaka preko slobodne površine, što je pokazano brojnim testnim primjercima.

Detaljno je predstavljen dijagram toka implementiranog algoritma te jaka
sprega jednadžbi polja strujanja s jednadžbama gibanja krutog tijela.

III Validacija i verifikacija

U svrhu detaljne verifikacije modela ukratko su predstavljeni načini kvantifi-
ciranja raznih numeričkih neizvjesnosti (nesigurnosti u rezultate), s posebnim
naglaskom na neizvjesnosti vezane za: rezoluciju proračunske mreže, rezoluciju



diskretizacije u vremenu vezane za veličinu vremenskog koraka te neizvjesnost
vezana za samu periodičnost strujanja. Validacija je provedena uspoređujući sve
rezultate proračuna za sve testne primjerke s analitičkim, referentnim numeričkim
ili eksperimentalnim rezultatima.

Prvi testni primjer predstavlja dvodimenzijsko dvofazno strujanje fluida preko
rampe, gdje je proračun proveden na skupu blok–strukturiranih i nestrukturiranih
mreža. Dobiveno je vrlo dobro slaganje s analitičkim rješenjem. Izvršeno je
ispitivanje reda konvergencije gdje je pokazano da je konvergencija bolja na blok–
strukturiranim mrežama. Također je proveden jednostavan hidrostatski test na
istoj geometriji gdje je pokazano da predloženi model temeljen na GFM pristupu
rješava problem parazitskih brzina u lakšem fluidu (zraku).

Drugi skup testnih primjera sadrži studije osjetljivosti vezano za propagaciju
progresivnih valova. Izvršene su studije osjetljivosti mreže, vremenske rezolucije,
promjene parametara u LS jednadžbi, refleksije mijenjajući duljinu relaksacijskih
zona, promjene valne strmine te konačno dvije simulacije s vrlo dugom domenom
i vrlo dugim trajanjem simulacije (100 valnih perioda). Rezultati studija os-
jetljivosti pokazuju da je propagacija valova točna te da je numerički model
konzistentno implementiran.

Treći skup testnih primjera predstavlja difrakciju nailaznih pravilnih valova
na uronjeni vertikalni cilindar, gdje je poseban naglasak stavljen na sile višeg
reda. Sile do sedmog reda za vrlo strme valove su uspoređene s potpuno ne-
linearnim numeričkim modelom potencijalnog strujanja u vremenskoj domeni te
s eksperimentalnim rezultatima, gdje su dobiveni vrlo dobri rezultati. Također
je provedena studija rezolucije proračunske mreže i vremenskog koraka u svrhu
verifikacije modela.

Konačno, četvrti skup testnih primjera predstavlja simulacije pomorstvenosti
kontejnerskog broda pri projektnoj brzini i na pravilnim valovima s različitim
valnim duljinama, valnim visinama te kutovima nailaska valova. Svi rezultati su
uspoređeni s eksperimentalnim mjerenjima gdje je postignuto dobro poklapanje
rezultata. Naglasak je stavljen na brojne studije osjetljivosti, gdje su detaljno
kvantificirane numeričke neizvjesnosti vezane za rezoluciju mreže, vremensku re-
zoluciju, periodičnost konačnog rješenja te razlučivost sprege između strujanja
fluida i gibanja krutog tijela. Dobiveni rezultati pokazuju da je implementirani



model točan za proračune pomorstvenosti broda te da je konzistentno imple-
mentiran, jer se rješenje ne mijenja značajno s rezolucijom mreže. Također se
kroz testove paralelnog skaliranja te jedan test brzine simulacije pokazalo da je
razvijeni model efikasan u vidu proračunskog vremena te da se dobra procjena
dodatnog otpora i gibanja broda može dobiti u par dana s relativno malim raču-
nalnim resursima.

IV Zaključak

Sljedeći općeniti zaključci se mogu donijeti na osnovu provedenih studija os-
jetljivosti:

• Bolja konvergencija se dobije na strukturiranim heksaedarskim mrežama u
usporedbi s nestrukturiranim mrežama,

• Numerički model je stabilan na relativno grubim mrežama i pri jako vi-
sokim vremenskim koracima, gdje daje razumno dobro rješenje pri samo 25
vremenskih koraka po periodu vala,

• Greške disperzije (promjene faze mjerene veličine) su veće od grešaka disi-
pacije (gubitka amplitude),

• Model točno opisuje i računa utjecaje viših redova.

Studije periodične konvergencije rješenja pomoću brze Fourierove transforma-
cije na pomičnim prozorima ukazuje da je potrebno izvršiti preko deset perioda
za simulacije pomorstvenosti da bi se usvojilo periodično kvazi–stacionarno stru-
janje.

Ključne riječi
Brodska i pučinska hidrodinamika, Strujanja sa slobodnom površinom, Ghost
Fluid Method, Implicitno reinicijalizirana Level Set metoda, Dekompozicija rješenja
i domene, Poliedarska metoda kontrolnih volumena, OpenFOAM, Validacija i
verifikacija
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1. Introduction

1.1. Computational Marine Hydrodynamics

Hydrodynamic characteristics of a ship are most often determined in towing tanks
by performing various model experiments: steady resistance, self propulsion, sea-
keeping, zig–zag manoeuvre and rotating circle. Using dimensional analysis with
correlation factors unique to each towing tank facility, the resistance of the full
scale ship can be extrapolated from the model test. The results are then used
to assess the necessary engine power for a determined forward speed of the ship,
given by design speed. The steady resistance model tests are relatively straight-
forward to carry out and the corresponding experimental uncertainties are often
below 2%. However, experimental tests concerning waves and wave–induced mo-
tions are generally more challenging to carry out, especially for oblique waves
since they impose considerable constraints on size, design and equipment of tow-
ing tanks.

With the appearance of first computational workstations, various numerical
methods naturally started to emerge for naval hydrodynamic problems. Most
of the numerical algorithms were first based on the potential flow assumption,
allowing the reformulation of a three–dimensional (3–D) problem into a two–
dimensional (2–D) problem. Such reformulation made the Boundary Element
Method (BEM) extremely popular in CFD due to its low requirement for com-
putational resources: Central Processing Unit (CPU) power and memory. BEM
based algorithms are still frequently used for various industrial naval hydrody-
namic problems: wave resistance in calm sea, propeller simulations, hull shape
optimisation, seakeeping analysis in regular and irregular seas, hydroelasticity,
coupling with Reynolds Averaged Navier–Stokes (RANS) based CFD algorithms,
etc. However, BEM does not have an innate ability to model vorticity, viscosity,
turbulence and two–phase effects, making them unsuitable for calculating fric-
tional resistance in calm sea, added resistance of ship in waves, roll decay and
large amplitude motions, wave breaking, wind–wave interaction, etc.



1. Introduction

The drawbacks of BEM, along with the immense increase in computer re-
sources over the past decades made RANS based CFD methods suitable for many
industrial needs. RANS based CFDmethods are naturally able to handle coupled,
nonlinear equation sets, including two–phase, rotational, viscous and turbulent
flows. Such versatility comes with a considerable expense in terms of computer
resources compared to BEMs. Nevertheless, high fidelity CFD methods for naval
hydrodynamics currently represent an active area of practical application.

Recently, an excellent overview of the modern CFD capabilities for marine
hydrodynamics has been presented by Stern et al. [1]. Although the presented
capabilities include free running ships or highly resolved wave breaking simula-
tions, the validation and verification of numerous CFD algorithms is still under
way [2]. Validation and verification process of the CFD algorithms includes a
broad spectrum of flows: from basic steady resistance to flows including realistic
sea states with ship motion and/or manoeuvring [3]. A large portion of transient
flows in marine hydrodynamics is caused by surface gravity waves and their in-
teraction with ships and off–shore structures. The ability of RANS based CFD
algorithms to accurately calculate seakeeping response of a ship in head waves
has been recently demonstrated at the Tokyo 2015 workshop [4]. The uncer-
tainty estimate via grid refinement studies for all seakeeping tests has not been
requested by the organisers, indicating that the CFD methods are still computa-
tionally expensive. The Tokyo 2015 workshop included five head wave and five
oblique wave test cases for the KRISO (MOERI) Container Ship (KCS) model at
design speed. Ten submissions within seven articles have been made for the head
wave test cases [5, 6, 7, 8, 9, 10, 11], whereas only two submissions have been
made for the oblique wave tests [12, 13], indicating that CFD simulations still
have difficulties regarding arbitrary wave heading. Furthermore, out of twelve
seakeeping submissions in total, only two participants conducted the verification
study via grid refinement and periodic uncertainty assessment [11, 13].

Numerous commercial software packages are currently in use for two–phase
CFD simulations: STAR-CCM+, ANSYS Fluent, Fine–Marine to name a few.
However, closed access to the source code and large licence fees are often limiting
factors for their widespread use in scientific research. Furthermore, publications
revealing implementation details and models on which the algorithms are based
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on often do not exist due to industrial reasons. Other, in house developed CFD
packages with strong background in marine hydrodynamics are: ISIS–CFD [14]
(commercial provider: Numeca, within Fine–Marine), CFDShip-Iowa [15, 16, 17],
ReFRESCO [18, 19], ICARE [20] have accessible publications, but limited access
to the software, with almost impossible access to the source code. As an alter-
native to commercial software packages and in–house CFD algorithms, the use
of open source CFD software package Open Field Operation And Manipulation
(OpenFOAM) [21, 22] provides a suitable platform for scientific research. Due
to its open source philosophy without any licence fees, the use of OpenFOAM
is steadily spreading both in research community and in the marine industry. A
brief research reveals that 16 out of 39 articles submitted for the Tokyo 2015 work-
shop [23] included computations in OpenFOAM, which represents approximately
40% of all submissions.

1.2. Previous and Related Studies

Most flows in marine hydrodynamics can often be viewed as incompressible and
turbulent, with a presence of a free surface between water and air. Incompressible
flow is often modelled with the continuity and the Navier–Stokes equations [24],
while a broad spectrum of methods exists for turbulence modelling and free sur-
face treatment.

1.2.1. Numerical Simulation of Free Surface Flows

The free surface treatment in two–phase flows is divided into two parts:

1. Interface capturing or tracking and

2. Treatment of discontinuities at the interface.

Interface capturing or tracking methods investigate the advection of the in-
terface with a given velocity field, while the discontinuities at the interface (e.g.
density jump in water–air flows) and their treatment needs separate attention.
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Interface Capturing and Tracking

The most common free surface flow models [25] can be divided into two categories:

1. Interface capturing via colour functions: Volume–of–Fluid (VOF) [26, 27],
LS methods [28] and the Phase Field (PF) method [29].

2. Lagrangian interface tracking.

The conservative and well established VOF method is based on volume frac-
tion. The volume fraction is bounded between 0 and 1: 0 usually representing
air and consequently 1 representing water. Isosurface of VOF where the volume
fraction is equal to 0.5 enables the reconstruction of the interface. During the
advection, special care has to be taken to ensure boundedness and capturing of a
sharp interface. Smearing of the interface in the VOF method is often remedied
with special compressive schemes [30, 27, 31] or additional compressive terms [32].

Contrary to the VOFmethod, the smearing of the interface is a user–controlled
parameter in the LS method. The method is often based on the signed distance
function [33, 34], which does not represent a conserved physical quantity as is
the case with the VOF method. In case of the signed distance function, the LS
field is unbounded and the zero level set denotes the interface. The LS field often
does not preserve its signed distance property due to discretisation errors when
it is advected by a velocity field obtained from the incompressible flow. This
is often remedied by introducing an additional redistancing equation [35] or di-
rectly recalculating the distance to the interface after the advection step. Both
approaches usually redistance the LS field only in a narrow band of interest near
the interface.

The PF method is based on advecting the hyperbolic tangent profile across
the interface and it has been originally used for applications regarding micro
flows (Hele–Shaw) [29]. Hyperbolic tangent profile is bounded between -1 and 1
as opposed to 0 and 1 in the VOF method. The attractiveness of the method
lies in its ability to preserve the hyperbolic tangent profile during the advection
step. Sun and Beckermann [36, 37] presented the LS method derived from PF
equation, where the resulting LS equation contains additional terms along with
the usual advection. Similar to the preservation of the hyperbolic tangent profile
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in the PF method, the resulting additional terms serve to maintain the signed
distance property of the LS field implicitly during the solution [36], rendering
additional explicit redistancing unnecessary.

Another approach often employed in small scale phenomena is sharp interface
tracking using moving, interface adhering grids [38, 39]. Dynamic grid interface
tracking procedure often introduces additional grid deformation equations, in-
creasing the CPU time. Furthermore, complex geometries (e.g. ship hull) and
complex flow features (e.g. wave breaking) become challenging with this ap-
proach.

Treatment of Discontinuities at the Interface

Multiple incompressible fluids are coupled with appropriate boundary (jump)
conditions at the moving interface [24]. Kinematic boundary condition ensures
the continuity of velocity field across the interface, while tangential and normal
stress balance yield jump conditions for pressure and tangential component of
the velocity gradient.

Two similar approaches for the treatment of jump conditions at the free sur-
face exist: embedded free surface method [40] and the Ghost Fluid Method
(GFM) [15]. Both techniques consider two fluids with an infinitesimally thin in-
terface, the only difference being the treatment (discretisation) of interface jump
conditions, as indicated by Wang et al. [40].

Johansen and Colella [41] have developed and used the embedded boundary
method for solving the Poisson’s equation, while Crockett et al. [42] embedded the
discontinuous jump conditions in both the Poisson and the heat equation, achiev-
ing second–order accuracy. Recently, Wang et al. [40] extended the method for
two phase incompressible flows. It is important to note that the above men-
tioned publications regarding the embedding technique considered only struc-
tured Cartesian grids.

GFM for treatment of jump conditions across a sharp moving interface rep-
resents an active area of research during past two decades. Fedkiw et al. [43]
developed the GFM coupled with LS interface capturing to efficiently capture
discontinuities in fields during deflagration and detonation. The method has
been extended by Kang et al. [44] to simulate multiphase incompressible and

5



1. Introduction

laminar flow, while Desjardins et al. [45] presented the methodology based on
the GFM with the conservative LS method developed by Olsson and Kreiss [46].
They remarked that the GFM provides a good framework for two phase flows
with large density variations, which is important for marine hydrodynamics ap-
plications. The GFM has also been recently utilised in the lattice Boltzmann
framework by Kaneda et al. [47] to perform validation and conclude that the
method is suitable for curved boundaries in motion. Recently, Lalanne et al. [48]
provided an extensive overview of the treatment of viscous jump conditions in
two phase flow utilising the GFM with LS interface capturing. The GFM has
been also recently used alongside the VOF method for compressible multiphase
flows [49]. As was the case in the embedded free surface methods, the above
mentioned publications on the GFM utilised structured Cartesian grids.

Huang et al. [15] implemented a GFM with LS interface capturing in the Finite
Difference (FD) framework on curvilinear structured grids. The jump conditions
are discretised using second–order accurate schemes, where the LS method is
used to calculate one–sided extrapolates of pressure. The authors note that the
model is suitable for large length scale free surface water–air flows encountered
in marine hydrodynamics. From their publication [15], it is not clear how they
treat:

• Density and pressure discontinuity in the pressure gradient term in the
momentum equation and

• Density discontinuity in the pressure Laplacian in the pressure equation.

They also report that the resulting linear system for the pressure equation is stiff.

To author’s present knowledge, the GFM methodology has not been imple-
mented in polyhedral Finite Volume (FV) method, although Queutey and Vi-
sonneau [14] present a similar approach where the free surface is assumed to be
aligned with the grid faces.

1.2.2. Wave Modelling

Compared to potential flow based numerical methods, wave modelling in CFD re-
quires special treatment in order to propagate the waves through far–field bound-
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aries and prevent undesirable wave reflection which could in turn disrupt the nu-
merical results. Higuera et al. [50, 51] used active wave absorption by dynamically
prescribing the velocity field at the outlet boundaries, which may be favourable
for simulations in closed domains (e.g. experimental setup). For marine appli-
cations, the area of interest often lies within a narrow region near an object of
interest.

A widely used alternative for preventing wave reflection are various damping
regions. Huang et al. [15] used a damping source term in the LS interface cap-
turing equation to prevent wave reflection. Jacobsen et al. [52] applied explicit
relaxation zones to achieve a similar effect. The implicit treatment of relaxation
zones has been recently reported by Jasak et al. [53]. Inside relaxation zones, the
governing CFD transport equations are blended with an arbitrary potential flow
solution. The smooth exponential blending function forces the CFD solution to
vanish at the far–field boundaries, leaving freely propagating potential flow solu-
tion, thus preventing wave reflection. Higuera et al. [50] consider this approach
inferior due to a larger domain needed to accommodate for relaxation zones. The
cells in the relaxation zones are usually very large, which is favourable as this
increases numerical dissipation of the CFD solution. In addition, possible use
of advanced potential flow methods allows us to model only small area near the
object of interest without a detrimental effect on the solution. It is important to
mention absorbing boundary conditions [54] which often perform well for regular
waves with well–defined frequency, but need significant additional considerations
for general irregular sea states.

In order to generate incoming free surface waves, a straightforward approach
is to prescribe a time varying boundary conditions [50] at the inlet boundaries.
A more advanced approach used by Higuera et al. [55] uses moving boundaries,
mimicking experimental setting. Instead of generating the waves at a specified
boundary, Ferrant et al. [20] used a solution decomposition via Spectral Wave
Explicit Navier–Stokes Equations (SWENSE) method, introducing the incident
wave explicitly present in the whole computational domain at all times. In the
SWENSE method, the unknown solution fields are decomposed into incident and
diffracted (perturbation, scattered [56]) components. The incident component of
a given field is obtained from potential flow models, while the diffracted com-
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ponent is solved for via fully nonlinear, viscous CFD. It is important to note
that the method relies on coarse (stretched) grid in far–field region to numeri-
cally damp diffracted fields near the boundaries, thus preventing wave reflection.
This method has been successfully applied to calm water, regular and irregular
waves [57, 58, 59]. In their work, Monroy et al. [58] used fully nonlinear potential
flow models, such as stream function wave theory solution for regular waves [60]
and Higher Order Spectral (HOS) method [61, 62, 63] for irregular waves.

1.2.3. Turbulence Modelling

Due to large length scales in all marine hydrodynamic flows, accurate resolution
of the small scale turbulence structures via Direct Numerical Simulation (DNS)
is far from feasible. Hence, for practical applications such as steady resistance
or seakeeping of a ship in waves, Unsteady Reynolds Averaged Navier–Stokes
(URANS) models are most often employed [2]. The turbulence closure is most
often achieved via two–equation eddy–viscosity models [64], where k − ω Shear
Stress Transport (SST) model [65, 66] is most widely used [2]. As an alternative to
two–equation models, Large Eddy Simulation (LES) models represent an active
area of research, especially for flows around propellers [67]. The LES resolves
eddies which are large enough relative to the grid size, but still requires modelling
of the Sub–Grid Scale (SGS) turbulence. Since the LESs are still computationally
expensive, a number of hybrid RANS/LES models have been developed. One of
the hybrid models is the Detached Eddy Simulation (DES), e.g. used for propeller
cavitation simulations [68].

For a more detailed discussion regarding turbulence modelling for marine
hydrodynamic flows, reader is referred to 27th International Towing Tank Con-
ference (ITTC) report [69].

1.3. Numerical Frameworks for Marine Hydrody-

namics

An excellent overview of a broad spectrum of numerical methods used by par-
ticipants of the Gothenburg 2010 workshop [70] is given by Larsson et al. [2].
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Approximately 80% of participants used FV discretisation (26 out of 33), while
all others used FD discretisation. There were not participants using e.g. Finite
Element (FE) method. The widespread use of the FV method can be related
to its inherent ability in handling unstructured polyhedral grids. Arbitrary un-
structured grids are favourable for complex geometries due to well established
automatic grid generation algorithms which require minimal user input. As op-
posed to FV based algorithms, FD algorithms require structured grids as used by
all participants. The apparent limitation of the arbitrary polyhedral FV method
is its inherent second–order accuracy, however, it is important to note that the
second–order accuracy has been used by most of the participants utilising FD
algorithms [70].

1.4. Present Contributions

The objective of this thesis is to introduce a new numerical model for two–phase
flow modelling in marine hydrodynamics using arbitrary polyhedral FV method.
The thesis makes the following specific contributions to the field of CFD related
to two–phase flow modelling for marine applications:

• Interface capturing is achieved with implicitly redistanced LS method de-
rived from PF equation. The transport equation contains additional terms
in a form which is not suitable for polyhedral FV discretisation, as opposed
to the original implementation by Sun and Beckermann [36, 37] carried out
in the FD framework on uniform computational grids. Additional terms
responsible for implicit redistancing are mathematically reformulated in or-
der to achieve implicit FV discretisation. The influence of the implicit
discretisation of additional terms to the resulting linear system is discussed
in detail from numerical point of view.

• Solution decomposition with SWENSE method [20, 56] is originally imple-
mented in the FD framework, discretising governing equations in differen-
tial form. The FV method uses integral, conservative form of governing
equations, rendering additional numerical considerations necessary for the
successful implementation of the SWENSE method. Solution decomposi-
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tion model is given in detail, with additional considerations regarding CPU
time efficiency.

• In order to ensure prevention of the wave reflection, solution decomposition
is combined with domain decomposition approach with implicit relaxation
zones. In relaxation zones, diffracted fields are smoothly forced to vanish,
leaving only incident potential flow solution at the far–field boundaries.
The implicit treatment of the relaxation zones is explained in detail and its
impact on the resulting linear system is discussed from numerical point of
view.

• The GFM method [15]) is extended to arbitrary polyhedral FV method.
Original second–order accurate FD discretisation of free surface jump con-
ditions introduced by Huang et al. [15] requires additional considerations
using compact stencil in arbitrary polyhedral FV framework, which often
uses unstructured computational grids. The resulting pressure equation
and its properties are investigated in detail, producing a symmetric cou-
pling between water and air.

The combination of methods for two–phase flow treatment, interface cap-
turing, solution and domain decomposition require additional considerations for
their implementation in the arbitrary polyhedral FV framework. Moreover, to
author’s knowledge, their combination has not yet been implemented in any nu-
merical framework.

The numerical model is implemented in the Naval Hydro pack [71] based on
the open source object–oriented C++ foam-extend library (community driven
fork of the OpenFOAM software for general computational continuum mechan-
ics). Special attention has been given to object–oriented and generic program-
ming paradigm to ensure easier maintenance and further development of the
present model.

An extensive Validation and Verification (V&V) is carried out regarding ma-
rine hydrodynamics flows of scientific and industrial importance. Validation is
carried out by comparing simulation results with analytical, other numerical and
experimental data, while the verification is carried out by performing grid, time
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step and periodic uncertainty assessments. Additional sensitivity studies are car-
ried out to establish a best practice guidelines for parameters influencing implicit
redistancing of the LS field. Following sets of test cases are considered in this
study:

1. Free surface flow over a ramp,

2. Progressive wave propagation,

3. Assessment of higher order forces exerted on vertical surface piercing cylin-
der,

4. Seakeeping of the KCS model in head and oblique waves at the design speed.

1.5. Thesis Outline

The rest of this thesis is organised as follows.
Ch. 2. presents the governing equations for a general incompressible two–

phase flow. The jump conditions at the interface between two immiscible phases
are summarised and approximated for water–air free surface flows at naval hy-
drodynamics length scales. A brief overview of interface capturing methodology
is also given.

Ch. 3. presents the solution and domain decomposition methodologies for effi-
cient coupling of arbitrary potential flow models with fully nonlinear, two–phase,
turbulent flow model. The governing equations are first decomposed using the
SWENSE solution decomposition, followed by domain decomposition via implicit
relaxation zones.

Ch. 4. presents the numerical modelling framework. A brief overview of the
FV discretisation of governing equations is presented first, with the emphasis on
the pressure equation. Discretisation of pressure and density terms in the govern-
ing equations is explained in detail and the second order accurate discretisation
of the pressure jump conditions, used to define one–sided extrapolation across the
interface, is the focal point of Ch. 4. The extrapolation formulae and their use
for the pressure gradient and Laplacian terms at the free surface are explained in
detail, where it is demonstrated that the pressure equation remains symmetric.
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Finally, rigid body motion modelling is briefly described, followed by a detailed
explanation of the segregated solution algorithm.

Ch. 5. presents Validation and Verification procedures used for all test cases,
where the special attention is given to the verification procedures in order to
assess numerical uncertainties. Periodic uncertainty assessment for temporally
periodic flows is presented first, followed by the grid and temporal uncertainty
assessment.

Ch. 6. presents test cases used to validate and verify the developed methodol-
ogy. The first test case deals with the steady state free surface flow over a ramp.
The second set of test cases considers 2–D progressive wave propagation with
various sensitivity studies. The third set of test cases deals with the assessment
of higher order forces on a surface piercing cylinder in regular waves. Finally, the
fourth set of test cases refers to seakeeping simulations of container ships in head
and oblique waves, at design speed. Performance in terms of the CPU times for
utilised computer resources are reported for more demanding cases.

Ch. 7. presents the summary and conclusion regarding this study. Proposals
for future research are briefly discussed.
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2. Governing Equations

2.1. Two–Phase Flow Model

This section starts by examining the conditionally averaged momentum equation
and provides a theoretical explanation for spurious acceleration of the lighter
phase. The remainder of the section presents an alternative modelling approach
for incompressible, turbulent flow of two immiscible fluids with a presumably
infinitesimally sharp interface, where the coupling of fluids is achieved with ap-
propriate interface conditions. Since the two fluids of interest are water and air,
incompressible Newtonian fluid [24] model is used, which is a justified assump-
tion for low speed phenomena. Turbulence is accounted for with Bousinessq eddy
viscosity assumption [72], allowing the use of general turbulence models.

2.1.1. A Remark on Conditionally Averaged Momentum

Equation

To model two–phase flows concerning water and air in off–shore and marine hy-
drodynamics, some authors [52, 50, 51, 73, 74, 14, 54] use a two–phase momentum
equation, which is derived based on conditional averaging [75].

The two–phase momentum equation includes variable two–phase density and
usually has the following form:

∂(ρu)

∂t
+∇•(ρuu)−∇•(µeff∇u) = −∇pd − g•x∇ρ+∇u•∇µe + σκ∇α , (2.1)

where ρ is the density field of the water–air mixture, u is the continuous ve-
locity field, µe is the two–phase effective dynamic viscosity, pd is the dynamic
pressure, g is the gravitational acceleration, x is the position vector, σ is the
surface tension coefficient, κ is the mean curvature of the interface and α is the
volume fraction. In the hydrostatic case, the dynamic pressure gradient ∇pd and
density gradient ∇ρ term, which do not vanish at the interface, should be bal-
anced: ∇pd + g•x∇ρ = 0. Hence, the coupling between dynamic pressure and



2. Governing Equations

density is resolved in the momentum equation, which leads to spurious air veloc-
ities in the lighter fluid near the free surface when one uses segregated solution
algorithms. To elaborate, consider a hydrostatic case of inviscid fluid where the
surface tension is neglected. Eqn. (2.1) becomes:

∂(ρu)

∂t
= −∇pd − g•x∇ρ = Sh , (2.2)

where the source term Sh represents the imbalance between dynamic pressure
gradient and density gradient terms. Such imbalance is naturally present during
segregated numerical solution, which is used by most CFD algorithms [15, 14,
16, 17, 52, 50, 73]. The source term causes temporal change in the velocity
field, spuriously affecting the lighter phase because of the ρ prefactor in the time
derivative term. Furthermore, dynamic pressure gradient and density gradient
terms are often discretised using conventional gradient discretisation schemes that
do not take the density discontinuity into account, making them ineffective near
the interface. It is important to stress that this consideration does not include
surface tension effects, thus, this observation is unrelated to parasitic currents due
to numerical modelling issues related to the surface tension, often encountered in
atomisation calculations using the Continuous Surface Stress (CSS) model [76].
The model implementing the conditionally averaged equations (i.e. interFoam
solver from foam–extend–3.2) shall be compared to the present model for the
hydrostatic test case in Ch. 6.

An alternative two–phase flow modelling approach is presented in detail in
following text, where the interface between two incompressible fluids is assumed
infinitesimally sharp.

2.1.2. Single Phase Flow Equations

The continuity equation for an incompressible flow states that the velocity field
ui is solenoidal:

∇•ui = 0 , (2.3)

where i is the fluid index.

The momentum equation, or the Navier–Stokes equations, for a single phase
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denoted by the subscript i, incompressible flow in Earth’s gravitational field reads:

∂ui
∂t

+∇•(uiui)−∇• (νe,i∇ui) = − 1

ρi
∇pi + g , (2.4)

where νe,i is the effective kinematic viscosity, pi is the pressure and g is the
gravitational acceleration, which is assumed constant. ρi denotes constant density
of the fluid i since the incompressible flow is considered. The r.h.s. of Eqn. (2.4)
can be written in a more convenient way:

− 1

ρi
∇pi + g = −βi∇pi + g , (2.5)

introducing the following substitution:

βi =
1

ρi
. (2.6)

Two terms in Eqn. (2.5) denoting the pressure gradient and gravitational accel-
eration can be written as follows:

− βi∇pi + g = −βi∇pi +∇(g•x) = −βi∇
(
pi −

g•x

βi

)
= −βi∇pd,i , (2.7)

where the decomposition of pressure into hydrostatic and dynamic part reads:

pi = pd,i +
g•x

βi
. (2.8)

Using Eqn. (2.7), the momentum equation for incompressible, turbulent, single–
phase flow, Eqn. (2.4) is rewritten as:

∂ui
∂t

+∇•(uiui)−∇• (νe,i∇ui) = −βi∇pd,i . (2.9)

Compared to Eqn. (2.1), note that ρ is not present inside differential operators
in Eqn. (2.9) due to assumed constant density of the fluid.

2.1.3. Inter–Phase Boundary Conditions

Since two fluid phases are considered immiscible, fluid flow model given by
Eqn. (2.3) and Eqn. (2.9) may be applied to each phase separately [38], tak-
ing into account boundary conditions at the moving interface between the fluids.
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Kinematic boundary condition [77] gives a relation between fluid velocities on
opposite sides of the interface:

ui = uj , x ∈ Γij , (2.10)

where Γij is the free surface between two immiscible fluids, i and j. ui is the ve-
locity field of the fluid i at the interface and uj is the velocity field of the fluid j at
the interface. Eqn. (2.10) states that the velocity field must be continuous across
the interface, which will later be used to define a single volumetric continuity
equation valid for two incompressible phases.

The dynamic boundary condition follows from conservation of momentum,
stating that stresses at the interface have to be in local equilibrium [78]. The
stress balance at the interface can be divided into the tangential and the normal
part. Following Tuković and Jasak [38], the tangential stress balance yields a
relation between the normal derivative of the tangential velocity field on opposite
sides of the interface:

µe,j (n•∇ut)j − µe,i (n•∇ut)i = −∇sσ − (µe,j − µe,i) (∇sun) , x ∈ Γij , (2.11)

where µe,i = ρiνe,i is the effective dynamic viscosity of the fluid i and µe,j is the
effective dynamic viscosity for the fluid j. n is the unit normal vector on the
interface, oriented from the fluid i towards the fluid j. ut = (I− nn) •u is the
tangential velocity component, ∇s = ∇− nn•∇ is the surface gradient operator,
σ is the surface tension coefficient, un = n•u is the normal velocity component
at the interface and I is the identity tensor.

The l.h.s. of Eqn. (2.11) represents the discontinuity in the tangential velocity
gradient due to different effective dynamic viscosities of two fluids. The discon-
tinuity is also caused by terms on the r.h.s. of Eqn. (2.11), which represent a
possibly non zero gradient of the surface tension coefficient and additional term
due to surface gradient of normal velocity component, respectively. A non–zero
gradient of the surface tension coefficient may occur in interfacial flows with
temperature gradients and due to non–uniform distribution of surfactants at the
interface [38].

The pressure jump across the interface is obtained from normal stress balance:

pj − pi = σκ− 2 (µe,j − µe,i)∇s•u , x ∈ Γij , (2.12)
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where κ = −∇s•n is the mean curvature of the interface. The first term on
the r.h.s. of Eqn. (2.12) models a pressure jump due to surface tension, while
the second term models a jump due to normal viscous force across the interface,
expressed through surface divergence of the velocity field at the interface [79].

2.2. Marine Hydrodynamics Two–Phase

Flow Model

The focus of the present study is the free surface flow concerning water and air at
naval hydrodynamics length and time scales, which may be considered a special
case of two–phase flow. At low speed, both water and air may be considered
incompressible and the inter–phase (free surface) boundary conditions may be
simplified without significant loss of generality.

2.2.1. Approximate Jump Conditions

In order to simplify resulting mathematical expressions, the kinematic boundary
condition using a slightly different notation is first introduced. Considerations
regarding the tangential dynamic condition are given next, followed by dynamic
pressure jump condition at the interface arising from normal stress balance.

Kinematic Boundary Condition

Following the notation used by GFM authors [15, 45], the kinematic boundary
condition at the free surface given by Eqn. (2.10) can be written as:

[u] = u− − u+ = 0 , x ∈ Γij , (2.13)

where the linear operator [·] indicates jump across the free surface. Superscript
"+" denotes the value infinitesimally close to the free surface from the heavier
fluid (water), while superscript "−" denotes the value infinitesimally close to the
free surface from the lighter fluid (air):

u+ = lim
x→Γ+

ij

u(x) , (2.14)
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u− = lim
x→Γ−ij

u(x) , (2.15)

where limx→Γ+
ij
denotes one sided limit from the heavier fluid, and similarly for

the lighter fluid. Eqn. (2.13) states that the velocity field is continuous across
the free surface.

Tangential Dynamic Boundary Condition

Eqn. (2.11) denotes the jump in the tangential velocity gradient (n•∇ut) in the
normal direction to the interface, caused by differing dynamic viscosities of two
fluids. Although it would be possible to include the tangential jump in the present
model, tangential dynamic condition is of minor importance for free surface flows
at marine hydrodynamics length scales [15, 14], and is thus simplified. In order
to approximately satisfy the tangential dynamic condition, dynamic viscosity is
assumed to be a continuous function across the free surface, albeit with a possibly
steep gradient:

[µe] = 0 , x ∈ Γij . (2.16)

Hence, Eqn. (2.16) states that the effective dynamic viscosity does not have a
jump across the free surface. Furthermore, by neglecting the gradient of surface
tension coefficient, and assuming that the tangential velocity gradient is contin-
uous across the free surface, Eqn. (2.11) takes the following, simplified form:

[∇u] = 0 , x ∈ Γij . (2.17)

Eqn. (2.17) states that the velocity gradient is continuous across the free surface.

Normal Dynamic Boundary Condition

The normal stress balance at the free surface is given by Eqn. (2.12) in terms
of pressure jump. Neglecting surface tension effects and using the assumption
of continuous dynamic viscosity across the interface, Eqn. (2.16), a simplified
expression for the pressure jump is obtained:

[p] = 0 , x ∈ Γij . (2.18)

The momentum equation, Eqn. (2.9) is written in terms of dynamic pressure, pd.
Hence, the pressure jump condition given by Eqn. (2.18) is rewritten in terms of
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2.2. Marine Hydrodynamics Two–Phase Flow Model

dynamic pressure using Eqn. (2.8):

[pd] = − 1

[β]
g•x = −[ρ]g•x , x ∈ Γij . (2.19)

Eqn. (2.19) states that the dynamic pressure has a jump proportional to the
jump in density and the inner product of the gravitational acceleration with the
position vector.

Summary of the Approximate Jump Conditions

Approximate jump conditions in two–phase free surface flows at naval hydrody-
namics scales are summarized in this section.

• Continuity of the velocity field across the free surface, Eqn. (2.13) is ob-
tained without simplifications [24];

• Surface tension effects are considered negligible for large scale flows [15];

• Tangential stress balance is achieved by assuming continuous effective vis-
cosity, Eqn. (2.16) and velocity gradient, Eqn. (2.17) at the free surface,
although viscosity could possibly have steep gradient;

• Dynamic pressure jump due to density discontinuity is taken into account
exactly without simplifications.

Above assumptions are justified for large scale flows in naval hydrodynamics [14,
15] and are exact for inviscid flows. Large density variation across the free surface,
having the most important effect, is taken into account.

2.2.2. Combined Governing Equations

Before the derivation of combined governing equations for the immiscible two–
phase flow, an arbitrary, phase–intensive field ξi is defined as:

ξi(x)

 6= 0 , if x ∈ Ωi ,

= 0 , if x ∈ Ωj ∪ Γij ,j 6= i ,
(2.20)

where ξi stands for all fields of interest: velocity, effective viscosity, density and
dynamic pressure. Eqn. (2.20) states that the field ξi vanishes for other phases,
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2. Governing Equations

j 6= i, and at the free surface Γij. For example, velocity field in water (Ωw), uw
is defined to be zero in air (Ωa) and at the free surface Γwa. At the free surface,
jump conditions hold and shall be later used to define continuous fields defined
for x ∈ Ωi ∪ Γij ∪Ωj. The definition where Γij is not a part of Ωi ∪Ωj is used to
facilitate future developments. Without loss of generality, a two–phase immiscible
flow of water and air with a sharp phase interface is assumed in further text.

Combined Continuity Equation

Incompressible flow continuity equations, Eqn. (2.3) for water and air read:

∇•uw = 0 , x ∈ Ωw . (2.21)

∇•ua = 0 , x ∈ Ωa . (2.22)

where index w denotes water and index a denotes air. Having in mind the defi-
nition given by Eqn. (2.20), combined velocity field for water and air is defined
as:

u = uw + ua , x ∈ Ωw ∪ Γwa ∪ Ωa . (2.23)

where the resulting velocity field u is continuous across the free surface due to
kinematic boundary condition Eqn. (2.13).

As the velocity field is continuous across the free surface, a combined two–
phase volumetric continuity equation is obtained by summing Eqn. (2.21) and
Eqn. (2.22):

∇•uw +∇•ua = ∇•(uw + ua) = ∇•u = 0 , x ∈ Ωw ∪ Γwa ∪ Ωa . (2.24)

valid both inside each of the phases and at the interface.

Combined Momentum Equation

Incompressible flow momentum equations, Eqn. (2.9) for water and air read:

∂uw
∂t

+∇•(uwuw)−∇• (νe,w∇uw) = −βw∇pd,w , x ∈ Ωw , (2.25)

∂ua
∂t

+∇•(uaua)−∇• (νe,a∇ua) = −βa∇pd,a , x ∈ Ωa . (2.26)
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2.2. Marine Hydrodynamics Two–Phase Flow Model

Proposition 2.1. It is assumed that the combined momentum equation has the
following form obtained via summation of Eqn. (2.25) and Eqn. (2.26):

∂u

∂t
+∇•(uu)−∇• (νe∇u) = −β∇pd , x ∈ Ωw ∪ Ωa , (2.27)

Note that the Eqn. (2.27) is not assumed to be valid at the free surface, i.e. for
x ∈ Γwa. In Eqn. (2.27), νe is the continuous effective kinematic viscosity. Due to
phase separation (see Eqn. (2.20)), pd = pd,w + pd,a represents the single dynamic
pressure field and β = βw + βa represents the single density field.

Proof. The assumption that the combined momentum equation, Eqn. (2.27) is
the sum of two single–phase momentum equations, Eqn. (2.25) and Eqn. (2.26),
is proved on a term by term basis using Eqn. (2.23) for continuous velocity field.
Expanding the time derivative term on the l.h.s. of Eqn. (2.27) yields:

∂u

∂t
=
∂(uw + ua)

∂t
=
∂uw
∂t

+
∂ua
∂t

, (2.28)

Expanding the convection term on the l.h.s. of Eqn. (2.27) yields:

∇•(uu) = ∇•(uwuw) +���
���:0

∇•(uwua) +���
���:0

∇•(uauw) +∇•(uaua)

= ∇•(uwuw) +∇•(uaua) ,
(2.29)

where the second identity results by cross coupling terms being zero by phase
separation definition, Eqn. (2.20) and assumption of a sharp interface. Expanding
the diffusion term on the l.h.s. of Eqn. (2.27) yields:

∇•(νe∇u) = ∇•(νe,w∇uw) +
���

���
�:0

∇•(νe,w∇ua) +
���

���
�:0

∇•(νe,a∇uw) +∇•(νe,a∇ua)

= ∇•(νe,w∇uw) +∇•(νe,a∇ua) .
(2.30)

Expanding the pressure gradient term on the r.h.s. of Eqn. (2.27) yields similar
results:

β∇pd = βw∇pd,w +���
��:0

βw∇pd,a +���
��:0

βa∇pd,w + βa∇pd,a
= βw∇pd,w + βa∇pd,a .

(2.31)

Combining Eqn. (2.28) to Eqn. (2.31), it is clear that the combined momentum
equation given by Eqn. (2.26) is valid for either water or air.
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2. Governing Equations

Combined Momentum Equation at the Free Surface

To inspect the combined momentum equation at the free surface, the jump
operator is applied to Eqn. (2.27), yielding:[

∂u

∂t
+∇•(uu)−∇• (νe∇u) + β∇pd

]
= 0 . (2.32)

By linearity of jump operator [·], Eqn. (2.32) is written and simplified as:

�
�
���

0[
∂u

∂t

]
+���

��:0
[∇•(uu)]−����

���:0
[∇• (νe∇u)] + [β∇pd] = 0 . (2.33)

In Eqn. (2.33), the time derivative and the convection term are identically equal
to zero because they do not have a jump across the free surface (continuity of
the velocity field Eqn. (2.13)). In the current approach, jump in the diffusion
term is not accounted for due to assumed continuity of the effective viscosity,
Eqn. (2.16) and the velocity gradient, Eqn. (2.17). Note that the assumption
of continuous dynamic effective viscosity given by Eqn. (2.16) is extended for
kinematic viscosity as well. Eqn. (2.33) therefore reveals an additional jump
condition that needs to be taken into account:

[β∇pd] = 0 . (2.34)

This represents an additional constraint on the dynamic pressure gradient and
density at the free surface together with dynamic pressure jump condition given
by Eqn. (2.19). The dynamic pressure gradient jump condition, Eqn. (2.34)
has been previously successfully used by Huang et al. [15], Queutey and Vison-
neau [14] andWang et al. [40]. Eqn. (2.34) is crucial for further development of the
discretised jump conditions and is the critical point of this derivation. Further-
more, if the dynamic pressure gradient jump condition, Eqn. (2.34) is satisfied,
the domain of validity of the combined momentum equation, Eqn. (2.27) includes
the free surface along with the water and air domains, i.e.:

∂u

∂t
+∇•(uu)−∇• (νe∇u) = −β∇pd , x ∈ Ωw ∪ Γwa ∪ Ωa , (2.35)

giving a single combined equation for water, air and the free surface.
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2.3. Interface Capturing

2.3. Interface Capturing

Governing equations described in Sec. 2.2.2. require the information regarding
exact location of the interface in order to successfully apply the jump conditions.
The evolution of free surface in time is often modelled via Lagrangian interface
tracking methods [80] or interface capturing methods. Most of the former meth-
ods use Lagrangian points to advect the sharp interface, with possible difficulties
arising from complex flow patterns (e.g. wave breaking). The latter methods
often use a colour function to denote the location of the interface, which is then
advected by a velocity field to model the motion of the interface. Interface cap-
turing methods often diffuse (smear) the interface over several computational
points to ensure numerical stability when combined with conventional discretisa-
tion schemes for density gradient calculation within the pressure–velocity system.
Although it is possible to geometrically reconstruct perfectly sharp interface from
the colour function, such need rarely arises if the interface is confined to a small
region in space. In this thesis, the interface capturing methods will be further
considered due to their ability to handle breaking surface.

Interface capturing methods can be divided into three major groups:

1. Level Set (LS) methods [34, 33];

2. Phase Field (PF) methods [36, 37];

3. Volume–of–Fluid (VOF) methods [26, 27, 30, 32],

as presented in Figure 2.1. Two phases, namely water and air, Ωw and Ωa are
separated by a free surface Γwa.

2.3.1. Level Set Method

The Level Set (LS) method based on the signed distance function is used in this
thesis, with the signed distance function defined as:

ψ(x) =


d , if x ∈ Ωw ,

0 , if x ∈ Γwa ,

−d , if x ∈ Ωa ,

(2.36)
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∇

Ωw

Ωa

water

air

Γwa

x,(ψ,φ,α)

y ψ(y) =−y

(0)

φ(ψ) =tanh
(

ψ

ǫ
√
2

)

( +1)(−1)

α(ψ) =0.5(sgn(ψ) +1)

(0) (+1)

Figure 2.1: Comparison of interface capturing schemes. ψ is the signed distance function for
the LS field, φ is the PF and α is the volume fraction in the VOF approach.

where d is the shortest Euclidian distance to the free surface. The interface is
reconstructed with zero level set ψ(x) = 0. It is important to note that the signed
distance function is not bounded, making it easier to advect numerically as there
is no need for special boundedness preserving schemes.

2.3.2. Phase Field Method

As opposed to the unbounded LS method, the Phase Field (PF) is bounded be-
tween −1 and 1 with a prescribed hyperbolic tangent profile across the interface,
which in turn may be written as a function of the signed distance field:

φ(ψ) = tanh

(
ψ

ε
√

2

)
, (2.37)
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2.3. Interface Capturing

where the width parameter ε is used to control the smearing of the interface.
The smearing of the interface in Eqn. (2.37) is by definition a user controlled
parameter. For example, Sun and Beckermann [36] show that φ varies from −0.9

and 0.9 over 3
√

2ε. The interface is reconstructed in the same way as in the LS
method, φ(x) = 0.

2.3.3. Volume–of–Fluid Method

By definition, the Volume–of–Fluid (VOF) method represents a fraction of the
volume occupied by water inside an arbitrary closed volume. The volume fraction,
α can also be written in terms of the LS field:

α(ψ) = 0.5 (sgn(ψ) + 1) , (2.38)

where sgn(ψ) denotes the sign (signum) function. Looking at the mathematical
definition of volume fraction in Eqn. (2.38), which corresponds to the Heaviside
step function, the interface may be reconstructed as an iso–surface of 0 < α(x) <

1. However, the initially sharp interface often gets smeared due to numerical
discretisation error in handling of bounded convection terms. Geometrical recon-
struction of the interface in the VOF method is a computationally challenging
task, especially for unstructured polyhedral grids, nevertheless, Luppes et al. [54]
and Kleefsman [81] apply it successfully on Cartesian grids.

In order to define a continuous effective viscosity field as assumed in Eqn. (2.16),
a combination of Eqn. (2.37) and Eqn. (2.38) is used:

α(ψ) = 0.5

(
tanh

(
ψ

ε
√

2

)
+ 1

)
. (2.39)

Similar to the PF method, Eqn. (2.37), the interface is smeared using the width
parameter, ε. The combined two–phase, continuous effective kinematic viscosity
field is defined as:

νe = ανe,w + (1− α)νe,a . (2.40)

Definition given by Eqn. (2.40) satisfies the approximate jump condition regard-
ing effective viscosity, Eqn. (2.16), since α is now a continuous function. Note that
this assumption is invalid if one uses Eqn. (2.38), which defines a discontinuous
α distribution. The density field is not artificially smeared.
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2. Governing Equations

2.3.4. Level Set Transport Equation

As opposed to the PF and VOF methods, the solution variable in the LS method
is not bounded. In this study, the LS method is used to advect the interface
between two phases because the unboundedness of the signed distance function
facilitates the implementation of the solution decomposition via the SWENSE
method, which shall be described in Ch. 3.

The solution of the advection equation for the LS field does not guarantee the
preservation of the signed distance function due to numerical discretisation error,
which is the practical drawback of the LS method. Moreover, the field often gets
distorted to a point where it is unusable without effective reinitialisation. This
is called redistancing, where numerous redistancing algorithms [82, 83, 35] often
redistance the LS field after the advection step, increasing the computational cost
and causing potential phase conservation issues.

Recently, Sun and Beckermann [36] have derived a transport equation for the
PF that preserves the hyperbolic tangent profile given by Eqn. (2.37). Eqn. (2.37)
also presents a relation between the PF and LS function, i.e. φ and ψ, respec-
tively. This identity is used to derive a transport equation for the LS field from
the PF equation presented by Sun and Beckermann [36]. Reader is referred to Ap-
pendix A for a detailed derivation of the LS transport equation from the original
PF equation [36], while the resulting equation is given here:

∂ψ

∂t
+ u•∇ψ =

b

(
∇• (∇ψ) +

√
2

ε

(
1− |∇ψ|2

)
tanh

(
ψ

ε
√

2

)
− |∇ψ|∇•

(
∇ψ
|∇ψ|

))
.

(2.41)

The terms in Eqn. (2.41) are briefly discussed here: the reader is referred to Sun
and Beckermann [36] for a detailed derivation and analysis. The terms on the
l.h.s. represent advection of the signed distance field, ψ. The first term on the
r.h.s. is a diffusion term that serves to smooth out possible singularities. The
second term on the r.h.s. models the curvature–driven motion of the interface. In
water and air two–phase flows at marine hydrodynamics length scale, this term
could be neglected because of the fluid properties. The third term on the r.h.s.
counteracts the first and the second term. Folch et al. [29] show that the inclusion
of the r.h.s. terms is numerically beneficial, even though the first two terms may
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be canceled out by the third term. In the absence of curvature–driven motion,
b is no more than a numerical parameter, whose meaning shall be described in
Sec. 4.1.3.

2.4. Closure

A general two–phase flow model for incompressible, turbulent flows has been pre-
sented. The approximate jump conditions at the free surface are derived for flows
at marine hydrodynamics length scales, which are then used to define combined
governing equations for both water and air. Different interface capturing method-
ologies are discussed, where the implicitly redistanced LS transport equation is
presented in detail.

The resulting Partial Differential Equations (PDEs) in the present mathe-
matical model for free surface marine hydrodynamics flows used in this thesis is
summarized below.

• Combined (mixture) continuity equation:

∇•u = 0 , (2.42)

• Combined (mixture) momentum equation:

∂u

∂t
+∇•(uu)−∇• (νe∇u) = −β∇pd , (2.43)

• Implicitly redistanced LS interface capturing equation:

∂ψ

∂t
+ u•∇ψ =

b

(
∇• (∇ψ) +

√
2

ε

(
1− |∇ψ|2

)
tanh

(
ψ

ε
√

2

)
− |∇ψ|∇•

(
∇ψ
|∇ψ|

))
.
(2.44)

Combined momentum equation, Eqn. (2.43) shall be used to solve for the con-
tinuous velocity field, while the combined continuity equation, Eqn. (2.42) shall
be used to formulate dynamic pressure equation using a segregated solution algo-
rithm. LS transport equation, Eqn. (2.44) shall be used to capture the location
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of the free surface and to calculate effective kinematic viscosity of the two–phase
mixture, Eqn. (2.40).

Along with governing equations, the following jump conditions at the free
surface need to be appropriately modelled:

• Density jump condition:
[ρ] = ρa − ρw , (2.45)

• Dynamic pressure jump condition:

[pd] = − 1

[β]
g•x , (2.46)

• Dynamic pressure gradient jump condition:

[β∇pd] = 0 . (2.47)

Jump conditions given by Eqn. (2.45), (2.46) and (2.47) shall be used to discretise
the dynamic pressure and density terms near the free surface. Continuity of
velocity field, Eqn. (2.13) has been already assumed (i.e. explicitly used) in the
derivation of the combined continuity and momentum equations, Eqn. (2.42) and
Eqn. (2.43), respectively. Continuity of the effective viscosity and the velocity
gradient at the free surface, Eqn. (2.16) and Eqn. (2.17), respectively, along with
the continuous velocity field allow the use of single–phase turbulence models [64].

It is important to stress that this model is not obtained using conditional
averaging; rather it presents GFM [15] where the density distribution in two
phases is assumed to define infinitesimally sharp interface.

Using the VOF method, the model can be easily extended for more than
two phases. It is straightforward to prove that the combined momentum and
continuity equations would have the same form, while additional VOF equations
need to be introduced to capture multiple phases, as described by Kissling et
al. [39].
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3.1. Wave Modelling

Ch. 2. presented a general model for fully nonlinear, two–phase, turbulent flow,
governed by the combined two–phase continuity equation, Eqn. (2.42), combined
two–phase momentum equation, Eqn. (2.43) and the interface capturing equation
via implicitly redistanced LS method, Eqn. (2.44). The governing equations are
accompanied by the free surface jump conditions for density, Eqn. (2.45) and
dynamic pressure, Eqn. (2.46) and Eqn. (2.47). Since the derivation of governing
equations assumed that the jump conditions hold, they need to be incorporated
in the discretisation procedure via the GFM, which shall be presented in detail
in Ch. 4.

Free surface gravity waves represent a large group of solutions for governing
equations presented in Ch. 2. Traditionally, analytical solutions were first ob-
tained using a linear potential flow model on an infinite domain, yielding linear
Stokes’ wave theory [84]. The linear solution has been extended to incorporate
weakly nonlinear effects, yielding higher order Stokes’ theories [85]. With the
popularisation of computers, fully nonlinear numerical solutions of regular waves
were obtained [60]. Furthermore, potential flow methods have been successfully
used to numerically simulate ship diffraction and radiation problems, allowing lin-
ear seakeeping analysis in frequency domain using the BEM [86]. Hence, one can
deduce that the potential flow models (both analytical and numerical) have been
widely used for marine hydrodynamics. For this reason, the present CFD model
needs to be formulated in order to take the advantage of the well established
potential flow models. This is achieved by a twofold decomposition:

1. Solution decomposition to efficiently introduce waves in the CFD domain
and

2. Domain decomposition to prevent spurious wave reflection off the far–field
boundaries.



3. Solution and Domain Decomposition

The two decomposition strategies and their combination are discussed in the
following text.

3.2. Solution Decomposition via the SWENSE

Method

In order to allow efficient coupling of arbitrary potential flow solution with the
fully nonlinear, two–phase, free surface turbulent CFD solution governed by equa-
tions presented in Ch. 2., a variant of the original SWENSE method introduced
by Ferrant et al. [20] is used.

The original SWENSEmethod [20] has been used to calculate wave diffraction,
hence the fields are decomposed into incident and diffracted components. In this
thesis, a slightly different notation shall be used where the fields are decomposed
into incident and perturbed fields. The change of nomenclature is made since
the perturbed fields always contain vorticity, viscosity and two–phase effects,
and may contain diffraction and radiation effects, based on a specific problem.
Hence, the SWENSE decomposition for an arbitrary field χ reads:

χ = χI + χP , (3.1)

where index I denotes the incident component and P denotes the perturbed
component. The idea of SWENSE decomposition is to capture main features of
free surface waves with a potential flow model, providing χI , and superimpose
nonlinear, two–phase and turbulent effects by extending χI to a full Navier–Stokes
model via χP . Note that χI may be an arbitrary field, and χP should adjust
accordingly to satisfy the governing equations. However, from computational
perspective, it is desirable to have χI to be as close to χ as possible. Such
decomposition is desirable since the incident wave field often accurately models
a large portion of the desired solution. Moreover, neglecting rotational motion
and viscosity provides potential flow models with significant speed up compared
to full CFD simulations.

Governing equations, Eqns. (2.42–2.44) shall be decomposed using Eqn. (3.1),
where special considerations regarding strongly conservative FV discretisation
need to be taken into account.
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3.2.1. Solution Decomposition of the Continuity Equation

Decomposing the combined continuity equation, Eqn. (2.42) into the incident and
perturbed components yields:

∇•uP = −∇•uI . (3.2)

The velocity field obtained from the potential flow solution is indeed ideally
solenoidal, i.e. ∇•uI = 0. Nevertheless, this is valid on a differential level (for
Stokes’s wave theories) and arbitrary numerical level (stream function or HOS
method) in the discrete form. When the incident flow velocity field is mapped on
an arbitrary CFD grid, using an arbitrary numerical framework (FV, FD or FE
method), there is no guarantee that ∇•uI vanishes. Hence, the term on the r.h.s.
of Eqn. (3.2) is kept when evaluated numerically due to the (arbitrary) numerical
discretisation error.

3.2.2. Solution Decomposition of the Momentum Equation

Decomposing the combined momentum equation, Eqn. (2.43) yields:

∂uP
∂t

+∇•(uuP )−∇• (νe∇uP ) = −∂uI
∂t
−∇•(uuI) +∇• (νe∇uI)− β∇pd , (3.3)

Eqn. (3.3) is discussed in detail term by term:

• The velocity field in the time derivative term is decomposed, resulting in
time derivative terms for both perturbed and incident field;

• The convected velocity field in the nonlinear convection term is decom-
posed, while the convecting velocity field u is not decomposed because the
convection term shall be linearised using the total explicit volumetric flux
from previous iteration (see Ch. 4.). Such a procedure yields two convective
terms for incident and perturbed velocity fields, both convected by the total
velocity field;

• The velocity field in the diffusion term is also decomposed, yielding two
diffusion terms for the perturbed and incident field;
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• The dynamic pressure field pd is not decomposed because the volumetric
flux in the convection term is not decomposed. Their decomposition would
yield two pressure equations: one for the incident field and one for the
perturbed field, which would separately force ∇•uP and ∇•uI to vanish.
Due to the elliptic nature of the pressure equation in incompressible flows,
the pressure equation is often the most time–consuming part of a CFD
algorithm, hence, the dynamic pressure and the convecting velocity field
are not decomposed for efficiency reasons.

The possible decomposition of dynamic pressure and the convecting velocity
field would yield a part of the momentum equation which could be identified
with the Euler equation for the incident flow. Since there is no guarantee that
the Euler part of the equation should vanish when the incident solution is mapped
on an arbitrary CFD grid, this part should be kept in the final equation set.

3.2.3. Solution Decomposition of the Level Set Equation

If one would choose the volume fraction α in the VOF approach, it is easy to verify
that the solution decomposition given by Eqn. (3.1) would yield two bounded
variables. Since α is bounded between 0 and 1 (i.e. 0 < α < 1), αD would
be bounded between −αI and 1 − αI (i.e. −αI < αD < 1 − αI). This would
require additional considerations for boundedness–preserving convection schemes
[87, 88]. The same reasoning applies for the hyperbolic tangent profile φ in the
PF method, where the only difference is its boundedness between -1 and 1 (i.e.
−1 < φ < 1). As an alternative, unboundedness of the signed distance field ψ

in the LS method makes it suitable for the solution decomposition, which shall
yield two unbounded fields.

Prior to the solution decomposition, implicitly redistanced LS transport equa-
tion, Eqn. (2.41) shall be written in a form more suitable for strongly conservative
FV discretisation. The last two terms on the r.h.s. of Eqn. (2.41) can be expanded
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as:

−b
√

2

ε
tanh

(
ψ

ε
√

2

)
|∇ψ|2 = −b

√
2

ε
tanh

(
ψ

ε
√

2

)
∇ψ•∇ψ

= −w1•∇ψ

= −∇•(w1ψ) + ψ∇•w1 ,

(3.4)

where the second identity introduces w1 as:

w1 = b

√
2

ε
tanh

(
ψ

ε
√

2

)
∇ψ , (3.5)

which is an additional term which transports (convects) the signed distance field
ψ. The procedure for the last term on the r.h.s. of Eqn. (2.41) is similar and
yields:

−b∇•
(
∇ψ
|∇ψ|

)
|∇ψ| = −bκ|∇ψ| = −bκ ∇ψ

|∇ψ|
•∇ψ

= −w2•∇ψ

= −∇•(w2ψ) + ψ∇•w2 ,

(3.6)

where κ is already introduced as the mean interface curvature and w2 is an
additional term that transports (convects) the signed distance field ψ:

w2 = bκ
∇ψ
|∇ψ|

. (3.7)

Inserting identities given by Eqn. (3.4) and Eqn. (3.6) into the transport
equation, Eqn. (2.41) yields:

∂ψ

∂t
+ u•∇ψ +∇•(w1ψ)− ψ∇•w1 +∇•(w2ψ)− ψ∇•w2 − b∇• (∇ψ) =

b

√
2

ε
tanh

(
ψ

ε
√

2

)
.

(3.8)

The convective terms can be grouped together and the final form of the transport
equation reads:

∂ψ

∂t
+∇•(cψ)− ψ∇•c− b∇• (∇ψ) = b

√
2

ε
tanh

(
ψ

ε
√

2

)
, (3.9)

where c = u + w1 + w2 is the modified convecting velocity field that transports
and maintains the signed distance function with the help of diffusion and source
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3. Solution and Domain Decomposition

term. This form of the LS transport equation is favourable from the numerical
perspective because the source terms are reformulated into divergence terms.

The solution decomposition of Eqn. (3.9) via Eqn. (3.1) yields:

∂ψP
∂t

+∇•(cψP )− ψP∇•c− b∇• (∇ψP ) =

−∂ψI
∂t
−∇•(cψI) + ψI∇•c + b∇• (∇ψI) + b

√
2

ε
tanh

(
ψ

ε
√

2

)
,

(3.10)

In Eqn. (3.10), the time derivative, convection and diffusion terms are decom-
posed. The total convecting field c is not decomposed for the same reason as in
the momentum equation (see Sec. 3.2.2.). The last, hyperbolic tangent source
term is not decomposed since it will not be treated implicitly. Although Picard
linearisation is possible [89], the linearisation of the hyperbolic tangent would
create a source term, since the diffusion parameter b and the width parame-
ter ε are always positive. Since the source term is positive on the r.h.s. of the
equation, its implicit treatment would decrease the diagonal dominance of the
resulting matrix. Interested reader is referred to Appendix B for a more detailed
discussion.

Using the SWENSE solution decomposition, only the perturbation in ψ around
ψI is calculated, rather than complete signed distance profile. Thus, the linear
profile in the hydrostatic case does not have to be calculated. This decomposi-
tion allows efficient introduction of incoming waves in the CFD simulation, by
prescribing uI and ψI at each time step, and solving only for the perturbed com-
ponent. It should be noted that the wave is present in the whole computational
domain explicitly, instead of prescribing wave boundary conditions at far–field
boundaries.

3.3. Domain Decomposition via Relaxation Zones

Sec. 3.2. presented solution decomposition where the wave field is introduced
with explicit incident components. However, if the perturbed component does
not vanish near the far–field boundaries, wave reflection will occur, disrupting the
CFD results in the area of interest. Monroy et al. [58] and Marcer et al. [59] used
an extremely coarse computational grid do numerically damp perturbed fields
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3.3. Domain Decomposition via Relaxation Zones

and prevent wave reflection. A more general approach based on the implicit
treatment [53] of relaxation zones [52] is presented and used in this study. The
relaxation zones volumetrically combine governing equations for the nonlinear,
two–phase flow model and the prescribed incident wave field solution in order to
force the perturbed field to vanish in the far–field. This procedure leaves only
the incident flow near computational boundaries and thus prevents undesirable
wave reflection. This procedure is described for a general solution decomposed
transport equation for a variable χ = χI + χP :

∂(ρχP )

∂t
+∇•(ρuχP )−∇•(γχ∇χP )+

+
∂(ρχI)

∂t
+∇•(ρuχI)−∇•(γχ∇χI)− Su = T(χP ) = 0 ,

(3.11)

where γχ is the corresponding diffusion coefficient and Su is the source term.
T(χP ) is introduced as a general transport operator acting on the perturbed
field. In order to prevent wave reflection, the perturbed field should be zero at
the boundaries:

1

τ
χP = 0→ R(χP ) = 0 , (3.12)

where R is the relaxation zone operator, which is in this case defined as: R(χP ) =

χP/τ . τ is an arbitrary time scale parameter introduced to ensure that the
transport equation, Eqn. (3.11) and the relaxation zone equation, Eqn. (3.12)
have the same physical dimensions. Although arbitrary, τ is equal to the time
step size during numerical simulations in order to preserve the matrix condition
number since the diagonal of the matrix scales with the inverse of the time step
size due to discretisation of the time derivative term.

In order to smoothly blend the two models represented by Eqn. (3.11) and
Eqn. (3.12), weight field w is introduced. w is equal to 1 at far–field boundaries
(Figure 3.1), forcing the perturbed field to vanish. In the interior of the domain
near the area of interest, w reduces to 0. A straightforward linear combination
of Eqn. (3.11) and Eqn. (3.12) with the weight field yields:

(1− w)T(χP ) + wR(χP ) = 0 , (3.13)

The linear combination given by Eqn. (3.13) forces the perturbed field to vanish
where w = 1, and gives the fully nonlinear, two–phase CFD solution where w = 0.
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Figure 3.1: Relaxation zones with qualitative weight field function. The white region represents
full CFD domain, while the shaded gray region represents relaxation zones. Within relaxation
zones, the solution is a linear combination of calculated CFD solution and prescribed incident
flow solution.

Following Jacobsen et al. [52], w is an exponential function of the following form:

w =
e( d

λr
)
s

− 1

e− 1
, (3.14)

where d is the shortest distance to the boundary and λr is the relaxation zone
length. s is the spatial exponent, controlling the steepness of the exponential
function. Following Jacobsen et al. [52], p = 3.5 is used in this study. Note
that the length of relaxation zones controls the smoothness of the forcing, which
indicates that the longer relaxation zones should reduce wave reflection more
successfully. A detailed study of wave reflection with varying relaxation zone
length is presented in Sec. 6.3.
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3.3. Domain Decomposition via Relaxation Zones

The domain decomposition strategy given by Eqn. (3.13) shall be applied
to the combined momentum equation, Eqn. (3.3) and the LS interface captur-
ing equation, Eqn. (3.10). The combined continuity equation, Eqn. (3.2) is not
decomposed because it will later be used to formulate the dynamic pressure equa-
tion. An attempt to blend the dynamic pressure in early stages of the develop-
ment lead to severe stability issues. Such outcome is expected, since the dynamic
pressure in the strongly conservative FV method is used to enforce volumetric
continuity, while blending the dynamic pressure directly affects the fluxes, making
them non–conservative.

3.3.1. Domain Decomposition of the Momentum Equation

Applying the domain decomposition strategy given by Eqn. (3.13) to the solution
decomposed combined momentum equation, Eqn. (3.3), yields:

(1− w)

(
∂uP
∂t

+∇•(uuP )−∇• (νe∇uP )

)
= −w

τ
uP−

−(1− w)

(
∂uI
∂t

+∇•(uuI)−∇• (νe∇uI) + β∇pd
)

.
(3.15)

The sink term −w/τuP gradually forces uP to vanish inside relaxation zones
where w 6= 0, leaving only incident velocity field at the boundaries where w = 1.

3.3.2. Domain Decomposition of the Level Set Equation

The domain decomposition performed on the implicitly redistanced LS transport
equation, Eqn. (3.10) yields:

(1− w)

(
∂ψP
∂t

+∇•(cψP )− ψP∇•c− b∇• (∇ψP )

)
= −w

τ
ψP−

−(1− w)

(
∂ψI
∂t

+∇•(cψI)− ψI∇•c− b∇• (∇ψI)− b
√

2

ε
tanh

(
ψ

ε
√

2

))
,
(3.16)

where the sink term −w/τψP leaves only the incident wave elevation field at the
boundaries where w = 1.
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3. Solution and Domain Decomposition

3.4. Closure

The solution decomposition strategy via SWENSE approach has been presented.
The governing equations are decomposed into incident and perturbed fields, with
important considerations regarding consistency concerning arbitrary potential
flow models and numerical FV discretisation. Due to incompressibility assump-
tion and the strongly conservative FV method which shall be used for numerical
discretisation, dynamic pressure and the convecting velocity field (i.e. flux) has
not been decomposed. Special attention has been given to the reformulation of
the source terms in the implicitly redistanced LS transport equation, where al-
most all of the source terms are treated as additional convective terms, allowing
their implicit treatment. All governing equations are written in terms of the
unknown perturbed fields, containing additional explicit forcing terms related to
arbitrary potential flow incident wave field.

In order to prevent wave reflection off the far–field boundaries, implicit re-
laxation zones have been introduced, where the CFD domain is decomposed into
the full CFD region and the blending region (relaxation zones). Inside relaxation
zones, the governing CFD transport equations are blended with the target poten-
tial flow solution. Hence, fully nonlinear, two–phase turbulent model is solved in
the CFD region, whereas in the blending region, the solution is a combination of
the prescribed potential flow solution and the CFD solution. At far–field bound-
aries, perturbed component is forced to vanish, leaving only the non–reflecting
incident potential flow solution. It has also been shown that the resulting im-
plicit treatment is numerically beneficial as it yields additional sink terms that
are favourable for iterative linear system solvers.

Note that the presented method is general:

• The methodology does not depend on a given potential flow theory,

• The framework also allows the possibility of two–way coupling with ad-
vanced potential flow models, although this has not been investigated in
this study,

• The definition of relaxation zones does not depend on wave direction.
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4. Numerical Modelling

4.1. Finite Volume Discretisation of Free Surface

Flow Equations

Ch. 3. presented the final form of governing equations for a fully nonlinear, two–
phase, turbulent flow combined with an arbitrary potential flow solution for the
incident wave via solution decomposition technique. Prevention of wave reflection
is achieved with domain decomposition via introduction of implicit relaxation
zones, combining the two sets of governing equations into a single set. The
governing equations are written in the conservative form suitable for implicit FV
discretisation.

This chapter presents numerical discretisation of governing PDEs, Eqn. (3.2),
(3.15) and (3.16), using second–order accurate, collocated FV method for arbi-
trary polyhedral (unstructured) grids [90]. Collocated, polyhedral framework is
preferred due to its simplicity regarding grid generation for complex geometries
often encountered in marine hydrodynamics (e.g. ship hull with appendages). It
is important to note that the methodology presented here is general in a sense
that block structured grids may be used without additional overhead. In FV
based CFD computations, computational domain is divided into Control Vol-
umes (CVs), or cells, presented in Figure 4.1. The cell has a finite number of
neighbours connected through common faces, where sf represents a surface area
vector and df is the distance vector from cell centre P to cell centre N .

The general FV discretisation practice for all equations shall be briefly pre-
sented. Without detailed analysis, terms enclosed in curly braces {·}i (as opposed
to [·] as used by Rusche [32]) shall represent implicit FV discretisation, while {·}e

shall represent explicit FV discretisation, where the integral form of the govern-
ing equations obtained by integrating over the CV is implied. For additional
details regarding general FV discretisaton on collocated grids, reader is referred
to [89, 91, 90, 32, 92]. Special attention shall be given to pressure terms due to
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Figure 4.1: Polyhedral control volume P (cell) sharing a common face with its immediate
neighbour N [38].

jump conditions across the free surface, Eqn. (2.46) and Eqn. (2.47), using the
GFM. Furthermore, second–order accurate discretisation of pressure jump condi-
tions shall be presented in detail, followed by a detailed inspection of the resulting
interface–corrected interpolation schemes. Modelling of rigid body motion shall
be presented next, with a detailed overview of the segregated solution algorithm
for strongly resolved coupling of rigid body motion and fluid flow equations.

4.1.1. Discretised Momentum Equation

The discretisation of the combined and decomposed momentum equation, Eqn. (3.15)
yields:

(1− w)

({
∂uP
∂t

}i
+ {∇•(uuP )}i − {∇• (νe∇uP )}i

)
= −

{w
τ
uP

}i
−

−(1− w)

({
∂uI
∂t

}e
+ {∇•(uuI)}e − {∇• (νe∇uI)}e + {β∇pd}e

)
.

(4.1)

where superscripts {·}i and {·}e imply implicit and explicit FV discretisation,
respectively. In Eqn. (4.1), the time derivative, convection and diffusion terms of
the perturbed field are discretised implicitly, where the usual linearisation of the
convection term is employed to avoid nonlinear algebraic equations [91, 90]. Spe-
cial considerations are not required for implicit terms in Eqn. (4.1) because they
do not have a discontinuity at the interface (see Eqn. (2.13), (2.16) and (2.17)).
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4.1. Finite Volume Discretisation of Free Surface Flow Equations

The discretisation of the pressure gradient term shall be given in Sec. 4.2.1. (Gauss
gradient with linear interpolation) and Sec. 4.2.2. (least squares gradient), while
the jump condition corrections shall be presented in Sec. 4.4.

On assembly, Eqn. (4.1) is represented by a linear algebraic equation for each
cell:

aPuP,P +
∑
f

aNuN,P = bu , (4.2)

where aP represents the diagonal matrix coefficient and aN the off–diagonal coef-
ficient for the equation regarding control volume P . In P, P index combinations,
first index denotes field value at cell centre P and the second index denotes the
perturbed component of the field. Similarly, index N,P denotes the perturbed
component of the field evaluated at neighbouring cell centre N .

∑
f denotes sum

over all neighbouring faces for cell P , while bu represents combined source terms
arising from:

• Old time step contribution in the time derivative term for the perturbed
field,

• Possible non–orthogonal correction in the diffusion term [90] for the per-
turbed field,

• Possible deferred correction [91] in the convection term for the perturbed
field,

• Explicit dynamic pressure gradient term,

• All terms related to incident flow field (time derivative, convection and
diffusion).

Over–relaxed non–orthogonal correction approach following Jasak [90] is exclu-
sively used in present study for non–orthogonal correction in all diffusion terms.
Note that boundary cells have additional diagonal and/or source contributions
arising from the treatment of boundary conditions [90].

4.1.2. Discretised Pressure Equation

The pressure equation in the FV framework is used to create conservative fluxes
for incompressible fluid flow. The pressure–velocity coupling algorithm shall be
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derived following Patankar and Spalding [93]. Using notation by Jasak [90], the
derivation of the pressure equation begins by writing a semi–discretised form of
the combined momentum equation, Eqn. (4.2):

aPuP,P = H(uN,P )− β∇pd . (4.3)

In analogy to the Rhie and Chow correction [94], the dynamic pressure gradi-
ent terms is left undiscretised to facilitate the derivation of the dynamic pres-
sure equation. H(uN,P ) term comprises two parts: the perturbed velocity field
transport part containing matrix coefficients for all neighbours multiplied with
corresponding velocities; and the source part b∗u as in Eqn. (4.2), but excluding
the dynamic pressure gradient term:

H(uN,P ) = −
∑
f

aNuN,P + b∗u . (4.4)

The integral FV discretisation of the combined continuity equation, Eqn. (3.2)
reads:∫

CV

∇• (uP + uI) dV =

∫
∂CV

dS• (uP + uI) =
∑
f

sf • (uf,P + uf,I) = 0 , or

∑
f

sf •uf,P = −
∑
f

sf •uf,I ,
(4.5)

where the first identity follows from Gauss’ theorem and the second identity
follows from second–order accurate polyhedral FV discretisation, implying inter-
polation from cell–centred values to face–centred values, denoted by index f . The
perturbed velocity field at cell centre P can be defined using the semi–discretised
combined momentum equation, Eqn. (4.3) as:

uP,P =
H(uN,P )

aP
− β∇pd

aP
. (4.6)

Cell–centred perturbed velocities given by Eqn. (4.6) are linearly interpolated to
obtain face–centred values:

uf,P =
H(uN,P )f

(aP )f
− 1

(aP )f
(β)fΓ

(∇pd)fΓ
, (4.7)

where (·)f denotes ordinary cell–to–face interpolation, while (·)fΓ
denotes cell–to–

face interpolation with correction at the interface Γ due to jump conditions given
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4.1. Finite Volume Discretisation of Free Surface Flow Equations

by Eqn. (2.46) and Eqn. (2.47). The interface–corrected interpolation based on
the GFM shall be described in detail in Sec. 4.3.

The dynamic pressure equation is obtained by substituting face–centred per-
turbed velocities given by Eqn. (4.7) into the discretised combined continuity
equation, Eqn. (4.5), yielding:∑

f

sf •
1

(aP )f
(β)fΓ

(∇pd)fΓ
=
∑
f

sf •

(
H(uN,P )f

(aP )f
+ uf,I

)
. (4.8)

Compared to ordinary pressure equation in incompressible flows [90], an addi-
tional term resulting from SWENSE solution decomposition is present in Eqn. (4.8),
taking into account the explicit incident velocity field. Furthermore, individual
terms of the dynamic pressure equation at the free surface need to be closely
examined:

• (1/aP )f represents the face–interpolated inverse diagonal coefficient of the
combined momentum equation. The diagonal matrix coefficient does not
have a discontinuity across the free surface since the combined momentum
equation is continuous (see Sec. 2.2.2.). Under such circumstances, ordinary
interpolation practices are sufficient;

• (β)fΓ
represents the face–interpolated inverse density field of the two–fluid

mixture. Density field has a discontinuity across the free surface given by
Eqn. (2.45), hence, ordinary interpolation practices are not sufficient;

• (∇pd)fΓ
represents the surface normal gradient of the dynamic pressure

field. Since the dynamic pressure field has a discontinuity across the free
surface given by Eqn. (2.46), ordinary interpolation schemes practices are
not sufficient;

• H(uN,P )f/(aP )f represents intermediate perturbed velocity field obtained
from the combined momentum equation, which does not have a discontinu-
ity across the free surface because the velocity field is continuous, Eqn. (2.13);

• uf,I represents explicit incident velocity field. It is important to note that
the incident velocity field is often defined only in water (up to free surface)
in most of the potential flow models. In present study, the incident velocity
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field obtained from wave theories (such as Stokes’) is analytically extended
in air to ensure the physical constraint of continuity of the total velocity
field given by Eqn. (2.13). However, in order to avoid potentially large
incident velocity magnitudes in the air due to the exponential nature of
analytical solutions [85], a numerical limit for the incident velocity field is
often set as approximately 120% of the incident velocity magnitude at the
wave crest. The sensitivity studies regarding the limit parameter are pre-
sented in Sec. 6.1., where it is shown that the solution does not significantly
vary with the limit parameter.

It is important to note that even though β and ∇pd are discontinuous at the
free surface, their product is continuous according to Eqn. (2.47). The conti-
nuity of β∇pd has an important implication: interface corrected interpolation
schemes (denoted with (·)fΓ

, which shall be obtained via GFM) for density and
dynamic pressure fields have to preserve the symmetry of the pressure Laplacian
in Eqn. (4.8), making the resulting matrix symmetric.

After the solution of the pressure equation, Eqn. (4.8), total conservative
volumetric face fluxes can be calculated as:

F = sf • (uf,P + uf,I) = sf •

(
H(uN,P )f

(aP )f
− 1

(aP )f
(β)fΓ

(∇pd)fΓ
+ uf,I

)
, (4.9)

where Eqn. (4.7) is used for the second identity, making the volumetric face
fluxes conservative in the discrete form:

∑
f F = 0. The face fluxes F con-

tain contributions from both the incident and the perturbed field, making them
"undecomposed" as discussed in Sec. 3.2. The conservative volumetric fluxes are
used to convect the perturbed and incident velocity fields in the momentum equa-
tion, signed distance LS field and other transported variables (e.g. for turbulence
modelling equations).
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4.1.3. Discretised Level Set Equation

The discretised decomposed LS equation, Eqn. (3.16) reads:

(1− w)

({
∂ψP
∂t

}i
+ {∇•(cψP )}i − {ψP∇•c}i − {b∇• (∇ψP )}i

)
= −

{w
τ
ψP

}i
−

−(1− w)

({
∂ψI
∂t

}e
+ {∇•(cψI)}e − {ψI∇•c}e − {b∇• (∇ψI)}e

)
−

−(1− w)

{
b

√
2

ε
tanh

(
ψ

ε
√

2

)}e

,

(4.10)

where the convective LS field c is defined with Eqn. (3.5) and Eqn. (3.7):

c = u + w1 + w2 = u + b

√
2

ε
tanh

(
ψ

ε
√

2

)
∇ψ + bκ

∇ψ
|∇ψ|

. (4.11)

All terms on the l.h.s. of Eqn. (4.10) are discretised implicitly. The first sink
term on the r.h.s. of Eqn. (4.11) arising from the implicit blending procedure is
also treated implicitly, increasing the diagonal dominance of the matrix inside
relaxation zones. This terms is responsible for forcing the perturbed LS field
towards zero in the relaxation zone near the far–field boundaries. Other terms
are explicit since the incident LS field is known at each time step.

As discussed in Sec. 2.3.4., the parameter b in Eqn. (4.11) is a purely numerical
parameter in the absence of curvature–driven interface motion [36], which acts
as a diffusion coefficient and a pre–factor for curvature driven terms. Sun and
Beckermann [36] used a Courant–Friedrichs-Lewy (CFL) condition for the PF
equation to determine the numerical value of the parameter b. A similar approach
is taken in this study, with following considerations:

• b should be as small as possible to prevent excessive diffusion of the signed
distance profile,

• Maximum CFL number is not limited to 1 because Eqn. (4.10) is discretised
implicitly,

• b should be calculated in a manner consistent with arbitrary polyhedral
3–D FV method and its conventions.
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Using the convective LS field given by Eqn. (4.11), a convective CFL number is
defined as:

CFLc =
sf •cf
sf • df

∆t , (4.12)

where cf is the face interpolated value of convective LS field and ∆t is the time
step size. Similarly, the CFL number due to diffusive flux can be defined as:

CFLd = b
sf •∇ψf
sf • df

∆t , (4.13)

where ∇ψf is the surface normal gradient of the LS field. The sum of convective
and diffusive CFL numbers should not exceed the user–specified limit:

CFLc + CFLd ≤ CFLψ , (4.14)

where CFLψ = 1 is the upper bound in case of explicit solution algorithms [87].
Inequality given in Eqn. (4.14) also provides an upper bound for b.

During the solution process, the time step may be either fixed or controlled
with a CFL number selected by the user based on the fluid velocity field:

CFL =
sf •u

sf • df
∆t , (4.15)

where sf •uf = F is the volumetric face flux. Numerical tests show that CFLψ ≈
2CFL yields good results, even though the solution is insensitive to higher values
of CFLψ, which will be demonstrated in Sec. 6.1. Nevertheless, b ≥ 0 is required
for numerical stability since b is a diffusion coefficient.

The parameter b should be as small as possible to prevent excessive diffusion
of the signed distance profile. For this reason, b is divided by a stabilisation
constant γ ≥ O(105). Finally, an expression for b can be derived expanding
Eqn. (4.14):

b =
b0

γ

CFLψ − CFLc
CFLd

, (4.16)

where b0 denotes the parameter b from the previous iteration or time step. It will
be shown in Sec. 6.3. that the exact value of the numerical parameter γ has a
minor influence on the final solution.
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4.1.4. Explicit Treatment of Incident Terms

Discretised governing equations: momentum equation, Eqn. (4.1); pressure equa-
tion, Eqn. (4.8) and the LS equation, Eqn. (4.10) contain terms related to incident
fields that are bound to mathematical operators: time derivative, divergence and
Laplacian. Ducrozet et al. [56] discuss two distinct approaches for their evalua-
tion: analytical and numerical approach. In the analytical approach, additional
explicit terms are evaluated analytically from the underlying wave theory (or a
numerical model) used to obtain the incident wave field. In the numerical ap-
proach, the incident wave field is first mapped on the numerical grid and the
operators are discretised in the underlying numerical framework. The advantage
of the numerical approach is its simple implementation and low computational
overhead, while its major drawback is directly related to the accuracy of eval-
uation of derivatives using finite order numerical approximations. Hence, if the
numerical approach is used, sufficient grid resolution is necessary for incident
wave propagation. In theory, such a constraint is not present if one uses the
analytical approach since the incident terms do not depend on grid resolution.
However, the analytical approach is more challenging to implement and would
cause possibly significant computational overhead, especially for more advanced
wave theories such as the HOS method. Due to its simple implementation and
negligible computational overhead compared to the analytical approach, the nu-
merical approach is used exclusively in this study.

4.1.5. Boundary and Initial Conditions

In order to obtained a unique numerical solution, boundary conditions need to
be specified at the surface boundary of the CFD domain. Reader is referred to
Jasak [90] for a comprehensive overview and treatment of the various boundary
conditions encountered in numerical simulations, while the present text focuses
on boundary treatment specific to solution decomposition presented in Sec. 3.1.

Surface boundaries are divided into three distinct categories closely related to
marine hydrodynamic flows:

1. Moving or stationary walls,
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2. Far–field boundaries (including the bottom) and

3. Atmospheric boundary.

The first category of boundary conditions is related to all moving and sta-
tionary walls, where following boundary conditions apply:

• Perturbed velocity field uP is set to the body velocity ub. It is important to
note that ub is calculated consistently from the grid motion fluxes, obeying
the Space Conservation Law (SCL) [95];

• Incident velocity field uI is set to zero, so that the total velocity u = uP +uI

yields the body velocity ub;

• Zero gradient in the normal direction (von Neumann boundary condition)
is specified for both the perturbed and incident LS fields, ψP and ψI , re-
spectively;

• For consistency with the Dirichlet boundary condition for velocity, zero
normal gradient is prescribed for the dynamic pressure field pd.

The second category describes all far–field boundaries, characterised by the
following boundary conditions:

• Perturbed velocity field uP is set to zero;

• Incident velocity field uI is set to the velocity field from the underlying
incident wave model uw. Such a combination of boundary conditions for
the perturbed and incident velocity field yields the total velocity field equal
to the undisturbed incident flow;

• Perturbed LS field is set to zero and;

• Incident LS field is set to the signed distance field obtained from wave
elevation from the underlying incident wave model ψw;

• Zero gradient in the normal direction is specified for the dynamic pressure
field pd.
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Table 4.1: Overview of boundary conditions for the decomposition model.

Field Body walls Far–field Atmosphere

uP uP = ub uP = 0 uP = ui and ∇nuP = 0

uI uI = 0 uI = uw uI = 0 and ∇nuI = 0

ψP ∇nψP = 0 ψP = 0 ∇nψP = 0

ψI ∇nψI = 0 ψI = ψw ∇nψI = 0

pd ∇npd = 0 ∇npd = 0 pd = pda

The third category is the atmospheric boundary, with following boundary
conditions:

• Perturbed velocity field uP has a combined boundary condition where the
zero gradient in the normal direction is applied for the outflow (positive
flux through boundary faces1) and the prescribed velocity obtained from
boundary cell–centre ui is applied for the inflow (negative flux through
boundary faces);

• Incident velocity field uI has a similar combined boundary condition where
the velocity is prescribed to zero for the inflow (instead of cell–centre value
ui);

• Zero normal gradient is prescribed for both perturbed and incident LS fields,
ψP and ψI ;

• Dynamic pressure pd at the atmosphere is set to the atmospheric dynamic
pressure value pda calculated as pda = pd0−0.5ρ|u|2 for the inflow condition.
For the outflow, reference value pd0 is used, which is usually set to zero.

Boundary conditions for the three categories and all fields of interest are
presented in Table 4.1 for clarity.

1Positive flux for the outflow through boundary faces follows the convention where the
boundary face normal is pointing outwards of the computational domain.
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For initial conditions, the perturbed velocity and LS fields are set to zero,
while the incident velocity and LS fields are initialised from the underlying po-
tential flow model. Ducrozet et al. [56] presented a temporal relaxation scheme
for smoother simulation start–up, which has proved unnecessary in the present
model. The dynamic pressure equation is solved at the beginning of the simula-
tion in order to initialise the dynamic pressure jump corresponding to the incident
location of the free surface.

4.2. Finite Volume Discretisation of Pressure

Terms

The FV discretisation of dynamic pressure terms is outlined here, as they re-
quire special attention due to the presence of jump conditions at the free surface.
Note that the dynamic pressure pd and inverse density β are present only in two
places, always appearing as a product: the source term in the combined momen-
tum equation, Eqn. (4.1) and the pressure Laplacian in the pressure equation,
Eqn. (4.8).

4.2.1. Gauss Gradient Discretisation

Using the discretised Gauss’ theorem, second–order accurate discretisation of the
pressure gradient with the β pre–factor for a control volume P reads:

βP∇pdP =
βP
VP

∑
f

sfpdfΓ

=
βP
VP

∑
f

sf (fxpdP + (1− fx)pdN)Γ ,
(4.17)

where the second identity implies linear interpolation of cell centred–values and
fx = fN/PN is the central–differencing weight [90]. Index Γ indicates that one–
sided, second–order accurate extrapolation will be used to obtain pdP and pdN

only for cells near the free surface, using the jump conditions given by Eqn. (2.46)
and Eqn. (2.47). The procedure is described in detail in Sec. 4.3. following the
GFM approach presented by Huang et al. [15].
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4.2.2. Least Squares Gradient Discretisation

Following Jasak and Weller [96], least squares discretisation of the pressure gra-
dient reads:

βP∇pdP = βP
∑
f

w2
fG
−1
•df(pdN − pdP )Γ , (4.18)

where index Γ denotes one–sided extrapolation for pdN and pdP near the free
surface, wf = 1/|df | is the least squares weight and G is a 3×3 symmetric tensor
defined as:

G =
∑
f

w2
fdfdf . (4.19)

The least squares evaluation of the gradient is second–order accurate irrespective
of the local arrangement of neighbouring cells [96], making it a favourable choice
for unstructured, skewed grids. Both gradient schemes can be easily adapted to
account for pressure jump conditions using one–sided extrapolates of pressure
indexed by Γ.

4.2.3. Pressure Laplacian Discretisation

Following Demirdžić [97] and Jasak [90], compact–stencil FV discretisation of the
pressure Laplacian on the l.h.s. of Eqn. (4.8) reads:∑

f

sf •

(
1

aP

)
f

(β)fΓ
(∇pd)fΓ

=
∑
f

(
1

aP

)
f

(β)fΓ
|sf |

(pdN − pdP )Γ

|df |

+
∑
f

k•

(
1

aP

)
f

(β∇pd)of .
(4.20)

The first term on the r.h.s. of Eqn. (4.20) denotes the implicit contribution arising
from the surface normal gradient. The second term the explicit non–orthogonal
correction, defined in terms face interpolated pressure gradient (β∇pd)of from the
previous time step or iteration. The pressure gradient term pre–multiplied by
inverse density is continuous (see Eqn. (2.47)), making it safe to interpolate from
cell centres to face centres. The non–orthogonal correction vector k is obtained
using the over–relaxed approach described by Jasak [90]. The discretised pressure
equation given by Eqn. (4.20) uses a compact computational stencil: control
volume P interacts only with its immediate neighbours N (see Figure 4.1).
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4.3. Discretisation of the Pressure Jump

Conditions

As indicated in Sec. 4.2., FV discretisation of dynamic pressure terms near the
free surface requires one–sided extrapolates of β and pd, which were hitherto left
undefined. Prior to a detailed derivation and analysis, following assumptions are
made in the present model:

• cell P is considered wet or dry based on the sign of the signed distance field
ψ: if ψP > 0 cell is wet and consequently, if ψP < 0, cell is dry;

• if a wet cell is completely surrounded by other wet cells, usual discretisation
practices are sufficient and employed (see Sec. 4.1.), since the free surface
is not located in the immediate vicinity of the cell. Similarly, a dry cell
completely surrounded by other dry cells does not require special attention.

Such treatment is possible because arbitrary polyhedral FV method uses a com-
pact computational stencil: interface corrections need to be employed for faces
where ψP > 0 and ψN < 0 or vice versa (wet/dry owner/neighbour pairs, mak-
ing the interaction of wet/dry cells symmetric).2 Faces which require special
treatment are called "interface faces" because the sharp free surface between two
phases is located somewhere between cell centres P and N . Following this defini-
tion, a mathematical criterion for identification of interface faces can be written
as:

ψPψN < 0 . (4.21)

The criterion given by Eqn. (4.21) is used to mark all interface faces after solving
the LS transport equation, Eqn. (4.10). An example of interface faces is presented
in Figure 4.2 for a uniform 2–D grid for clarity. Note that it is not assumed that
the interface coincides with the internal faces of the grid.

2If the free surface position is captured using VOF, PF or other methods, equivalent free
surface detection criterion may be derived using definitions in Figure 2.1.
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4.3.1. Computational Stencil Near the Free Surface

Before deriving one–sided extrapolates of β and pd for interface faces using dy-
namic pressure jump conditions based on the GFM, definition of necessary geo-
metrical data for the computational stencil at the free surface needs to be pre-
sented. Figure 4.3 shows the computational stencil at the free surface in 2–D for
clarity, without loss of generalisation for polyhedral 3–D grids. Wet cell P shares
a common interface face with dry cell N and df is the vector from cell centre P
to cell centre N . Note that P may be wet or dry, and consequently N may be
dry or wet: yielding an interface face between the two cells. Huang et al. [15]
define the dimensionless distance to the free surface according to the LS field as:

λ =
ψP

ψP − ψN
, (4.22)

ψ=0

dry cells
ψ<0

wet cells
ψ>0

Figure 4.2: A layout of interface faces for a uniform 2–D grid. The dashed blue line denotes the
free surface: ψ = 0. Wet cells are below the blue line: ψ > 0, while dry cells are above the blue
line: ψ < 0. Interface faces are represented with red lines, where the interface face is defined as a
face where the free surface is located between adjacent cell centres. Ordinary faces are denoted
with black lines. Cell–centres sharing at least one interface face require interface–corrected
extrapolation.
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where ψP and ψN denote signed distance function to the interface at cell centres
P and N , respectively. Note that λ may be easily defined in terms of the PF and
VOF using Eqn. (2.37) and Eqn. (2.39). λ in Eqn. (4.22) is used to calculate the
location of the free surface between wet/dry cell pairs:

xΓ = xP + λdf . (4.23)

N

dry cell, ψN <0

P

wet cell, ψP >0

ψ=0β−

β+

df

xΓ

Figure 4.3: Compact polyhedral computational stencil near the free surface. Free surface is
denoted with the blue dashed line. Interface face shared by cells P and N is marked with a red
line, and the location of the free surface is denoted with xΓ.

Since the location of the interface given by Eqn. (4.23) is now defined, dynamic
pressure jump condition, Eqn. (2.46) may be expanded as:

[pd] = p−d − p
+
d = (ρ+ − ρ−)g•xΓ = H , (4.24)

where p−d is the dynamic pressure at the infinitesimal distance towards the free
surface at the lighter fluid (air) side, and p+

d its counterpart at the heavier fluid
(water) side. ρ+ is the density of the heavier fluid and ρ− is the density of
the lighter fluid by convention. For given free surface locations xΓ, the r.h.s. of
Eqn. (4.24) can be calculated and stored as H for all interface faces at given
time step. It is important to note that the discretisation given by Eqn. (4.24) is
of the same order of accuracy as the solution of LS transport equation because
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the dimensionless distance λ is calculated using the signed distance field ψ in
Eqn. (4.23).

4.3.2. One–Sided Pressure Extrapolation From theWet Cell

The case where cell P is wet: ψP > 0 is considered first. In order to discretise the
dynamic pressure gradient jump condition given by Eqn. (2.47), the procedure
presented by Huang et al. [15] is used:

[β∇pd] = β−(∇pd)− − β+(∇pd)+

= β−
pdN − p−d

1− λ
− β+p

+
d − pdP
λ

= 0 ,
(4.25)

where the first term on the r.h.s. denotes a second–order accurate gradient eval-
uated in the air and the second term denotes a second–order accurate gradient
evaluated in the water. Both gradients are evaluated at the free surface, in the
normal direction from the free surface. Furthermore, p−d may be expressed from
the discretised dynamic pressure jump condition, Eqn. (4.24) as:

p−d = p+
d + H . (4.26)

Inserting Eqn. (4.26) into Eqn. (4.25) yields the dynamic pressure at the free
surface on the water side:

p+
d =

λβ−

βw
pdN +

(1− λ)β+

βw
pdP −

λβ−

βw
H , (4.27)

where:
βw = λβ− + (1− λ)β+ . (4.28)

βw represents the weighted inverse density from the water side, which depends
on the distance to the free surface λ. Eqn. (4.28) follows from straightforward
algebraic manipulations. Eqn. (4.27) defines the dynamic pressure at the free
surface on the water side p+

d in terms of:

• dynamic pressure at the cell centre P , pdP ,

• dynamic pressure at the cell centre N , pdN ,

• density jump, H.
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Second–order accurate extrapolate of the dynamic pressure at dry cell centre
N using values defined in water, can be calculated as:

p+
dNΓ

= p+
d +

1− λ
λ

(
p+
d − pdP

)
, (4.29)

where (p+
d − pdP )/λ represents normal dynamic pressure gradient at the free sur-

face on the water side, used to extrapolate dynamic pressure from the free surface
towards the dry cell centre N (hence 1−λ). Substituting p+

d given by Eqn. (4.27),
Eqn. (4.29) takes the following reduced form after algebraic manipulations:

p+
dNΓ

=
β−

βw
pdN +

(
1− β−

βw

)
pdP −

β−

βw
H . (4.30)

Eqn. (4.30) defines a second–order accurate extrapolate of the dynamic pressure
at the neighbouring cell N , obtained with the discretised jump conditions. Hence,
the procedure uses jump conditions to define interface–corrected interpolation
scheme for interface faces, incorporating the free surface effect in the combined
governing equations: the momentum equation, Eqn. (4.1) and the pressure equa-
tion, Eqn. (4.8). Huang et al. [15] call this method the Ghost Fluid Method
because p+

dNΓ
is defined using the one–sided extrapolation of dynamic pressure.

p+
dNΓ

appears in pressure gradient discretisations: the Gauss gradient given by
Eqn. (4.17) and the least squares gradient given by Eqn. (4.18); and the pressure
Laplacian discretisation, Eqn. (4.20).

4.3.3. One–Sided Pressure Extrapolation From the Dry Cell

The case where cell P is dry: ψP < 0 is considered here. Dynamic pressure jump
condition, Eqn. (4.24) is first used to express p+

d as:

p+
d = p−d −H . (4.31)

Discretisation of the dynamic pressure gradient jump condition, Eqn. (2.47) now
yields:

β+pdN − p+
d

1− λ
− β−p

−
d − pdP
λ

= 0 . (4.32)

Comparing Eqn. (4.32) with Eqn. (4.25), it can be observed that β+ and β− are
interchanged, as could be expected since cell P is here considered dry. Inserting
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Eqn. (4.31) into the discretised jump condition given by Eqn. (4.32) yields:

p−d =
λβ+

βd
pdN +

(1− λ)β−

βd
pdP +

λβ+

βd
H , (4.33)

where:
βd = λβ+ + (1− λ)β− . (4.34)

The weighted inverse densities for the dry cell, Eqn. (4.34) is not equal to the
weighted inverse density for the wet cell, Eqn. (4.28): i.e. βd 6= βw. Following
the same procedure as in Sec. 4.3.2., a second–order accurate extrapolate of the
dynamic pressure at the wet cell centre N , using values defined in air, can be
calculated as:

p−dNΓ
= p−d +

1− λ
λ

(
p−d − pdP

)
. (4.35)

Substituting Eqn. (4.33) into Eqn. (4.35) yields:

p−dNΓ
=
β+

βd
pdN +

(
1− β+

βw

)
pdP +

β+

βw
H . (4.36)

Eqn. (4.36) defines a second–order accurate extrapolate of dynamic pressure if
the cell P is dry and consequently, cell N is wet, where the jump conditions given
by Eqn. (2.46) and Eqn. (2.47) have been used.

4.3.4. Overview of the Dynamic Pressure Extrapolation

Formulae

As implied in Sec. 4.3.2. and Sec. 4.3.3., two distinct cases need to be distinguished
in the dynamic pressure extrapolation using jump conditions:

• Cell P is wet and cell N is dry, yielding extrapolates p+
dNΓ

and p−dPΓ
:

p+
dNΓ

=
β−

βw
pdN +

(
1− β−

βw

)
pdP −

β−

βw
H , (4.37)

p−dPΓ
=
β+

βw
pdP +

(
1− β+

βw

)
pdN +

β+

βw
H , (4.38)

• Cell P is dry and cell N is wet, yielding extrapolates p−dNΓ
and p+

dPΓ
:

p−dNΓ
=
β+

βd
pdN +

(
1− β+

βd

)
pdP +

β+

βd
H , (4.39)

p+
dPΓ

=
β−

βd
pdP +

(
1− β−

βd

)
pdN −

β−

βd
H . (4.40)
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Eqn. (4.38) and Eqn. (4.40) are derived in analogy to Eqn. (4.37) and Eqn. (4.39),
where cellsN and P are interchanged: i.e. looking from the cellN towards the cell
P instead of looking from the cell P towards the cell N . Eqns. (4.37–4.40) require
further comments related to code design. In OpenFOAM, cell P is denoted as
owner of neighbouring cell N if the cell index P is lower than cell index N : i.e.
P < N . Furthermore, cells P and N may be wet or dry, leading to expressions
for:

• p+
dNΓ

- used when P is wet (N is dry) for discretisation regarding cell P ;

• p−dPΓ
- used when P is wet (N is dry) for discretisation regarding cell N ;

• p−dNΓ
- used when P is dry (N is wet) for discretisation regarding cell P ;

• p+
dPΓ

- used when P is dry (N is wet) for discretisation regarding cell N .

Eqn. (4.37) and Eqn. (4.38) shall be used to prove the symmetry of the pressure
Laplacian in Eqn. (4.8), which is a natural consequence due to the incompress-
ibility condition, assumed in Ch. 2.

4.3.5. Extrapolation of Inverse Density

The discretised pressure equation Eqn. (4.8) requires face interpolated value of
the inverse density, (β)fΓ

. The inverse density is extrapolated in a straightforward
way since the flow is considered incompressible:

• Extrapolation from the wet cell:

(β)fΓ
= β+ , (4.41)

• Extrapolation from the dry cell:

(β)fΓ
= β− . (4.42)

Simple expressions for face–interpolated inverse densities are a direct consequence
of the incompressibility condition, which assumes that the two fluids have con-
stant densities.
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4.4. Interface Contributions to the Discretised

Pressure Terms

Sec. 4.2. presented general FV dicsretisation of dynamic pressure terms appearing
in the discretised governing equations. Discretisation of the dynamic pressure
gradient and Laplacian operators requires face–interpolated values for dynamic
pressure and inverse density. Interface–corrected interpolation schemes based
on second–order accurate discretisation of pressure jump conditions have been
presented throughout Sec. 4.3. In what follows, the interface–corrected schemes
with the discretised dynamic pressure gradient and Laplacian operators shall be
combined, yielding interface–corrected, polyhedral discretisation of discontinuous
fields.

4.4.1. Gauss Pressure Gradient Interface Contribution

In order to inspect the effect of interface–corrected schemes on the evaluation of
the Gauss gradient, the case where cell P is wet is considered, while the case where
cell P is dry can be easily derived following the same procedure. Eqn. (4.17) can
be written in the following, split form:

βP∇pdP =
βP
VP

∑
f�Γ

sf (fxpdP + (1− fx)pdN)

+
βP
VP

∑
fΓ

sf
(
fxpdP + (1− fx)p+

dNΓ

)
,

(4.43)

where
∑

f�Γ
denotes summation over non–interface (completely in single phase,

water or air) faces and
∑

fΓ denotes summation over interface faces. The first sum
on the r.h.s. of Eqn. (4.43) does not require special treatment: ordinary interpo-
lation scheme is sufficient. Furthermore, if cell P is wet (ψP > 0), then βP = β+.
For interpolation on interface faces (second sum on the r.h.s. of Eqn. (4.43)), p+

dNΓ

is used because cell P is wet (hence the index + denoting extrapolation from wa-
ter side). Interface contributions in the second sum are examined by inserting
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Eqn. (4.37) into Eqn. (4.43), which yields:

βP
VP

∑
fΓ

sf
(
fxpdP + (1− fx)p+

dNΓ

)
=

1

VP

∑
fΓ

sfβ
+pdP

+
1

VP

∑
fΓ

sf
β+β−

βw
(1− fx)(pdN − pdP −H) .

(4.44)

It is interesting to note that the first term on the r.h.s. of Eqn. (4.44) can be iden-
tified as first order extrapolation from cell P . Hence, the second term represents
a second–order correction arising from the GFM treatment of the dynamic pres-
sure jump conditions using second–order accurate schemes given by Eqn. (4.25)
and Eqn. (4.29). Eqn. (4.44) only represents interface correction contributions for
interface faces when the cell P is wet, while a similar expression can be obtained
for a dry cell using p−dNΓ

given by Eqn. (4.39).

4.4.2. Least Squares Gradient Interface Contribution

Following the same procedure as in Sec. 4.4.1., the least squares gradient discreti-
sation for the wet cell P , Eqn. (4.18) is divided into two sums:

βP∇pdP =
βP
VP

∑
f�Γ

lf (pdN − pdP )

+
βP
VP

∑
fΓ

lf
(
p+
dNΓ
− pdP

)
,

(4.45)

where lf = w2
fG
−1
•df is the least squares vector. Inserting Eqn. (4.37) into the

second sum on the r.h.s. of Eqn. (4.45) yields:

βP
VP

∑
fΓ

lf
(
p+
dNΓ
− pdP

)
=
∑
fΓ

lf
β+β−

βw
(pdN − pdP −H) , (4.46)

where βP = β+ is used because cell P is wet (denoted with superscript +).

4.4.3. Interface Contribution in the Pressure Laplacian

Detailed inspection of the discretised dynamic pressure equation, Eqn. (4.8) in
Sec. 4.1.2., led to the conclusion that interface–corrected interpolation schemes
should preserve the symmetric property of the discretised Laplacian operator,
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leading to a symmetric matrix. The implicit part of the pressure equation (Lapla-
cian operator) given by Eqn. (4.20) can be divided into two sums as in Sec. 4.4.2.
and Sec. 4.4.3.:∑

f

(
1

aP

)
f

(β)fΓ
|sf |

(pdN − pdP )Γ

|df |
=
∑
f�Γ

(
1

aP

)
f

(β)f |sf |
pdN − pdP
|df |

+
∑
fΓ

(
1

aP

)
f

(β)fΓ
|sf |

p+
dNΓ
− pdP
|df |

,
(4.47)

where wet owner cell P is considered. The first sum on the r.h.s. of Eqn. (4.47)
denotes fully wet or fully dry faces, where interface corrections are not needed
and the resulting matrix contributions are symmetric as in single–phase incom-
pressible flows. Considering a single interface contribution for a wet owner cell P
and a dry neighbour cell N pair, by inserting Eqn. (4.37) into Eqn. (4.47) yields:(

1

aP

)
f

(β)fΓ
|sf |

p+
dNΓ
− pdP
|df |

=

(
1

aP

)
f

|sf |
|df |

β+β−

βw
(pdN − pdP −H) , (4.48)

where (β)fΓ
= β+ because cell P is considered wet (denoted with superscript

+). From Eqn. (4.48), a diagonal contribution for cell P in discretisation of the
pressure Laplacian at an interface face can be identified as:

dP = −
(

1

aP

)
f

|sf |
|df |

β+β−

βw
. (4.49)

The off–diagonal matrix coefficient in the upper triangle accounting for the in-
fluence of neighbouring cell N to cell P can be identified as:

aPN =

(
1

aP

)
f

|sf |
|df |

β+β−

βw
. (4.50)

Furthermore, an additional source term is present on the r.h.s. in the pressure
Laplacian due to discretisation of jump conditions:

SP =

(
1

aP

)
f

|sf |
|df |

β+β−

βw
H . (4.51)

Proposition 4.1. The off–diagonal contributions arising from the interface–corrected
discretisation of the Laplacian operator in the pressure equation are symmetric:

aPN = aNP , (4.52)

producing a symmetric matrix as in incompressible single–phase flows.
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Proof. In order to prove the symmetry of the resulting discretised Laplacian
operator obtained with the GFM treatment of jump conditions, an interface face
contribution to the pressure equation for neighbouring cell N is considered:(

1

aP

)
f

(β)fΓ
|sf |

p−dPΓ
− pdN
|df |

=

(
1

aP

)
f

|sf |
|df |

β+β−

βw
(pdP − pdN + H) , (4.53)

where Eqn. (4.38) is used for p−dPΓ
and (β)fΓ

= β− because cell N is considered dry
(denoted with superscript −). The off–diagonal matrix coefficient in the lower
triangle accounting for the influence of owner cell P to neighbouring cell N can
be identified as:

aNP =

(
1

aP

)
f

|sf |
|df |

β+β−

βw
. (4.54)

Comparison of the upper matrix coefficient given by Eqn. (4.50) and the lower
matrix coefficient given by Eqn. (4.54) proves the symmetry of the matrix indi-
cated in Eqn. (4.52), as originally postulated in Sec. 4.1.2..

Inspecting Eqn. (4.42), the diagonal matrix contribution for cell N can be
identified as:

dN = −
(

1

aP

)
f

|sf |
|df |

β+β−

βw
. (4.55)

By inspecting following equation pairs: Eqn. (4.54) and Eqn. (4.55); Eqn. (4.50)
and Eqn. (4.49), one can observe that the matrix diagonal can be reconstructed
using off–diagonal matrix coefficients as:

dP = −
∑
f

aPN , (4.56)

as in single–phase incompressible flow, where
∑

f is the summation over all neigh-
bours of cell P : both for interface faces and non–interface faces. Eqn. (4.56)
complies with the conservative nature of the FV discretisation and the symmetry
property of the Laplacian operator.

Furthermore, the additional source term for the dry cell N can be identified
as:

SN = −
(

1

aP

)
f

|sf |
|df |

β+β−

βw
H . (4.57)

It is interesting and important to note that additional source terms arising from
dynamic pressure jump conditions at interface faces are antisymmetric, which
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can be easily seen by comparing Eqn. (4.51) and Eqn. (4.57). Hence, both source
terms: SP and SN may be represented by an additional flux through the interface
face that will be balanced by the dynamic pressure jump after solving the pressure
equation.

Although the derivation presented here is valid for wet owner cell P and dry
neighbour cell N pair, equivalent properties can be easily derived for dry owner
cell P and wet neighbour cell N pair.

4.5. Modelling of Rigid Body Motion

Along with the presented decomposition model with GFM for two–phase incom-
pressible and turbulent fluid flow, rigid body motion equations are introduced in
Sec. 4.5.1. in order to simulate arbitrary Six Degrees–of–Freedom (6–DOF) body
motion. A coupling strategy is outlined in Sec. 4.5.2., while a detailed solution
algorithm will be presented in Sec. 4.6.

4.5.1. Six Degrees–of–Freedom Rigid Body Motion Equa-

tions

The fluid flow equations are solved in the global, inertial reference frame Oxgygzg.
Although it is possible to solve both translational and rotational motion of a body
in the global reference frame, such a procedure would result in a time–dependent
moment of inertia tensor, I [98]. Following Carrica et al. [16], a moving, body–
fixed reference frame Oxbybzb is introduced, making the moment of inertia tensor
constant and diagonal. Both global and body–fixed reference frames are Carte-
sian, right–handed coordinate systems. The origin of the body–fixed reference
frame is positioned at the Centre–of–Gravity (COG) of the body, while the ori-
gin of the global reference frame is arbitrary. Orientation of the coordinate axes
is arbitrary, although following definitions are usually used for the body–fixed
reference frame (which at t = 0 often corresponds to the global reference frame):

• x axis is positive from front perpendicular (F.P.) towards aft perpendicular
(A.P.) of a ship in the longitudinal direction,
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• y axis is positive from portside to starboard in the transversal direction,

• z axis is positive upwards in the vertical direction.

Hence, following 6–DOF may be defined:

• Translational motions:

1. Surge: translation along x axis,

2. Sway: translation along y axis,

3. Heave: translation along z axis,

• Rotational motions:

1. Roll: rotation around x axis,

2. Pitch: rotation around y axis,

3. Yaw: rotation around z axis.

Detailed derivation of rigid body motion equations can be easily found in many
textbooks on classical mechanics [99], hence, only a short summary is given here.
The Newtonian equations governing the translational motions are formulated in
the global reference frame in order to avoid inclusion of fictional forces [99]:

d(mvg)

dt
= mv̇g = mag = Fg , (4.58)

where m is the mass of the rigid body, which is considered constant. vg is the ve-
locity of the rigid body where v̇g denotes temporal derivative, i.e. acceleration of
the body ag. Fg is the external force acting on the rigid body in the global refer-
ence frame, which shall be defined later in the text. Given Fg and constant mass
of the body, acceleration can be calculated directly from Eqn. (4.58). Following
ordinary differential equations are used to calculate the velocity and position of
the body in the global reference frame:

v̇g = ag , (4.59)

ẋg = vg , (4.60)
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where xg denotes the position of the body. Eqn. (4.59) and Eqn. (4.60) present
6 ordinary differential equations governing the translational motion of the body
in the global reference frame.

As already indicated, the Euler equations governing the rotational motions are
formulated in the body–fixed reference frame in order to avoid temporal variation
of the moment of inertia tensor. Since the body–fixed reference frame presents
the 3–D principal orthogonal coordinates, Euler equations can be written as:

αb = ω̇b = I−1
b • (Tb − ωb × (Ib•ωb)) , (4.61)

where Ib represents constant in time, diagonal inertia tensor of the body in prin-
cipal coordinate axes. αb is the rotational acceleration of the body in body–fixed
reference frame and ωb is the corresponding rotational velocity. Tb represents
external torque acting on the body. The first identity in Eqn. (4.61) is used to
calculate the rotational velocity of the body ωb given the rotational acceleration.

In order to prevent the "gimbal lock" phenomena, quaternion formulation of
rotations is used instead of Euler angles. The reader is referred to Coutsias and
Romero [98] for a good overview of quaternion based rotations with rigid body
dynamics equations in quaternion form. The governing equations for rotational
angles are briefly presented here in the expanded form for clarity:

q̇0

q̇1

q̇2

q̇3

 =
1

2


q0 −q1 −q2 −q3

q1 q0 −q3 −q2

q2 q3 q0 −q1

q3 −q2 q1 q0




0

ω1b

ω2b

ω3b

 , (4.62)

where qi is the i–th component of a quaternion q and ωib is the corresponding
component of a rotational velocity in the body–fixed reference frame. Quaternion
q defines the transformation from global to body–fixed reference frame and vice
versa [98].

External Forces and Torques

As the fluid flow equations are solved in the global reference frame, forces and
torques acting on the rigid body are written in the global reference frame g:

Fg = Fg,p + Fg,v + Fg,m(x,v,q,ω) +mg , (4.63)
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Tg = Tg,p + Tg,v + Tg,m(x,v,q,ω) , (4.64)

where index p denotes the pressure part of the fluid force, index v denotes the
viscous part and index m denotes restoring and damping forces of a mooring
system. Note that the forces and torques of the mooring system may be written
as a general function of rigid body displacements and velocities. Pressure and
viscous fluid forces and torques are calculated using the pressure and velocity
fields:

Fg,p =
∑
bf

sfpf , (4.65)

Fg,v =
∑
bf

ρfνe,fsf •S
∗ , (4.66)

Tg,p =
∑
bf

rf × sfpf , (4.67)

Tg,v =
∑
bf

rf × (ρfνe,fsf •S
∗) , (4.68)

where
∑

bf denotes summation over all body faces and sf is oriented outside of
the fluid domain (towards interior of the body). S∗ represents the deviatoric
part of the tensor S, which is defined as twice the symmetric part of the ∇u
tensor. rf is the distance vector from a boundary face to COG of the rigid
body. As indicated in Eqn. (4.59) and Eqn. (4.60), the translational motions are
solved in the global reference frame, hence the external force acting on the body
given by Eqn. (4.63) can be directly used without transformation to calculate
the corresponding translational acceleration in Eqn. (4.58). In contrast, the ro-
tational equations are formulated in the body–fixed reference frame, Eqn. (4.61)
and Eqn. (4.62), hence the external torque acting on the body is transformed
from the global frame Eqn. (4.64) into the body–fixed frame using quaternions
from the previous time step or iteration, making the fluid flow–6–DOF coupling
explicit.

Numerical Integration

To summarise, rigid body motion equations include 13 Ordinary Differential
Equations (ODEs) that need to be solved along with the fluid flow equations
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given in Sec. 4.1.:

• 6 equations for rigid body translations (3 for velocity, Eqn. (4.59) and 3 for
displacement, Eqn. (4.60),

• 7 equations for rigid body rotations (3 Euler equations for rotational veloc-
ity, Eqn. (4.61) and 4 for rotation angles using quaternions, Eqn. (4.62)

13 ODEs are solved with explicit adaptive step size Embedded Runge–Kutta
5th order method with Cash–Karp parameters [100]. The cost of numerical inte-
gration of additional 13 ODEs is negligible compared to the fluid flow solution.

4.5.2. Coupling Between Fluid Flow and Six Degrees–of–

Freedom

The solution of rigid body motion ODEs yields body displacement and veloc-
ity. In the present model, the displacement is used to move the computational
grid as a rigid body. The appealing property of such approach is the negligible
CPU time overhead compared to automatic mesh deformation strategies [38, 101].
The approach also avoids possible mesh quality deterioration during automatic
mesh deformation for large amplitude motions. The drawback of this approach
is closely related to meshing strategies where the mesh is usually heavily graded
and fine in the free surface region. Thus, large amplitude motions might cause
the free surface to come into the coarse region, possibly impairing the quality of
results. Due to rigid body motion, CVs in the computational grid are moving
in space and time. The motion of the grid is taken into account via Reynolds
transport theorem for an arbitrarily moving CV, where the grid motion flux for
each face is calculated using the SCL [95]. The grid fluxes are then subtracted
from the absolute convecting flux calculated in the global reference frame, as in
the Arbitrary Lagrangian–Eulerian (ALE) formulation [102]. Apart from the grid
motion, rigid body velocity is calculated and specified as a boundary condition
for all boundary faces on the rigid body.

As the fluid flow provides external forces on the rigid body, and the rigid
body motion provides grid motion and prescribed velocity boundary conditions
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on the body boundary, a two–way coupling strategy is necessary. In general, two
distinct approaches for Fluid–Structure Interaction (FSI) exist:

1. Monolithic approach [103], where all governing equations are solved in a
single system,

2. Partitioned approach [104], where fluid and solid governing equations are
solved separately, while performing outer iterations to strongly couple the
two solutions.

The monolithic approach would require the solution of the momentum, pressure,
LS transport and rigid body motion equations within a single system, which
represents a challenging task. Hence, the partitioned approach is commonly used
and more suitable for marine hydrodynamics since the fluid flow equations are
often solved using segregated solution algorithms. The fluid flow and rigid body
motion equations are then solved separately, performing outer iterations within
a time step. Simonsen et al. [105] report using 5 fluid flow–6–DOF iterations per
time step for heave and pitch simulations of a KCS in regular head waves. A
detailed flow chart of the solution algorithm is presented in the following section,
Sec. 4.6.

4.6. Segregated Solution Algorithm for Nonlinear

Equation Sets

Governing equations for incompressible, turbulent, free surface flow with a moving
body comprise:

• Momentum equation for uP , Eqn. (4.2);

• Pressure equation for pd, Eqn. (4.8);

• LS transport equation for ψP , Eqn. (4.10);

• 6–DOF rigid body motion equations, Eqn. (4.58), (4.60), (4.61) and (4.62).
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Since the present model focuses on transient flows, a segregated Pressure
Implicit with Splitting of Operator (PISO) algorithm [106] is used for pressure–
velocity coupling. Pressure and velocity are also strongly coupled with the LS
signed distance field that is used to define interface faces. On interface faces,
interface–corrected schemes for pressure terms are employed, yielding highly non-
linear dependence of the pressure and velocity fields with the free surface loca-
tion. Furthermore, the whole fluid flow solution nonlinearly depends on the rigid
body motion via relative grid fluxes and velocity boundary condition on the mov-
ing body. Consequently, the external forces and torques for the 6–DOF ODEs
are obtained from the fluid flow solution, integrating the pressure and viscous
forces on the body. In present study, a partitioned approach is used where the
pressure–velocity system is coupled with free surface and 6–DOF in an outer,
Semi–Implicit Method for Pressure Linked Equations (SIMPLE) algorithm [93]
loop. In OpenFOAM, the combined PISO–SIMPLE algorithm for nonlinear tran-
sient free surface flows is often called the PIMPLE algorithm.

The flow chart of the segregated solution algorithm for the nonlinear, coupled
equation sets is presented in Figure 4.4. At the beginning of a time step, an outer
SIMPLE loop starts by solving the 6–DOF equations and the grid is moved as
a rigid body accordingly. As the grid is moved, cell–centred values of incident
velocity field uI and incident LS field ψI are evaluated analytically from the un-
derlying potential flow wave model. After the update of incident fields, PISO loop
starts by predicting the perturbed velocity field uP , Eqn. (4.2) with the value of
pressure gradient from the previous iteration. The dynamic pressure equation,
Eqn. (4.8) is formulated and solved, taking into account pressure–density coupling
through interface jump conditions obtained with the GFM. New estimate of the
dynamic pressure field with jumps across the free surface is then used to correct
the perturbed velocity field with Eqn. (4.6) and calculate the total conservative
face fluxes with Eqn. (4.9). PISO loop is repeated until a satisfactory convergence
is achieved by specifying a run–time modifiable number of PISO correctors. On
satisfactory convergence of the PISO loop, diffusion parameter b required for the
LS transport equation is updated with Eqn. (4.16) and the perturbed LS field
ψP is obtained by solving Eqn. (4.10). The total LS field ψ, denoting the current
free surface location, is updated and used to mark interface faces using criterion
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defined by Eqn. (4.21). The new set of interface faces along with the necessary
hydrostatic jumps H given by Eqn. (4.24) shall be used in next pressure–velocity
corrector step to discretise dynamic pressure terms in governing equations. Fur-
thermore, additional turbulence modelling equations are solved and the effective
kinematic viscosity of the two–phase mixture is calculated using Eqn. (2.40). The
convergence of the outer, SIMPLE loop is tested based on a user specified number
of SIMPLE correctors, where a study on required number of outer correctors for
seakeeping applications shall be presented in Ch. 7.

In present study, preconditioned Krylov subspace linear system solvers [107]
are used: Connjugate Gradient (CG) method [108] for the symmetric pressure
equation and stabilised Bi–Conjugate Gradient Stabilised (BiCGStab) [109] for
other equations with strong hyperbolic and local characters:

• LS transport equation, Eqn. (4.10);

• Combined momentum equation, Eqn. (4.2);

• Turbulence modelling equations.

The Cholesky preconditioner is used alongside CG solver and the Incomplete
Lower–Upper (ILU) preconditioner is used with the BiCGStab; both without
fill–in in order to preserve the static sparseness pattern of the matrix.

4.7. Closure

The FV discretisation of nonlinear free surface flow equations has been presented.
The discretisation of momentum, pressure and LS equation has been briefly out-
lined, followed by after notes regarding explicit treatment of explicit terms related
to incident potential flow field. Solution and domain decomposition via SWENSE
approach and relaxation zones, respectively, enabled general definition of bound-
ary and initial conditions for three types of boundaries: possibly moving body,
far–field and atmosphere.

The FV discretisation of pressure terms is presented in detail due to the
presence of discontinuities in dynamic pressure and density across the free surface.
For pressure gradient in the momentum equation, Gauss discretisation and least
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Figure 4.4: Flow chart of the segregated solution algorithm.
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squares discretisation is presented, whereas for the pressure Laplacian, a compact
stencil approach with explicit non–orthogonal correction is discussed.

In order to accurately represent the free surface in the present model, the
FV discretisation of pressure terms requires interpolation schemes that account
for dynamic pressure and density jumps across the sharp interface, which are
obtained using the GFM. A procedure to calculate the free surface location using
a compact computational stencil in the polyhedral FV framework is presented in
detail to facilitate the derivation of one–sided pressure extrapolates using second–
order accurate discretisation of jump conditions. An overview of extrapolation
formulae is presented for the reader in order to simplify the implementation of
the model in the existing FV based CFD code.

The one–sided extrapolates obtained via GFM are then used to incorporate
the free surface via jump conditions into dynamic pressure terms. Final dis-
cretisation formulae for the Gauss and least squares gradient discretisation are
presented, while the special attention has been given to the pressure Laplacian.
As the elliptic pressure equation is most often the most time consuming part of
an incompressible CFD algorithm, the symmetry property of the matrix needed
to be addressed carefully. As the pressure equation is the Poisson equation, and
the Laplacian operator is symmetric, the resulting discretisation should yield a
symmetric matrix. The symmetry property of the final pressure equation using
interface–corrected schemes has been proved, implying consistent discretisation of
jump conditions across the free surface. The symmetry property of the matrix is
also important from the numerical point of view: using specialised linear system
solvers for the symmetric matrices often offers double savings in terms of CPU
and memory requirements. Note that the present model is not exclusive for water
and air flows, although that specific nomenclature has been used for simplicity.
The model should be applicable to an arbitrary pair of immiscible fluids where
surface tension effects and tangential stress balance at the free surface may be
neglected.

After detailed discretisation of governing PDEs for free surface flow, rigid
body motion modelling is addressed in order to successfully simulate arbitrarily
moving bodies. 6–DOF equations are briefly presented, where the translational
motions are formulated in the global inertial reference frame and the rotational
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motions are formulated in the body–fixed reference frame using quaternions in
order to prevent gimbal lock phenomena. A partitioned approach for highly
nonlinear 6–DOF and fluid flow coupling based on Picard iterations is discussed
and the grid motion strategy is briefly presented.

Finally, a segregated (partitioned) solution algorithm based on a combination
of PISO algorithm for pressure–velocity coupling and SIMPLE algorithm for cou-
pling of the pressure–velocity system with the free surface and rigid body motion
is presented. The approach iteratively resolves the nonlinear coupling between
governing equation sets through multiple outer iterations in a given time step.
A flow chart of the solution algorithm is presented, referencing the underlying
equations throughout the text in order to simplify implementation of the model.
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5.1. Overview

Ch. 4. presented the numerical treatment of the fully nonlinear, two–phase, in-
compressible and turbulent fluid flow, coupled with the 6–DOF rigid body motion
equations. The basic FV discretisation is presented for all governing equations,
where the special attention is given to discretisation of pressure terms. The most
significant part of Ch. 4. describes the treatment of pressure jump conditions via
GFM in order to obtain interface–corrected interpolation schemes, taking into
account the discontinuity of dynamic pressure and density at the free surface.
Finally, rigid body motion modelling is discussed and the segregated solution
algorithm used to strongly resolve the tight inter–equation coupling of nonlinear
equation set is presented.

This chapter presents a brief overview of the Validation and Verification
(V&V) procedures used to validate and verify the developed numerical frame-
work. The validation is simply achieved by comparing the present CFD results
with analytical, other numerical and experimental data, where the absolute error
is defined as:

Ea = SR − SCFD , (5.1)

where SR is the referent solution (analytical, other numerical or experimental
results), and SCFD is the solution obtained with the present CFD model. It is
often more convenient to compare the results in terms of relative errors, defined
as:

Er =
Ea
SR

. (5.2)

Note that the relative error defined by Eqn. (5.2) is often reported in percentages.

Apart from validation, the verification needs to be carried out in order to
ensure consistent behaviour of the implemented numerical algorithm and to assess
corresponding uncertainties, which shall be outlined in later text.



5.2. Uncertainty Assessment

5.2. Uncertainty Assessment

In order to estimate various numerical uncertainties associated with: temporal
resolution, grid refinement, periodicity, etc., guidelines presented by Roache [110]
and Stern et al. [111] are used in this study. Based on three different CFD
solutions with varying time step, grid refinement, etc., discriminating ratio is
calculated as:

R =
εfm
εmc

=
Sf − Sm
Sm − Sc

, (5.3)

where indices f,m and c denote fine–, medium– and coarse–resolved solutions,
respectively. In the grid refinement study, f stands for the fine grid solution,
m for the medium grid and c for the coarse grid. Similarly for the time step
resolution study, f corresponds to the smallest fine step, m to the medium and c
for the largest time step. This idea may be easily generalised to other sensitivity
studies where some parameters (numerical grid, time step) are varied using suc-
cessive refinement/coarsening. Based on R defined by Eqn. (5.3), four different
convergence types may be observed (see e.g. Eca and Hoekstra [112]):

• Convergence:

1. Monotone convergence for 0 < R < 1,

2. Oscillatory convergence for R < 0 and |R| < 1.

• Divergence:

3. Monotone divergence for R > 1,

4. Oscillatory divergence for R < 0 and |R| > 1.

For monotone convergence, the numerically achieved order of accuracy is deter-
mined using Richardson extrapolation:

p =
ln(εfm/εmc)

ln r
, (5.4)

where r is the refinement ratio which should be kept constant between fine/medium
and medium/coarse solutions. Using the achieved order of accuracy p, the grid
uncertainty for monotone convergence is calculated as:

U = Fs
|εfm|
rp − 1

, (5.5)
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where Fs = 1.5 is the safety factor used for all test cases in this study.
In case of oscillatory convergence, the uncertainty is calculated following Stern

et al. [111]:
U = Fs0.5|SU − SL| , (5.6)

where SU and SL represent maximum (upper) and minimum (lower) result among
all solutions (fine, medium and coarse).

In case of divergence, both monotone and oscillatory, the uncertainty cannot
be formally assessed. However, following Simonsen et al. [105], the uncertainty
is practically estimated using the largest deviation among multiple solutions:

U = Fs|SU − SL| . (5.7)

Eqn. (5.5), (5.6) and (5.7) provide formulae for assessing numerical uncertain-
ties for monotonically converging, oscillatory converging and diverging solutions.
Within a given study (grid refinement, temporal resolution), as long as the refine-
ment parameter may be defined, uncertainty with respect to this particular study
may be assessed. Along with grid refinement and temporal resolution studies, this
idea shall be exploited for some other sensitivity studies.

Throughout this study, the normalised numerical uncertainties are always
reported instead of dimensioned variables:

U =
U

Sf
(5.8)

where Sf is the solution obtained with fine resolution (finest grid or smallest time
step size). Furthermore, U shall be reported in percentages for convenience.

5.2.1. Grid Uncertainty Assessment

The grid uncertainty assessment is performed for majority of test cases by per-
forming simulations with at least three computational grids. The uniform refine-
ment ratio r is used for test cases with structured grids, while the approximately
uniform refinement ratio is used for arbitrary polyhedral, unstructured grids. For
2–D grids, a refinement ratio of r = 2 is preferred and often used, while for 3–D
grids, a smaller refinement ratio of r < 2 is used due to limited computational
resources.
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5.2.2. Temporal Discretisation Uncertainty Assessment

The uncertainty assessment corresponding to different temporal resolutions is
also performed in this study. This is achieved by performing simulations with at
least three successively refined time steps, where the uniform refinement ratio of
r = 2 is used for both 2–D and 3–D test cases.

5.2.3. Periodic Uncertainty Assessment

Since the present model solves the nonlinear governing equations in time domain,
temporally periodic flows need to be simulated with a fixed number of periods
in order to achieve periodically steady–state solution. In order to assess the un-
certainty associated with simulating a finite number of periods, all time domain
signals are post processed using a moving window Fast Fourier Transform (FFT)
approach. Since the base period (frequency) is always known in surface wave
problems, moving window FFT approach performs an FFT for each period of the
signal, yielding convergence of Fourier coefficients throughout successive periods.
Before discussing detailed results for test cases used in this study, it is impor-
tant to note that the convergence of Fourier coefficients is always found to be
oscillatory. As an example, this is demonstrated in Figure 5.1, where the time
domain signal of roll motion of the KCS model in quartering waves is presented
in Figure 5.1a, and the corresponding moving window FFT plot is presented in
Figure 5.1b. It can be easily seen that both the mean value and first order ampli-
tude of the roll exhibit oscillatory convergence throughout successive encounter
periods, and that a significant number of periods needs to be simulated in order to
reach periodically steady–state solution. The correct number of periods depends
on the problem, hence, a different approach is taken here. A sufficiently large
number of encounter periods is simulated for all test cases, and the corresponding
periodic uncertainty is calculated using Eqn. (5.6), where the maximum and min-
imum solution, SU and SL are obtained within last 5 periods. The low periodic
uncertainty indicates that the result is close to the periodically steady–state so-
lution, while the high periodic uncertainty indicates that an increased number of
periods should be simulated in order to reach periodically steady–state solution.
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(a) Time domain signal.
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(b) Moving window FFT plot.

Figure 5.1: Periodic convergence of roll motion for the KCS case in bow waves.
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5.3. Closure

A brief overview of V&V procedure has been presented in this chapter. Absolute
and relative errors have been introduced in order to allow quantified validation
of the present numerical model results against analytical, other numerical and
experimental data.

In order to verify the present numerical model, four different convergence
types have been introduced and the corresponding numerical uncertainty esti-
mate formulae are outlined. The outlined procedures shall be used to assess and
quantify grid, temporal resolution and other uncertainties corresponding to nu-
merical settings/parameters. It is also important to note that the safety factor
of Fs = 1.5 is introduced and shall be used in uncertainty estimates for all test
cases and studies.

Finally, since most flows considered in this study are periodic in time, a pe-
riodic uncertainty estimate that relies on moving window FFT approach is ex-
plained in detail. The periodic uncertainty is closely related to the number of
simulated periods, and can be directly used to estimate if the periodically steady–
state solution is reached by simulating a fixed number of periods.
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6.1. Overview

Ch. 5. presented an outline of V&V procedures, focusing on uncertainty assess-
ment associated with grid refinement, temporal resolution and temporal period-
icity. This chapter presents 5 sets of test cases with increasing complexity, where
the relevant numerical uncertainty is assessed for each set.

As the mathematical model is exact for inviscid flow without surface tension,
the first set of test cases considers an inviscid free surface flow over a 2–D ramp
on structured and unstructured grids, where the simulation results are compared
with the analytical solution. A simple hydrostatic test case is simulated using the
same geometry, comparing the results obtained by the present approach with the
results obtained using a CFD model based on conditionally averaged equations.
This simple study is carried out in order to address the issue related to spurious
air velocities.

The second set of test cases considers numerous simulations regarding pro-
gressive waves, including:

• LS parameters sensitivity study,

• Reflection study (varying length of relaxation zone),

• Temporal resolution refinement study (6 time steps),

• Grid refinement study (3 grids),

• Wave steepness study,

• Long simulation (100 wave periods),

• Simulation with a long domain (8 wave lengths long).

Results are compared to fully nonlinear stream function potential flow wave the-
ory [60] for all simulations.



6.1. Overview

The third set of test cases considers higher order regular wave induced forces
on a vertical, surface–piercing cylinder. Simulation results are compared to ex-
perimental data, while the grid, temporal resolution and periodic uncertainty is
assessed and reported.

The fourth set of test cases considers steady resistance simulations of the KCS
model at design speed, where the results are compared to available experimental
data and the grid uncertainty estimate is reported.

The fifth set of test cases considers seakeeping simulations of the KCS model at
design speed, for 5 head wave and 5 oblique wave cases. All results are compared
with available experimental data, and each simulation is performed with 3 grids in
order to assess grid uncertainty. Numerous sensitivity studies are also performed:

• Temporal resolution study (25, 50, 100, 200, 400 and 800 time steps per
encounter period),

• Hydro–mechanical (fluid–flow/6–DOF) coupling study (2, 4, 6 and 8 outer
PIMPLE correctors),

• Periodic uncertainty assessment for each test case.
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6.2. Free Surface Flow Over a Ramp

Steady state flow over a 2–D ramp represents a standard validation test case
for free surface flows [113, 114]. The geometry of the computational domain is
presented in Figure 6.1. For a known inflow velocity u and free surface height
h1, the height of the free surface at the outlet boundary h2 may be obtained by
applying the Bernoulli and the continuity equation [114]. Density of the fluids,
gravitational acceleration and inlet boundary conditions are reported in Table 6.1.
The inviscid flow is easily obtained in the present model by specifying the kine-
matic viscosities of two fluids equal to zero. As the inviscid flow is considered,
no turbulence modelling has been employed.

All time–derivative terms are discretised with the first order accurate Euler
implicit scheme as the steady state solution is sought. The convection term in
the momentum equation is discretised with Gauss’ theorem using second–order
accurate linear upwind scheme, while the convection term in the LS transport
equation is discretised with second–order accurate van Leer’s Total Variation Di-
minishing (TVD) [88] flux limiter [115] in deferred correction form [91]. The diffu-
sion terms are discretised using central differencing with limited non–orthogonal
correction in over–relaxed form [97, 90], yielding second–order accuracy. All
gradient terms are discretised with Gauss’ theorem using central differencing for
structured grids, while the least squares discretisation [96] is employed for skewed
and non–orthogonal unstructured grids. Note that all dynamic pressure terms
employ interface–corrected schemes as described in detail in Sec. 4.4. Only 2 outer
(Combination of SIMPLE and PISO Algorithms (PIMPLE)) correctors are used
with 2 inner (PISO) correctors as the steady state solution needs to be achieved.

The uniform velocity field corresponding to the inlet value and the LS field
corresponding to the calm free surface are used as the incident flow solution.
Relaxation zones are not used because the reflection does not occur due to super-
critical Froude number (see Table 6.1). As this test case does not have relaxation
zones, the general boundary conditions as described in Sec. 4.1.5. do not ap-
ply, hence they are briefly described here. For the perturbation velocity field,
following boundary conditions are used:

• Zero gradient: n•∇uP = 0 at the outlet,
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6.2. Free Surface Flow Over a Ramp

• Fixed value: uP = 0 at the inlet,

• Slip: t•(∇uP ) = 0 and n•uP = 0 at the top and bottom.

where n and t are unit normal and unit tangential vector to the face at the
boundary, respectively. Boundary conditions for the perturbation LS field are
set to zero gradient everywhere except at the inlet, where fixed value ψP = 0

is used. Similar boundary conditions are applied to dynamic pressure, where
the zero gradient boundary condition is specified everywhere except at the top
boundary, where fixed value pd = 0 is used.

Final free surface position

U

g

4m 1m 4m
x

y

h2

Initial free surface position

0.2m

h1

Figure 6.1: Geometry of the computational domain for the 2–D ramp test case.

Table 6.1: Simulation parameters for the 2–D ramp test case [114].

Item Units Value

Density of the heavier fluid ρh, kg/m3 1

Density of the lighter fluid ρl, kg/m3 0.001

Gravitational acceleration g, m/s2 [0,−9.81, 0]

Free surface height at the inlet h1, m 1

Inflow velocity u, m/s [6, 0, 0]

Froude number Fr = |u|/
√
|g|h1 1.92
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6. Test Cases

6.2.1. Block–Structured Hexahedral Grid Refinement Study

The initial, coarse grid consists of 1 755 cells and can be seen in Figure 6.2a.
Cells are graded in the longitudinal direction towards the ramp and in the ver-
tical direction towards the undisturbed free surface. A constant grid refinement
ratio [110] rG = 2 is applied two times, producing two additional grids consisting
of 7 020 and 28 080 cells. Steady state dynamic pressure pd field for all grids is
presented in Figure 6.2, where it can be seen that the dynamic pressure jump is
resolved within a single layer of adjacent cells. The computed free surface height
at the outlet boundary is compared with the analytical solution h2a = 1.08973

m [114], where Table 6.2 presents the CFD solution for all grids and correspond-
ing relative errors. The relative errors are lower than 1%, which is expected due
to the simplicity of the test case.

The discriminating ratio calculated with three h2 solutions corresponding to
fine, medium and coarse grids is R ≈ 0.18, hence, monotone convergence is
achieved. The achieved order of spatial convergence is p ≈ 2.45, exceeding the
theoretical second order accuracy. In order to investigate peculiarly high order of
spatial convergence, two Grid Convergence Indices (GCIs) are calculated based
on fractional Richardson error estimators [116]:

GCImf =
(Sm − Sf )/Sf

rp − 1
= 0.0003915 , (6.1)

GCIcm =
(Sc − Sm)/Sm

rp − 1
= 0.0021370 , (6.2)

where Sc, Sm and Sf are coarse, medium and fine grid solutions, respectively, r
is the grid refinement ratio and p is the achieved order of accuracy. According
to [116], whether the solutions are within asymptotic range of convergence may
be verified by calculating following ratio:

A =
GCIcm
rpGCImf

= 0.9983 ≈ 1 . (6.3)

Since the calculated fraction in Eqn. (6.3) is close to unity, it is safe to assume
that the grid solutions are within asymptotic range of convergence. Hence, the
achieved order of spatial accuracy which is higher than theoretical second order
accuracy may be caused by vanishing higher order derivatives for this particular
problem.
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6.2. Free Surface Flow Over a Ramp

(a) 1 755 cells.

(b) 7 020 cells.

(c) 28 080 cells.

Figure 6.2: Dynamic pressure pd at the steady state solution for three structured hexahedral
grids, approximately denoting the free surface due to presence of a sharp jump.

Table 6.2: Structured grid refinement results for 2–D ramp test case.

Index 1 2 3

No. cells 1 755 7 020 28 080

h2, m 1.09847 1.08808 1.08618

Er, % -0.80 0.15 0.33
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6. Test Cases

Finally, grid uncertainty calculated with Eqn. (5.5) is U ≈ 0.06%, which is
considered small.

6.2.2. Unstructured Prismatic Grid Refinement Study

Since the present model is developed for arbitrary polyhedral, unstructured grids,
three grids with prisms (triangles extruded in the third direction) are used for the
unstructured grid refinement study. The coarse, medium and fine grids consist
of 2 892, 13 913 and 26 112 cells, respectively. The uniform refinement ratio is
not achieved as this is difficult for unstructured grid generation process, but the
average grid refinement ratio is r ≈ 1.78. The steady state dynamic pressure field
is presented in Figure 6.3, where details of all grids can be seen. The calculated
water height at the outlet is reported in Table 6.3, along with the relative errors,
comparing the results with analytical solution. The relative errors for solutions
on unstructured grids are higher compared to the relative errors obtained for
block–structured grids.

The calculated discriminating ratio R ≈ −0.14 reveals that the oscillatory
convergence is achieved. Corresponding grid uncertainty is U = 3.6%, signif-
icantly larger than the grid uncertainty obtained using block–structured hexa-
hedral grids, where U ≈ 0.06%. This implies that hexahedral grids should be
preferred whenever convenient for the present CFD model.

6.2.3. Hydrostatic Test Case and Spurious Air Velocities

As mathematically demonstrated in Sec. 1.2.1., the numerical model using con-
ditionally averaged momentum equation with segregated solution algorithms is
expected to cause spurious acceleration of lighter phase near the free surface. The
cause of resulting spurious air velocities can be directly linked to the pressure–
density coupling being resolved in the momentum equation, instead of the pres-
sure equation. It is important to note that this numerical phenomena is unrelated
to parasitic currents caused by numerical issues often encountered in atomisation
calculations due to CSS model [76] for treatment of surface tension effects, which
shall is demonstrated by considering the inviscid case without surface tension
effects.
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6.2. Free Surface Flow Over a Ramp

(a) 2 892 cells.

(b) 13 913 cells.

(c) 26 112 cells.

Figure 6.3: Dynamic pressure pd at the steady state solution for three unstructured prismatic
grids, approximately denoting the free surface due to presence of a sharp jump.

Table 6.3: Unstructured grid refinement results for 2–D ramp test case.

Index 1 2 3

No. cells 2 892 13 913 26 112

h2, m 1.02772 1.07982 1.07260

Er, % 5.69 0.91 1.57
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6. Test Cases

To test the improvements using the interface–corrected interpolation schemes
obtained via GFM, a hydrostatic variant of this test case is considered, where
the calm free surface is frozen during the calculation and the velocity field is
initialised to zero in whole domain. As the hydrostatic test case is linear, the
converged solution should be obtained in a single time step. For comparison,
interFoam two–phase flow solver (available within foam-extend-3.2 [117]) based
on conditionally averaged equations is used for comparison. Additional details
regarding the interFoam solver can be found in numerous publications [52, 50,
51, 73, 74] as many researchers use it as a starting point for further development.
In order to stress this inconsistency, the fine, structured hexahedral grid is used
for hydrostatic test.

A single time step with one pressure–velocity corrector step is computed since
the considered problem is linear. Velocity fields after the momentum equation
(momentum predictor step) and after the pressure equation (final solution) are
compared in Figure 6.4 using the two approaches. It is important to note that
different velocity scales are used for each figure in order to be able to visualise
the difference between the solutions. Figure 6.4a presents the velocity field after
the solution of the momentum equation using the conditional averaging approach
(interFoam), where a single layer of cells in air adjacent to the free surface has
velocity magnitudes up to O(103). The extreme velocities in the intermediate
step of the solution algorithm are caused by the dynamic pressure and density
imbalance in the momentum equation. In the present numerical framework, the
dynamic pressure–density coupling is resolved inside the pressure equation using
interface–corrected scheme obtained via GFM, indicating that there should be no
spurious air velocities after the momentum predictor step. This is demonstrated
in Figure 6.4b, where the maximum velocity is only O(10−5) due to discretisa-
tion errors. The final velocity field (after the pressure equation) using conditional
averaging approach (interFoam) yields velocity magnitudes of O(10−3), that is:
seven orders of magnitude smaller than the velocity field obtained after the mo-
mentum predictor step. In contrast, the final velocity field using the numerical
model developed within this study is the same as after the momentum predictor
step. This can be easily seen by comparing Figure 6.4d and Figure 6.4b. Al-
though the maximum velocity magnitude obtained with conditionally averaged
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6.2. Free Surface Flow Over a Ramp

(a) Velocity field after the solution of the momentum equation, conditionally
averaged equations in interFoam.

(b) Velocity field after the solution of the momentum equation, present
model.

(c) Final velocity field after pressure correction step, conditionally averaged
equations in interFoam.

(d) Final velocity field after pressure correction step, present model.

Figure 6.4: Air velocities near the free surface for the hydrostatic test case.
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6. Test Cases

approach is reduced by seven orders of magnitude after the pressure equation,
the final maximum value is two orders of magnitude smaller in the present ap-
proach. It should also be noted that the velocity field of O(10−5) in the present
approach can be observed both in air and water, thus indicating the level of dis-
cretisation errors, while in the conditionally averaged approach (as used in e.g.
interFoam), higher velocities can be found only in air cells adjacent to the free
surface. Furthermore, abrupt reduction of velocity magnitude corresponding to
7 orders of magnitude might cause numerical instabilities in conditionally aver-
aged approach, especially when dynamic pressure and density are not properly
balanced before the momentum equation, which is difficult to achieve using seg-
regated solution algorithms. Finally, additional inconsistency may be observed in
conditionally averaged approach, where the discontinuous nature of density and
dynamic pressure (on continuum mechanics length scales) is not properly taken
into account. Rather, density and dynamic pressure gradients (which should
mathematically correspond to the Dirac delta function), are often evaluated us-
ing ordinary discretisation practices. This is avoided in the present approach by
discretising dynamic pressure jump conditions with one–sided extrapolates based
on the LS signed distance function and the GFM. Hence, interface–corrected
schemes take into account the discontinuous nature of the density and dynamic
pressure fields in free surface flows.
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6.3. Progressive Wave Simulations

6.3. Progressive Wave Simulations

The second set of test cases deals with various 2–D wave propagation problems in
a numerical wave tank, where the emphasis is given on sensitivity studies. First,
a benchmark test case is introduced in detail, where the results are compared
with fully nonlinear potential flow stream function wave theory [60]. Influence
of the diffusion parameter b in the LS transport equation (see Eqn. (4.16) and
Eqn. (2.41)) is assessed through LS Courant–Friedrichs-Lewy number CFLψ and
stabilisation constant γ. Next, a reflection study is carried out by changing the
relaxation zone length. Furthermore, temporal and grid resolution studies are
performed for the benchmark test case and the corresponding numerical uncer-
tainties are estimated. The wave steepness study is also performed by varying
the wave height while keeping the wave period constant. Additionally, a long
simulation is carried out by simulating 100 wave periods in order to assess the
conservative properties of implicit relaxation zones and the LS method, where
the periodic uncertainty is reported. Finally, a simulation with large domain (8
wave lengths long) is carried out in order to examine the effects of numerical dis-
sipation and dispersion on wave propagation. The results of all sensitivity studies
are compared with stream function wave theory [60].

The time derivative terms in all governing equations are discretised with a 50–
50 blend of second–order accurate Crank–Nicolson and first–order accurate Euler
implicit scheme. This formally yields a theoretical order of temporal accuracy
of 1.5. Convection, diffusion and gradient terms are discretised using the same
procedures as for the 2–D ramp test case (see Sec. 6.2.), where the interface–
corrected interpolation schemes are employed for discontinuous dynamic pressure
terms. In order to eliminate the effect of iterative uncertainty, 4 outer (PIMPLE)
and 2 inner (PISO) correctors are used, lowering the residuals below 10−6 for all
equations. Turbulence modelling has not been used as the turbulence effects may
be considered negligible for regular wave propagation.

6.3.1. Benchmark Wave Propagation Case

A wave with mild steepness, ka = 0.023 is considered here as a benchmark
wave propagation case, where the wave and simulation parameters are outlined
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6. Test Cases

Figure 6.5: View of the whole grid.

in Table 6.4.

The 2–D computational domain extends from x ∈ [0, 60] and y ∈ [−6, 0.3]

m. The grid consists of three longitudinal and three vertical blocks, where the
cells are heavily graded towards the middle block which is 15 m (≈ λ) long
(see Figure 6.5) and 0.2 m high (≈ 2H) (see Figure 6.6). In the middle block,
there are approximately 15 cells per wave height and 100 cells per wave length,
which results in maximum cell aspect ratio of 22.2̇. The resulting grid may be
considered relatively coarse considering the number of cells per wave height and
relatively fine considering the number of cells per wave length in the middle block.
Overall, a total number of 11 700 cells is considered coarse from a computational
perspective, making this grid suitable for various sensitivity studies.

In order to prevent wave reflection in wave propagation simulation, relax-

Table 6.4: Wave and simulation parameters for the benchmark case.

Wave height H, m 0.1

Wave period T, s 3

Wave frequency ω, rad/s 2.0944

Wave length λw, m 13.934

Wave number k, rad/m 0.450924

Depth dd, m 6

Relaxation zone length λr, m 22.5

Time step ∆t, s 3.75 · 10−3

LS CFL number CFLψ 0.25

Stabilisation constant γ 108

Width parameter ε, m 0.004
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6.3. Progressive Wave Simulations

Figure 6.6: Zoomed view of the grid in the middle block near the free surface.

ation zones are positioned at far–field boundaries (left and right boundary of the
grid). The length of relaxation zones is 22.5 m, where λr ≈ 1.5λ. Hence, a fully
nonlinear, two–phase and viscous CFD solution is obtained in the middle of the
domain, spanning 15 m in the longitudinal direction and presented in the top
part of Figure 6.7. Although this region represents only 25% of the domain, the
exponential character of the weight field (see Eqn. (3.14) or Jacobsen et al. [52])
is favourable, because a part of the solution that is between 50 and 100% CFD is
present in 86.5% of the domain (see middle image in Figure 6.7). For example, if
w = 0.5, the final solution is a blend of 50% CFD solution and 50% potential flow
solution. Hence, if one uses advanced potential flow wave theories, this solution
is accurate as well. In this example, 96.6̇% of the cells are in this region, so the
cell count is only slightly increased due to relaxation zones.

Wave elevation is measured in the middle part of the domain where the fully
nonlinear, two–phase and viscous CFD solution is achieved. The longitudinal
coordinates of wave gauges are at 25, 30 and 35 m for wave gauges 1, 2 and 3,
respectively and 10 incident wave periods are simulated. Time signals of wave
elevations at all three wave gauges are presented in Figure 6.8 and Figure 6.9,
where only the last three (representative) periods are shown for clarity. The CFD
results show good agreement with the stream function potential flow solution.
The wave troughs and peaks remain within 0.1% of relative errors defined with
Eqn. (5.2), while the slight phase shift may be observed in Figure 6.9b. The
largest phase shift corresponds to approximately 0.6% of the wave period. This
phase shift error could be related to second–order accurate convection schemes
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6. Test Cases

Figure 6.7: Weight field for wave propagation test case. The top image presents the area where
fully nonlinear, two–phase and viscous CFD solution is obtained. The middle image presents
the area where there is 50 to 100% of the CFD solution. The bottom image presents the whole
domain, where the black line in the bottom image is a qualitative representation of weight
function Eqn. (3.14).

used for incident wave propagation as indicated by Huang et al. [15]. Since it is
difficult to draw concise conclusions from signals in time domain, the attention
is given to frequency domain representation of the signals via moving window
FFT procedure as outlined in Sec. 5.2.3.. The final frequency domain harmonic
solutions are taken as the average values from last 5 periods, while the periodic
uncertainty is assessed using Eqn. (5.6) with maximum and minimum values from
last 5 periods.

Tables 6.5–6.7 present the first two harmonics for the CFD solution and the
stream function wave theory. Only the two harmonics are presented because
others can be neglected due to linearity of the considered wave [84]. Absolute
value of the ith harmonic is denoted with Hi, whereas the phase shift of the
harmonic is denoted with γHi . Since the second order effects are two orders
of magnitude smaller for such a linear wave, the normalised relative error is
introduced and calculated as:

Enr = Er
O(H2)

O(H1)
, (6.4)

where O(H1) is the order of magnitude of the first harmonic and O(H2) the order
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6.3. Progressive Wave Simulations

of magnitude of the second harmonic. Eqn. (6.4) gives an estimate of relative
error’s significance in the total solution.

As indicated in Tables 6.5–6.7, the largest part of the solution is represented by
the first harmonic. The second harmonic is smaller by two orders of magnitude,
thus, it represents at most 1% of the total solution. The first row of Tables
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Figure 6.8: Time evolution of wave elevation during last 3 periods for wave gauge 1, x = 25 m.

Table 6.5: Fourier representation of wave elevation signals at wave gauge 1.

ith CFD Stream Relative Normalised
harmonic solution function error, % rel. error, %

H1, m 4.9996 · 10−2 4.9962 · 10−2 -0.06 -0.06

γH1 , rad 1.2701 1.2934 1.80 1.80

H2, m 6.6035 · 10−4 5.8369 · 10−4 -13.13 -0.13

γH2 , rad 2.5341 2.5873 2.05 0.02
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(a) Wave gauge 2, x = 30 m,
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(b) Wave gauge 3, x = 35 m,

Figure 6.9: Time evolution of wave elevation during last 3 periods for wave gauges 2 and 3.
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6.5–6.7 show that the relative error for the first order harmonic amplitude is
always lower than 0.5%. Since the first harmonic represents 99% of the solution,
the comparison between the CFD and the stream function solution is considered
good. The normalised relative error for second order harmonic amplitude is lower
than 1%. The first order harmonic phase shifts have relative errors within 3%,
while the second order harmonic phase shifts have normalised relative errors lower
than 1%. Generally, errors for phase shifts are higher than errors for amplitudes,
which is expected in CFD wave propagation simulations. This observation agrees
well with Figure 6.9, where the slight phase shift has been observed.

Table 6.6: Fourier representation of wave elevation signals at wave gauge 2.

ith CFD Stream Relative Normalised
harmonic solution function error, % rel. error, %

H1, m 4.9898 · 10−2 4.9962 · 10−2 0.12 0.12

γH1 , rad −0.9875 −0.9612 -2.74 -2.74

H2, m 5.4895 · 10−4 5.8369 · 10−4 5.95 0.06

γH2 , rad −1.8656 −1.9223 2.95 0.03

Table 6.7: Fourier representation of wave elevation signals at wave gauge 3.

ith CFD Stream Relative Normalised
harmonic solution function error, % rel. error, %

H1, m 5.0174 · 10−2 4.9962 · 10−2 -0.42 -0.42

γH1 , rad 3.0305 3.0674 1.20 1.20

H2, m 5.0908 · 10−4 5.8369 · 10−4 12.78 0.13

γH2 , rad −0.2730 −0.1485 -83.84 -0.84
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6.3.2. Study of Influence of the Diffusion Parameter b

The study of influence of the diffusion parameter b in the LS transport equation,
(see Eqn. (4.16) and Eqn. (2.41)) is examined. As indicated in Sec. 4.1.3., b serves
to maintain the signed distance profile of the LS field and to smear possible
singularities during the solution process, while it depends on the specified LS
CFL number, CFLψ and the stabilisation constant, γ (see Eqn. (4.16)). The
benchmark test case is used for the study, where only the first order harmonic
and phase are reported for wave gauge 2 (middle of the domain), as other signals
exhibit similar behaviour.

Level Set Courant–Friedrichs-Lewy Number CFLψ Sensitivity

User specified LS CFL number, CFLψ determines the diffusion parameter as
indicated by equation Eqn. (4.16). In order to assess the sensitivity of the solution
with respect to the specified CFLψ, 8 additional simulations have been performed
with following CFLψ numbers: 0.5, 1, 2, 4, 8, 16, 32, 64. The first order harmonic
amplitudes and phases are presented in Figure 6.10, while the higher order effects
are not examined in details due to linearity of the wave. Figure 6.10a presents
first order harmonic amplitude for different CFLψ number in logarithmic scale,
comparing the results with stream function wave theory. It can be seen that the
results are insensitive to variations in CFLψ number of 2 orders of magnitude.
Although piecewise monotone or oscillatory convergence is achieved for certain
pairs of results, the numerical uncertainty of the first order harmonic amplitude
with respect to varying CFLψ is quantified using Eqn. (5.7), which is considered
the most conservative estimate. In Eqn. (5.7), SU is the maximum solution
and SL is the minimum solution for 9 different CFLψ numbers, yielding U =

0.13%. The same procedure is applied for first order harmonic phase presented
in Figure 6.10b, yielding numerical uncertainty of U = 0.09%. The numerical
uncertainty is normalised with the results from the benchmark test case, where
CFLψ = 0.25. Thus, it can be concluded that the wave propagation solutions are
insensitive to changes in the CFLψ number, although it is important to note that
the specified CFLψ must be greater than the convective CFL number, CFLc in
order to ensure positive diffusion coefficient b (see Eqn. (4.16)).
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Figure 6.10: Sensitivity of the solution with respect to CFLψ number.
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Stabilisation Parameter γ Sensitivity

The stabilisation parameter γ in Eqn. (4.16) serves to decrease the overall dif-
fusion parameter. The sensitivity of the solution with respect to γ is examined
by simulating 6 additional cases where: γ = 104, 105, 106, 107, 109 and 1010, cov-
ering 6 orders of magnitudes. The sensitivity of the first order harmonic with
respect to stabilisation parameter γ is indicated in Figure 6.11. The first order
harmonic amplitude varies approximately 0.5% for three lowest values of γ, as
shown in Figure 6.11a, where it varies only slightly for γ > 106. The same trend
can be observed for first order phase in Figure 6.11b, thus it can be concluded
that a good practice would be to use γ > 106, which is expected since this pa-
rameter directly lowers the diffusion coefficient in the LS transform equation.
Again, although piecewise monotone and oscillatory convergence is achieved for
certain pairs of results, Eqn. (5.7) is used to conservatively quantify numerical
uncertainty with respect to 5 largest values of γ, yielding U = 0.06% for first
order amplitude and U = 0.09% for first order phase.

Eqn. (4.16) shows that the diffusion parameter b is inversely proportional to
γ. Hence, it would be reasonable to expect that larger γ should decrease the
smearing of the interface. As demonstrated in Figure 6.12, this is not true since
other source terms in the LS transport equation, Eqn. (2.41) also depend on the
diffusion parameter b. Figure 6.12 shows the interface resolution in terms of the
VOF field (reconstructed from LS using Eqn. (2.39)) in the middle part of the
domain at the end of two simulations with γ = 104 and γ = 106. The smearing of
the interface is almost identical and confined across two cells as prescribed with
the width parameter ε = 0.004. It is also important to stress that the VOF field is
not actually used in simulation for discretisation of dynamic pressure and density
terms, only the zero LS is used: ψ = 0. This is demonstrated in Figure 6.13,
where it can be seen that the dynamic pressure field exhibits a jump across a
single interface face. The white line denotes the zero LS (ψ = 0 iso–countour).
In order to visualise the dynamic pressure fields in both water and air, Figure 6.13
is split into two parts:

1. Figure 6.13a shows the dynamic pressure in a scale where the dynamic
pressure gradient is visible in the water. The dynamic pressure varies from
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Figure 6.11: Sensitivity of the solution with respect to γ.
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approximately 50 to 400 Pa in this region (x ∈ [29, 31] m and y ∈ [−0.1, 0.1]

m),

2. Figure 6.13b shows the dynamic pressure in a scale where the dynamic
pressure gradient is visible in the air. The variation of dynamic pressure in
air is from approximately -0.045 to -0.0035 Pa in the same region.

An effective difference of dynamic pressure in water and air of four orders of
magnitude can be observed. This is in accordance with Eqn. (4.24) where the
dynamic pressure jump across the free surface is proportional to the difference
between water and air densities multiplied with the gravitational constant. Fi-
nally, Figure 6.13 indicates that the GFM successfully models the jump of dy-
namic pressure (and density) and that the prescribed smearing of the interface
does not affect the dynamic pressure jump, as postulated in Sec. 4.3.

6.3.3. Wave Reflection Study

The reflection study is performed in order to determine the length of relaxation
zones required to efficiently prevent wave reflection. The relaxation zones are po-
sitioned at far-field (inlet and outlet) boundaries as shown in Figure 6.7, where
the perturbation components are gradually damped to zero, leaving a full poten-
tial flow solution. In order to determine desirable values of the relaxation zone
length, λr is varied from 0.5λw to 1.5λw and the corresponding wave elevation sig-
nals are presented in Figure 6.14 for wave gauge 2 (middle of the domain), where
only the last two periods are shown for clarity. All results show good agreement
with the stream function wave theory, where the amplitude is under–predicted
for smaller values of λr, as can be seen in Figure 6.15a, denoting the dependence
of the first order harmonic amplitude with respect to λr. The first order phase
shift is also generally larger for smaller lengths of relaxation zones as indicated
in Figure 6.15b. If one neglects other numerical errors, the relative error of first
order harmonic amplitude may be viewed as an estimate for the amplitude of
the reflected wave. As the phase speed (celerity) of the wave is approximately
4.64 m/s, the simulation time of 30 seconds is sufficient for a reflected wave to
travel trough the domain more than two times. The relative error of the first
order harmonic amplitude for the smallest relaxation zone length λr = 0.5λw is
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Figure 6.12: Interface resolution at the end of simulation (t = 30 s) for different stabilisation
parameters, γ. The interface is almost identically smeared across two cells for both cases,
controlled by a width parameter ε = 0.004. Only part of the domain is shown: x ∈ [29, 31],
y ∈ [−0.1, 0.1] for clarity.

(a) Dynamic pressure scale specific to water,

(b) Dynamic pressure scale specific to air,

Figure 6.13: Sharp dynamic pressure distribution at the end of the benchmark test case simu-
lation. Only part of the domain is shown: x ∈ [29, 31], y ∈ [−0.1, 0.1] for clarity.
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approximately 3%, decreasing towards 0.02% for λr = 1.5λw. The decrease of rel-
ative errors is monotone except for the case with λr = 1.25λw. The relative error
of the first order harmonic phase for the smallest relaxation zone length is ap-
proximately 15%, decreasing to 3.5% for the greatest relaxation zone length. This
indicates that the reflection mostly affects the phase shift, while the amplitude is
less affected, which could be expected since the domain length is not a multiple of
wave length. The numerical uncertainty is calculated using Eqn. (5.7) since the
convergence has not been achieved for three cases where λr ≥ λw. With the ref-
erence solution for normalisation of uncertainty corresponding to the λr = 1.5λw,
numerical uncertainty for the first order amplitude is U = 1.73%, while for the
first order phase U = 6.18%.

6.3.4. Temporal Resolution Study

The time step size is often a limiting factor in wave propagation CFD simu-
lations, thus, a temporal resolution study is performed on the benchmark test
case in order to assess the corresponding numerical uncertainty. In addition to
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Figure 6.14: Time domain signals for last two periods, different relaxation zone lengths, λr.

104



6.3. Progressive Wave Simulations

0.5 0.75 1 1.25 1.5

λ
r
/λ

w
 (note: λ

w
 = 13.934 m)

4.85

4.9

4.95

5

H
1

  ·
 1

0
2
, 

m

CFD
stream function

(a) First order harmonic amplitude,

0.5 0.75 1 1.25 1.5

λ
r
/λ

w
 (note: λ

w
 = 13.934 m)

-1.15

-1.1

-1.05

-1

-0.95

γ H
1

, 
ra

d

CFD
stream function

(b) First order harmonic phase,

Figure 6.15: Sensitivity of the solution with respect to relaxation zone length λr, frequency
domain.
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the benchmark test case where n = 800 time steps per wave period are used, 5
additional simulations are performed with n = 25 to n = 400, with a constant
refinement ratio of r = 2. Figure 6.16 presents wave elevations at wave gauge 2
for last two periods. From the time domain signals, it can be concluded that the
wave amplitude changes only slightly with extremely low temporal resolution of
n = 25 time steps per wave period, while the phase shift is significantly more af-
fected. This is also visible in Figure 6.17a and Figure 6.17b, where the first order
harmonic amplitudes and phases are plotted for different n. Both amplitude and
phase converge with increasing n, where the three solutions with n = 200, 400

and 800 are used to estimate achieved order of temporal convergence and numer-
ical uncertainty. The last three solutions for the first order harmonic amplitude
exhibit monotone convergence, where the achieved order of temporal accuracy is
p = 1.24, which is smaller than theoretical order of accuracy of p = 1.5 (note
that a blend of second–order accurate Crank–Nicolson and first–order accurate
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Figure 6.16: Time domain signals for last two periods, different number of time steps per
encounter period, n.
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Figure 6.17: Sensitivity of the solution with respect to the number of time steps per encounter
period, n, frequency domain.
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Euler implicit scheme is used). The asymptotic range ratio based on GCIs cal-
culated with Eqn. (6.3) yields A = 0.997 ≈ 1, indicating that the solutions are
within asymptotic range and the order estimate is valid. The corresponding tem-
poral resolution uncertainty for the first order harmonic amplitude calculated
with Eqn. (5.5) is U = 0.32%, which is considered low. The first order phase
also exhibits monotone convergence for the last three solutions, yielding achieved
order of temporal accuracy of p = 0.81. Although the solutions are within the
asymptotic range where A = 0.993, the low order of accuracy may be caused
by small changes in the solution for large n. Even with the low achieved order
of temporal accuracy, the temporal resolution uncertainty is U = 1.41%. As a
reference, for n = 100, 200 and 400 combinations, the achieved order of temporal
accuracy for the amplitude is p = 1.08 and for the phase p = 1.22.

6.3.5. Grid Refinement Study

The grid refinement study is carried out using the constant grid refinement ratio
r = 2, producing one coarser grid with 2 970 cells and one finer grid with 46 800,
along with the original grid consisting of 11 700 cells. It is important to note that
the coarsest grid has approximately 7.5 cells per wave height (approximately 4
cells per wave amplitude), which may be considered coarse. The time step size
is kept the same as in the benchmark test case, corresponding to 800 time steps
per wave period. Figure 6.19 presents the comparison of coarse, medium and
fine grid solutions with the stream function wave theory for last two periods
(wave gauge 2). It is interesting to note that even the results on the coarse grid
(2 970 cells) are reasonably accurate for engineering purposes. The convergence
of first order harmonic amplitude with respect to grid refinement is presented
in Figure 6.18a, where the monotone convergence is achieved. The achieved
order of convergence is p = 1.64, which is lower than theoretical second–order
accuracy. The asymptotic range ratio is A = 1.002, hence the solutions for
harmonic amplitudes are within the asymptotic range. The corresponding grid
uncertainty is U = 0.16%, indicating extremely low sensitivity of the solution
with grid refinement, which can be directly observed in Figure 6.18a where the
y–axis varies within approximately 1% of the wave amplitude. The convergence
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Figure 6.18: Sensitivity of the solution with respect to grid resolution, frequency domain.
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Figure 6.19: Time domain signals for last two periods, different grid resolutions.

of first order harmonic phase exhibits similar trend, as seen in Figure 6.18b.
Monotone convergence is achieved and the order of convergence is p = 1.80. The
asymptotic range is again close to unity A = 0.989 and the corresponding grid
uncertainty is low U = 0.70% for the first order phase.

6.3.6. Steepness Study

Wave steepness is often represented by dimensionless number, ka where k is
the wave number in radians per second and a is the amplitude of the wave in
meters. The nonlinearity of wave increases with increasing steepness, where the
theoretical deep water breaking limit corresponds to ka ≈ 0.44 [84]. Due to
nonlinearity, the wave length also changes according to the specified wave height
and period, however, this change is considered small compared to the change
in wave height. In this study, the wave height is gradually increased from 0.2
to 1.6 m, while the wave period, T = 3 seconds is kept constant, yielding a
steepness range from 0.045 to 0.325 according to the nonlinear stream function
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Table 6.8: Wave parameters for steepness study.

Index Wave amplitude Wave length Wave number Steepness
i a, m λ, m k, rad/s ka

1 0.1 13.9546 0.4503 0.04503

2 0.2 14.0360 0.4477 0.08953

3 0.3 14.1688 0.4435 0.13304

4 0.4 14.3488 0.4379 0.17516

5 0.5 14.5714 0.4312 0.21560

6 0.6 14.8314 0.4236 0.25418

7 0.7 15.1236 0.4155 0.29082

8 0.8 15.4427 0.4069 0.32550

solution, Table 6.8. For each case, the total number of cells in the grid remained
constant (11 700). However, spacing of the blocks is adjusted with wave height
such that there are always 15 cells per wave height and 100 cells per wave length
in the middle of the domain. This way, the grid is identical (with respect to wave
parameters) to the one used in the benchmark test case.

Results for the wave steepness study are shown in Figures 6.20–6.23, where the
graphs present magnitude of Fourier harmonics for waves with different steepness
(see Table 6.8). Since both the stream function wave theory and present CFD
model are fully nonlinear, they both capture higher order effects with increasing
steepness. The first order harmonic amplitudes compare very well for ka < 0.29,
where for the two cases with highest steepness, the CFD model under–predicts the
first order harmonic amplitude. The CFD results also agree well with the stream
function wave theory for higher order harmonic, where it is interesting to note that
the higher order harmonics are slightly over–predicted for two highest steepnesses,
Figure 6.23a and Figure 6.23b. Hence, it may be concluded that the energy
is shifted from first order harmonic towards higher harmonics with increasing
steepness. This may be related to vorticity and viscous effects taken into account
in the present CFD model. Furthermore, Figure 6.22a to Figure 6.23b reveal
that a certain amount of energy is also present between multiples of the base
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Figure 6.20: Fourier harmonics obtained with stream function wave theory and present CFD
model for varying wave steepness, wave numbers 1 and 2.
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Figure 6.21: Fourier harmonics obtained with stream function wave theory and present CFD
model for varying wave steepness, wave numbers 3 and 4.
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Figure 6.22: Fourier harmonics obtained with stream function wave theory and present CFD
model for varying wave steepness, wave numbers 5 and 6.
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Figure 6.23: Fourier harmonics obtained with stream function wave theory and present CFD
model for varying wave steepness, wave numbers 7 and 8.
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frequency. This effect is not present in the stream function wave theory since the
solution is sought in the frequency domain.

6.3.7. Long Simulation Stability Assessment

Stability of the simulation, mass conservation and periodic uncertainty are as-
sessed with a very long simulation of the benchmark test case (see Table 6.4
in Sec. 6.3.1.) corresponding to 100 wave periods. The representative time do-
main signal for wave gauge 2 is presented in Figure 6.24 and Figure 6.25. Since
it would be cumbersome to present the whole signal 100 periods long, the sig-
nal is split into four representative parts for clarity, each representing 10 periods
throughout simulation. As indicated in Figure 6.24 and Figure 6.25, both the first
order harmonic amplitude and phase remain stable during a long simulation.

In order to assess periodic uncertainty, a moving window FFT is performed
through all periods and the uncertainty is calculated using Eqn. (5.6) for a set
of periods: (i− 5)th to ith period, where i is the period index, starting from fifth
period. For example, if i = 50, periods 45 to 50 are used for periodic uncertainty
calculation. The behaviour of periodic uncertainty for different sets of periods is
presented in Figure 6.26, where following conclusions may be drawn:

• The periodic uncertainty is lower than 0.1% for longer simulation times,
while in the beginning of the simulation, the uncertainty does not exceed
0.3%. This may be considered negligibly low.

• All wave gauges exhibit highly irregular pattern of periodic uncertainty
throughout periods, which the author cannot currently explain.

• Starting from i = 11 (periods 6 to 11), the periodic uncertainty is drastically
lowered.

In the LS interface capturing method, the preservation of the signed distance
function is important for both mass conservation and correct interface reconstruc-
tion required by interface–corrected schemes via GFM approach. The preserva-
tion of the signed distance profile may be seen in Figure 6.27, showing the LS field
in the middle part of the domain bounded by x ∈ [29, 31] m and y ∈ [−0.4, 0.4]

m at 50th period corresponding to t = 150 s. The interface location is denoted by
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Figure 6.24: Time evolution of wave elevation during 100 periods for wave gauge 2, x = 30 m,
part 1.
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Figure 6.25: Time evolution of wave elevation during 100 periods for wave gauge 2, x = 30 m,
part 2.
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Figure 6.26: Behaviour of periodic uncertainty for all wave gauges during a long simulation.

a while line, representing zero LS (ψ = 0), while black lines denote iso–contours
of the LS field equally spaced between −0.2 and 0.2. The signed distance profile
of the LS field is well preserved.

Figure 6.27: Preservation of the LS field in long simulation at t = 150 s.

In order to assess conservative properties of the implicitly redistanced LS
method and implicit relaxation zones, the total amount of water during the sim-
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ulation is closely investigated. The amount of water/air ratio changes at every
time step since the domain length is not a multiple of wave length. The ratio
of the volume occupied by water with respect to the total volume in the domain
can be defined as:

Gw =

∑
P αPVP∑
P VP

, (6.5)

where αP denotes the water fraction for cell P (calculated from the LS field with
Eqn. (2.39)) and VP is the volume of the cell.

∑
P denotes summation over all cells

in the grid. Figure 6.28a presents the evolution of global water ratio during last
10 periods for clarity. It is important to stress that the signal exhibits harmonic
behaviour because the domain length is not directly proportional to incident
wave length. Since the y–axis spans only 0.03%, good conservative properties are
achieved. Nevertheless, in order to investigate the mean value of the water ratio
during successive periods, a moving window FFT is performed and the results
are presented in Figure 6.28b. Although the graph exhibits irregular behaviour
through 100 periods, the largest deviation in the mean value is approximately
5 · 10−4%, which is considered negligible for most engineering applications.

6.3.8. Long Domain Simulation

A long domain simulation is carried out in order to investigate the amount of
dissipation (loss of wave amplitude) and dispersion (phase shift) related to wave
propagation simulations. The same wave parameters and settings are used as in
the benchmark test case (see Table 6.4, while the domain now spans from x = 0

to x = 120 m (in the longitudinal direction). The middle part of the domain
where the full CFD solution is achieved contains approximately 5.5 wave lengths.
As in the benchmark case, 100 cells per wave length and 15 cells per wave height
are used in the full CFD region (see Figure 6.5 and Figure 6.5). Five wave
gauges are used to measure wave elevation at different longitudinal coordinates:
x = 2λw, 3λw, . . . 6λw. The first order amplitude and phase for different x/λw are
presented in Figure 6.29a and Figure 6.29b. The first order harmonic amplitude
varies approximately 0.1% for the five wave gauges, which is significantly below
cell resolution. It is interesting to note that the wave amplitude increases in
direction of wave propagation (with increasing x/λw), hence there is no wave
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Figure 6.28: Global water ratio during the long simulation.
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dissipation in the present simulation. The minor increase in amplitude might be
explained by wave reflection off the outlet boundary, causing slightly higher wave
amplitudes closer to the outlet. Figure 6.29b shows that the largest deviation
of the first order harmonic phase is approximately 0.07 rad, i.e. 4◦. It may
be concluded that the dispersion error is more pronounced than the dissipation
error, which might be expected when using second–order accurate schemes for
wave propagation [15].
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Figure 6.29: Long domain simulation results for different wave gauges.
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6.4. Higher Order Forces on a Vertical Cylinder

The third set of test cases considers regular wave diffraction of a 3–D vertical
surface piercing cylinder. Since the regular wave propagation has been vali-
dated and verified in Sec. 6.3., emphasis is given here on higher order in–line
forces. Although significantly smaller than the first order force, higher order
forces may be important in offshore applications because of the ringing phenom-
ena where the higher load frequency is close to the natural frequency of the
structure (see [118, 119]). As the higher order forces are generally two to five
orders of magnitude smaller in magnitude than the first order force, such test
cases are suitable for validation of the present CFD model. Higher order forces
have been thoroughly experimentally investigated by Huseby and Grue [120] for
a wide range of incoming wave steepnesses. The CFD simulations are carried out
for 8 wave steepnesses using the present model, where forces up to seventh order
are compared to both the experimental measurements by Huseby and Grue [120]
and fully nonlinear, time domain potential flow solution by Ferrant [121]. Fur-
thermore, in order to verify the present model and calculate the achieved orders
of accuracy and consequently numerical uncertainties, temporal resolution and
grid refinement studies are presented for one representative test case.

The same discretisation schemes and numerical settings are employed for all
test cases in this section as for the wave propagation test cases presented in the
previous section, Sec. 6.3. No turbulence modelling has been employed since the
turbulent effect are negligible.

6.4.1. Test Case Settings

The constant wave parameters for the considered test case are presented in Ta-
ble 6.9. A single cylinder is investigated with a radius of r = 3 cm. Incoming
wave frequency is f = 1.425 Hz, corresponding to the wave length of approxi-
mately λw = 0.77 m. The cylinder is mounted at the bottom of the wave tank
(both experimental and numerical) at 0.6 m depth below the still water line. For
a detailed discussion on the experimental setup, reader is referred to Huseby and
Grue [120].

Additional numerical settings using the present CFD model are presented in

124



6.4. Higher Order Forces on a Vertical Cylinder

the last 6 rows of Table 6.9. In order to successfully prevent wave reflection,
relaxation zone length is set to approximately 1.5λw, where λw is the incident
wave length. A fixed time step of 8.772 · 10−4 is used, corresponding to 800 time
steps per incident wave period. This yields approximately 115 time steps per
encounter period for seventh order effects, which shall be reported. The LS CFL
number is set to CFLψ = 1, while the stabilisation constant is set to 108. It is
important to note that the width parameter ε = 10−5 corresponds to sub–cell
resolution. This does not cause any numerical difficulties as only the zero level
set ψ = 0 is used to discretise the dynamic pressure and density jump conditions
at the free surface via GFM.

A total of 8 test cases with varying steepness are considered in this study by
changing the wave amplitude from a ≈ 0.72 to 2.8 cm, as presented in Table 6.10.
Corresponding wave steepnesses vary from ka ≈ 0.06 to 0.24. It is also important
to note that for the steepest test case (index 8 in Table 6.10), the wave amplitude
a ≈ 2.9 cm is almost equal to the cylinder radius r = 3 cm. All CFD simulations
are carried out for 15 wave periods in order to assess periodic convergence and

Table 6.9: Wave and simulation parameters for the cylinder test case.

Cylinder radius r, m 0.03

Wave frequency f, Hz 1.425

Wave radian frequency ω, rad/s 8.9535

Wave period T, s 0.70175

Wave length λw, m 0.76888

Wave number k, rad/m 8.17185

Depth dd m 0.6

Relaxation zone length λr, m 1.153

Time step ∆t, s 8.772 · 10−4

Number of time steps per period n 800

LS CFL number CFLψ 1

Stabilisation constant γ 108

Width parameter ε, m 10−5
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corresponding periodic uncertainties.

6.4.2. Grid Details

The bounding box of the block–structured, cylindrical grid is x ∈ [−2λw, 2λw],
y ∈ [0, 2λw] and z ∈ [−0.6, 5a], as presented in Figure 6.30 for the first case i = 1.
The origin of the coordinate system is located at the centre of cylinder at still
water line. The wave crest is at the origin at t = 0. Grids for all cases have
the same extend of two wave lengths in the radial direction and the same depth
of 0.6 m. The longitudinal symmetry plane is used to lower the CPU time as
the flow may be considered symmetric. The cells are heavily graded towards the
cylinder in the radial direction (x and y directions). In the vertical, z direction,
the cells are graded towards the free surface. In the area near the cylinder, there
are 120 cells per incoming wave length. Grids for all test cases consist of 552 000
orthogonal hexahedral cells, where the maximum aspect ratio for the first case is
approximately 150. It is important to note that the grid consists of three layers
of blocks in the vertical direction:

1. Lower block: z ∈ [0,−2a],

Table 6.10: Wave amplitudes and steepnesses for cylinder test cases.

Index Wave amplitude Steepness
i a, m ka

1 0.0072473 0.059224

2 0.0099250 0.081105

3 0.0126824 0.103640

4 0.0153360 0.125323

5 0.0180342 0.147374

6 0.0213882 0.174781

7 0.0246236 0.201220

8 0.0287647 0.235061
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2. Middle block: z ∈ [−2a, 2a],

3. Upper block: z ∈ [2a, 5a].

The vertical extent of each block is defined with respect to wave amplitude,
resulting in slightly different grid for each case. The number of cells per block
is kept the same for all cases, always resulting in 20 cells per wave height (or 10
cells per wave amplitude).

6.4.3. Simulation Results

Simulation results are presented in the frequency domain as magnitudes and
phases of the Fourier coefficients of the in–line force signal. The final result is
obtained by performing a moving window FFT on the time domain signal and
taking the average value of the last five periods. Following Ferrant [121] and
Huseby and Grue [120], in–line force harmonics are presented in a dimensionless
form:

F
′

i =
Fi

ρw|g|r3 (a/r)i
, (6.6)

Figure 6.30: Perspective view of the cylindrical grid.
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where Fi is the i–th harmonic of the force, ρ = 1000 kg/m3 is the water density
and g = [0, 0,−9.81] is the gravitational acceleration. As in experiments, the
phase of force components has been measured relative to the phase of the in-
coming waves. It is important to note that both potential flow results [118] and
experimental results [120] report only pressure part of the force:

• As Ferrant [121] used potential flow model, they do not have the ability to
model viscous effects,

• While Huseby and Grue [120] have estimated the drag force due to the
laminar boundary layer to be 0.1πρw|g|ar2, which has been excluded from
the final results.

Although the present CFD model has the ability to accurately model viscous
effects, only the pressure part of the force shall be presented when comparing the
results with experimental and potential flow results, where a brief discussion on
viscosity and vorticity effects shall be given afterwards.

Computational results for the first and higher orders of the in–line pressure
force are presented in Figures 6.31–6.34 for the range of wave steepness from ka ≈
0.06 to 0.24. CFD results include error bars denoting the periodic uncertainty
obtained using the procedure explained in Sec. 5.2.3.. Experimental results by
Huseby and Grue [120] are denoted with dashed lines and squares, while the fully
nonlinear, time–domain potential flow solutions by Ferrant [121] are denoted with
dotted lines and plus signs.

The first order harmonic amplitudes presented in Figure 6.31a compare well
with both the experimental results and potential flow results, especially up to
ka = 0.15. For steeper waves, the CFD results under–predict the experimentally
measured first order force, where the maximum relative error is approximately
5% for the wave with highest steepness ka ≈ 0.24. Narrow error bars denote very
low periodic uncertainties that are always below 0.2%.

The first order harmonic phases are presented in Figure 6.31b. CFD, ex-
perimental and potential flow first order phases vary slightly with increasing
steepness. Furthermore, comparing with experimental data, both CFD results
and potential flow results exhibit a phase shift. As for the harmonic amplitudes,
narrow error bars denote very low periodic uncertainties.
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The second order harmonic amplitudes are presented in Figure 6.31c, where a
good comparison with both the experimental data and potential flow results can
be observed. The trend of decreasing dimensionless second order force with in-
creasing wave steepness is captured in CFD, even for very steep waves. Generally,
computational results (both CFD and potential flow) over–predict experimentally
measured values. Looking at the error bars, a slight increase in periodic uncer-
tainties with increasing wave steepness may be observed. However, the periodic
uncertainty even for the highest wave steepness is approximately 4%.

The second order harmonic phases are presented in Figure 6.31d, indicating
very good agreement with potential flow results. Both CFD and potential flow
phases are slightly off–set compared to experimentally measured phases, while
error bars denote low periodic uncertainty, except for the case with ka ≈ 0.2.

The third order harmonic amplitudes are presented in Figure 6.32a. CFD
results agree very well with both the experimental and potential flow results over
the whole range of wave steepnesses. Furthermore, narrow error bars indicate low
uncertainty, again slightly increasing with increasing incoming wave steepness.

The third order harmonic phases are presented in Figure 6.32b, indicating
similar behaviour as second order phases where CFD results are off–set by a
constant amount compared to experimental data. The trend of phases with in-
creasing steepness is accurately captured and most of the phases have low periodic
uncertainty.

The fourth order harmonic amplitudes are presented in Figure 6.32c, where a
good agreement of current CFD results with both experimental and potential flow
results is shown. Periodic uncertainties are lower than 4%, which is approximately
the maximum uncertainty obtained for the steepest incoming wave.

The fourth order harmonic phases are presented in Figure 6.32d, where a
better agreement has been obtained compared to potential flow results than ex-
perimental measurements. It is interesting to note that the fourth order phases
change only slightly with increasing wave steepness. Apart from the smallest
wave steepness ka ≈ 0.06 which has the smallest fourth order response, periodic
uncertainty may be considered low as indicated by narrow error bars.

The fifth order harmonic amplitudes are presented in Figure 6.33a, where a
good agreement has been obtained both with potential flow and measured results.

129



6. Test Cases

0 0.05 0.1 0.15 0.2 0.25

ka

5.8

6

6.2

6.4

6.6

6.8

|F
1
’|

CFD

EXP

Ferrant et al.

(a) First order harmonic amplitudes.

0 0.05 0.1 0.15 0.2 0.25

ka

0.8

1

1.2

1.4

1.6

1.8

γ
F

1

, 
ra

d

CFD

EXP

Ferrant et al.

(b) First order harmonic phases.
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(c) Second order harmonic amplitudes.
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(d) Second order harmonic phases.

Figure 6.31: In–line harmonic forces on the circular cylinder, first and second order response.

130



6.4. Higher Order Forces on a Vertical Cylinder

0 0.05 0.1 0.15 0.2 0.25

ka

0

0.1

0.2

0.3

0.4
|F

3
’|

CFD

EXP

Ferrant et al.

(a) Third order harmonic amplitudes.

0 0.05 0.1 0.15 0.2 0.25

ka

-5

-4

-3

-2

-1

γ
F

3

, 
ra

d

CFD

EXP

Ferrant et al.

(b) Third order harmonic phases.
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(c) Fourth order harmonic amplitudes.
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(d) Fourth order harmonic phases.

Figure 6.32: In–line harmonic forces on the circular cylinder, third and fourth order response.
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It is important to note that the wave with the mildest steepness ka ≈ 0.6 has been
excluded from the figure since the fifth order response is close to the noise level
in this case. The trend of the decreasing dimensionless fifth order in–line forces
with increasing steepness is accurately captured and the periodic uncertainties
are generally very low.

The fifth order harmonic phases are presented in Figure 6.33b. As with lower
order phases, the CFD results compare well with the potential flow data, while
deviating significantly from experimental data. Error bars are narrow, except for
the very steep ka ≈ 0.2 case.

The sixth order harmonic amplitudes are presented in Figure 6.33c, where
the CFD results compare very well with the experimental measurements. Note
that the two mildest waves have been excluded from the figure because their
response is close to the noise level. Again, the error bars indicate insignificantly
low periodic uncertainties.

The sixth order harmonic phases are presented in Figure 6.33d, where better
agreement is obtained with potential flow results. Although offset compared to
experimental measurements, sixth order harmonic phases have the same trend
with increasing wave steepness compared to experimental data.

The seventh order harmonic amplitudes are presented in Figure 6.34a. It is
important to stress that the seventh order response is 3 to 5 orders of magnitude
smaller compare to first order response, depending on the wave steepness. Nev-
ertheless, a very good comparison is obtained compared to both potential flow
results in low wave steepness range, and experimental results in high wave steep-
ness range. Considering very small response, the maximum periodic uncertainty
of approximately 5% may be considered low.

The seventh order harmonic phases are presented in Figure 6.34b, where the
CFD results are off–set compared to potential flow and experimental data. Al-
though the periodic uncertainties for seventh order amplitudes are small, the cor-
responding uncertainties for phases are very high, indicating insufficient temporal
resolution (note that 800 time steps per wave period have been used, yielding ap-
proximately 115 time steps per seventh order response).

Periodic convergence of seven force harmonics for the ka ≈ 0.2 case (i =

7, Table 6.10) is presented in Figure 6.35, where the first order harmonic force
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(a) Fifth order harmonic amplitudes.
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(b) Fifth order harmonic phases.

0.05 0.1 0.15 0.2 0.25

ka

0

0.1

0.2

0.3

|F
6
’|

CFD

EXP

Ferrant et al.

(c) Sixth order harmonic amplitudes.
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(d) Sixth order harmonic phases.

Figure 6.33: In–line harmonic forces on the circular cylinder, fifth and sixth order response.
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amplitude has been divided by 10 for visualisation purposes. The amplitude of the
first order harmonic force oscillates with a very narrow band through successive
periods, where the value obtained within first period may be considered a good
representation of the final result. All higher order force amplitudes have very
large values during the first period because the CFD solution at t = 0 corresponds
to incident flow solution. However, in successive periods all higher order forces
rapidly decrease to a representative solution and exhibit oscillatory behaviour.
Furthermore, it is interesting to note that the band of oscillations for second and
third order harmonic amplitudes is larger compared to higher orders.

6.4.4. Temporal Resolution Study

The temporal resolution study is performed by simulating 25, 50, 100, 200, 400
and 800 time steps per wave period for the ka ≈ 0.13 case (i = 4, Table 6.10),
yielding a constant refinement ratio r = 2. It is important to note that using only
25 time steps per incident wave period yields less than 4 time steps per seventh
order response.

Figure 6.36 presents time histories of the in–line force using increasing number
of time steps per incident wave period. The time traces with n ≥ 100 overlap
each other, indicating that good results may be obtained even with only 100 time
steps per wave period. Decreasing the number of time steps per encounter period
below 100, yields significant dispersion (phase shift) error, while the dissipation
(loss of amplitude) error is less pronounced.

The attention is now turned to frequency domain representation of the sig-
nals, presented in Figure 6.37. Figure 6.37a presents convergence of harmonic
amplitudes with increasing number of time steps per period (from left to right).
As expected, the first order harmonic amplitude is less sensitive to extremely
coarse temporal resolution with n = 25 time steps per encounter period than
higher order harmonic amplitudes. However, it is interesting to note that all
higher order harmonic amplitudes are very well captured even with n = 200 time
steps per period. Figure 6.37b presents convergence of harmonic phases, where
similar trends can be observed. Extremely low temporal resolution of n ≤ 50

time steps per period often exhibits significant dispersion errors. However, all
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(b) Seventh order harmonic phases.

Figure 6.34: In–line harmonic forces on the circular cylinder, seventh order response.
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case: moving window FFT plot.
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harmonic phases except for the sixth order are insensitive when the number of
time steps per encounter period exceeds 100. It is also interesting to note that a
good result for the seventh order harmonic phase can be obtained with only 100
time steps per period, yielding approximately 14 time steps per seventh order
response. This indicates that the overall solution is quite insensitive to temporal
resolution and thus the required CPU resources can be significantly lowered.

Table 6.11 presents the convergence type, achieved order of convergence (where
applicable) and corresponding temporal resolution uncertainties for harmonic am-
plitudes of the forces. Note that abbreviations MC, OC, MD and OD stand
for Monotone Convergence, Oscillatory Convergence, Monotone Divergence and
Oscillatory Divergence, respectively. The results presented in Table 6.11 are ob-
tained with n = 100, 200 and 400 time steps per period. All harmonic amplitudes
converge with increasing n, where 5 out of 7 exhibit monotone convergence, while
2 out of 7 exhibit oscillatory convergence. Since it is difficult to ensure that all or-
ders are within the asymptotic range of convergence, the attention shall be turned
to corresponding uncertainties. Generally, uncertainty increases with increasing
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Figure 6.36: Force time signals with respect to number of time steps per period.
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Figure 6.37: Convergence of higher order forces with increasing number of time steps per period.
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order, as expected since the higher order effects are less temporally resolved.
However, temporal resolution uncertainties are lesser than 1% for first and sec-
ond order, while they are lesser than 5% for third and fourth order. Effects higher
than fifth order have unrealistically high uncertainties due to normalisation of the
uncertainty with very small measured values.

Table 6.11: Temporal resolution convergence and uncertainties for force harmonic amplitudes
(obtained with n = 100, 200 and 400 time steps per period).

Order Convergence Order of convergence Uncertainty
i type p U,%

1 MC 0.96 0.85

2 MC 3.25 0.39

3 MC 1.70 3.58

4 OC N/A 4.27

5 MC 1.00 16.04

6 OC N/A 141.03

7 MC 1.54 11.92

Table 6.12: Temporal resolution convergence and uncertainties for force harmonic phases (ob-
tained with n = 100, 200 and 400 time steps per period).

Order Convergence Order of convergence Uncertainty
i type p U,%

1 MC 0.51 5.78

2 MC 3.71 0.15

3 OC N/A 1.87

4 MC 1.78 0.85

5 OD N/A 23.81

6 OC N/A 104.98

7 MC 0.34 114.19
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6.4. Higher Order Forces on a Vertical Cylinder

Table 6.12 presents the same results for harmonic phases of the forces. All har-
monic phases except fifth order exhibit convergence with increasing n: 3 exhibit
monotone convergence and the other 3 oscillatory convergence. Uncertainties are
generally lesser than 5%, except for higher order effects with non–representative
high values. Reader is referred back to Figure 6.37b in order to realistically vi-
sualise the maximum deviations of the phases when using n = 100, 200 and 400

time steps per period.

6.4.5. Grid Refinement Study

The grid refinement study is performed on three grids, where the constant refine-
ment (coarsening) ratio r = 1.5 has been applied in all three directions. Hence,
the original grid with 552 000 cells is considered fine and two additional grids
with 166 428 and 48 600 cells are considered medium and coarse, respectively.
With respect to results obtained in the temporal resolution study, n = 400 time
steps per period is used for grid refinement studies. Compared to the fine grid
where the wave height is resolved with 20 cells, medium and coarse grids have
approximately 13 and 9 cells per wave height, respectively.

Figure 6.38 presents time histories of the in–line force using the three grids,
where the convergence with grid refinement of both amplitudes and phases of the
in-line force can be observed. It is also interesting to note that once again, the
dispersion (phase shift) error is more pronounced compared to dissipation (loss of
wave amplitude) error when simulating wave phenomena on coarser grids. This
is in accordance with results presented both in temporal resolution study and in
wave propagation studies presented in Sec. 6.3.

As it is easier to discuss the results in the frequency domain, the convergence
of harmonic amplitudes and phases of the dimensionless in–line forces with grid
refinement is presented in Figure 6.39. Figure 6.39a presents the convergence of
harmonic amplitudes with increasing grid resolution (from left to right). The first
order amplitude is again insensitive to coarse grid resolution, while higher order
effects exhibit irregular behaviour. However, it is important to note that the
difference between medium and fine grid solutions is often small, i.e. the coarse
grid results deviate the most for higher order amplitudes. Figure 6.39b presents
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Figure 6.38: Force time signals with respect to grid resolution.

convergence of harmonic phases, where the first order harmonic phase is not
significantly affected by the very coarse grid resolution. Apart from second and
third order effects, higher order effects exhibit small differences between medium
and fine grid solutions.

Table 6.13 presents the convergence type, achieved order of convergence (where
applicable) and corresponding grid refinement uncertainties for harmonic ampli-
tudes of the forces. All harmonic amplitudes converge with grid refinement except
for the fourth order. The first, dominant order has the achieved order of accuracy
of p ≈ 1.7. The grid refinement uncertainty for the first order is lesser than 2%,
while higher orders either have unrealistically low or high grid uncertainties since
the solutions are not within asymptotic range. A better visualisation of the sen-
sitivity of the results when performing simulations on medium and fine grids can
be seen in Figure 6.39a. Figure 6.39b presents the convergence and uncertainties
of harmonic phases, where the achieved order of accuracy is p ≈ 2.2 for the first
order harmonic phase. Three higher order phases exhibit oscillatory convergence
with grid refinement with, while other three exhibit divergence, generally yielding
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Figure 6.39: Convergence of higher order forces with grid refinement.
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Table 6.13: Grid refinement convergence and uncertainties for force harmonic amplitudes.

Order Convergence Order of convergence Uncertainty
i type p U,%

1 MC 1.68 1.62

2 MC 0.29 147.27

3 MC 4.19 0.80

4 MD N/A 56.60

5 MC 4.31 7.13

6 MC 2.30 144.06

7 OC N/A 202.55

Table 6.14: Grid refinement convergence and uncertainties for force harmonic phases.

Order Convergence Order of convergence Uncertainty
i type p U,%

1 MC 2.17 4.13

2 OD N/A 55.15

3 OC N/A 115.42

4 OD N/A 41.86

5 OC N/A 29.30

6 MD N/A 118.43

7 OC N/A 41.07

high grid uncertainty. However, such high uncertainties are unrealistic for most
items because the coarse grid solution is too far away from the converged solution
(e.g. see Figure 6.39b where small differences between medium and fine solutions
can be seen for second, third, fourth, fifth and seventh order).
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6.4.6. Notes on Viscosity and Vorticity Effects

As the present CFD model has the capability of modelling vorticity and vis-
cosity effects, some notes on vorticity effects and viscous forces are given here.
Huseby and Grue [120] estimated the viscous drag force on the cylinder to be ap-
proximately 0.1πρw|g|ar2. Figure 6.40 presents the comparison of dimensionless
viscous drag force obtained with CFD and analytical expression. The analyt-
ically calculated dimensionless drag force decreases with increasing a/r ratio,
while the dimensionless drag force obtained with CFD remains almost constant.
Furthermore, the analytically calculated drag force always over–predicts the cor-
responding CFD result. Figure 6.41 shows an example of viscous in–line force
spectrum for the ka ≈ 0.13 case, where the first order effects have largest ampli-
tudes. The nonlinear effects up to seventh order can also be observed. Viscous
force spectra for other cases are not presented here since they have similar values,
i.e. viscous forces do not seem to be affected by the wave steepness as is the case
with pressure forces. It is however important to stress that the viscous forces are
significantly lower than pressure forces, i.e. the first order viscous force makes
approximately 0.65% of the total first order force (pressure and viscous), where
even lower values are obtained for higher order forces.

Vorticity effects are assessed by examining enstrophy:

εn = 0.5|∇× u|2 , (6.7)

where u is the total velocity field (sum of incident and perturbation components).
Enstrophy is a quantity that is directly related to the rate of change of kinetic
energy in the viscous fluid. This dissipation is not present in potential flow models
where irrotational flow is assumed (∇× u = 0), while it is difficult to quantify
vorticity in the experiments with free surface flows.

For ka ≈ 0.13 case, five probes are positioned in the close proximity of the
cylinder:

• Radial direction. 0.0001 m in the radial direction of the cylinder,

• Vertical direction.0.023 m below the still water line, making the probes
fully submerged at all times during the simulation. As a reference, wave
amplitude for this case is a ≈ 0.153.
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Figure 6.40: Comparison of dimensionless viscous drag forces.
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Figure 6.41: The viscous force spectrum for ka ≈ 0.13 case.
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6.4. Higher Order Forces on a Vertical Cylinder

• Circumferential direction. Five probes are positioned at Θ = 0, 45, 90, 135

and 180◦ in the circumferential direction, respectively.

Figure 6.42a presents temporal variation of enstrophy at five probes, where
it can be seen that the highest amplitude of enstrophy is present at the side of
the cylinder (θ = 90◦), which may be related to the orthogonality of incident and
diffracted wave fields. The enstrophy decreases, decreasing towards front and
back of the cylinder, where the axis of propagation of the diffracted field is the
same as the axis of propagation of the incident field. Figure 6.42b presents the
spectrum of enstrophy obtained with FFT. The enstrophy at each probe exhibits
significant nonlinear behaviour, where the mean value and second order effects
at f = 2.85 Hz are dominant. It is interesting to note that these effects are
approximately 3 to 4 times larger than the first order effects.

6.4.7. Flow Field Visualization

Some details regarding flow visualization are presented in this section for a steep
ka ≈ 0.2 test case.

Figure 6.43 presents the incident flow field, uI in water as obtained from the
stream function wave theory, whereas Figure 6.44 presents the perturbation field
uP . The perturbation velocity magnitude is generally smaller than incident ve-
locity magnitude, except in the close proximity of the cylinder. The perturbation
velocity field rapidly decays farther from the cylinder. Since the incident wave
field is extrapolated in the air, the perturbation component is significant in re-
gions where the instantaneous free surface does not correspond to incident free
surface due to wave diffraction. This indicates that a better model for evalu-
ating incident wave field in air might be beneficial. As a reference, Figure 6.45
presents the time evolution of total velocity field obtained by summing incident
and perturbation components, u = uI + uP .

Figure 6.46 presents the incident flow field, uI in air as obtained from the
stream function wave theory, where the solution is simply extended in air with a
limit of velocity magnitude |uI,max| = 0.23. This is done in order to pragmatically
prevent nonphysical exponential growth with increasing vertical coordinate. It
was interesting to observe that the perturbation velocity fields tries to counteract
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Figure 6.42: Enstrophy in the vicinity of the cylinder, ka ≈ 0.13 case.
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(a) t = T/5. (b) t = 2T/5.

(c) t = 3T/5. (d) t = 4T/5.

(e) t = T .

Figure 6.43: Incident velocity field (uI) near the cylinder in water during the last (15th period),
ka ≈ 0.2 case.
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(a) t = T/5. (b) t = 2T/5.

(c) t = 3T/5. (d) t = 4T/5.

(e) t = T .

Figure 6.44: Perturbation velocity field (uP ) near the cylinder in water during the last (15th

period), ka ≈ 0.2 case.

148



6.4. Higher Order Forces on a Vertical Cylinder

(a) t = T/5. (b) t = 2T/5.

(c) t = 3T/5. (d) t = 4T/5.

(e) t = T .

Figure 6.45: Total velocity field (u = uI +uP ) near the cylinder in water during the last (15th

period), ka ≈ 0.2 case.
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the incident velocity field in air, as indicated in Figure 6.47. The resulting total
velocity field in air, presented in Figure 6.48 has smaller velocity magnitudes than
the perturbation component.

Figure 6.49 presents the dynamic pressure field, pd for the ka ≈ 0.2 test case.
No interpolation has been used for visualization of results: cell–centred values
of dynamic pressure are shown on purpose in order to stress the sharp jump in
dynamic pressure. In the present CFD model based on the GFM for discretisation
of jump conditions at the free surface, the jump is resolved across a single face
using second–order accurate discretisation. It is important to stress that the total
pressure field is continuous across the free surface, as indicated in Figure 6.50,
where the free surface is denoted with a white line. This is in agreement with
the mathematical model presented in Ch. 7.
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(a) t = T/5. (b) t = 2T/5.

(c) t = 3T/5. (d) t = 4T/5.

(e) t = T .

Figure 6.46: Incident velocity field (uI) near the cylinder in air during the last (15th period),
ka ≈ 0.2 case.
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(a) t = T/5. (b) t = 2T/5.

(c) t = 3T/5. (d) t = 4T/5.

(e) t = T .

Figure 6.47: Perturbation velocity field (uP ) near the cylinder in air during the last (15th

period), ka ≈ 0.2 case.
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6.4. Higher Order Forces on a Vertical Cylinder

(a) t = T/5. (b) t = 2T/5.

(c) t = 3T/5. (d) t = 4T/5.

(e) t = T .

Figure 6.48: Total velocity field (u = uI + uP ) near the cylinder in air during the last (15th

period), ka ≈ 0.2 case.
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(a) t = T/5. (b) t = 2T/5.

(c) t = 3T/5. (d) t = 4T/5.

(e) t = T .

Figure 6.49: Dynamic pressure field near the cylinder during the last (15th period), ka ≈ 0.2

case.
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6.4. Higher Order Forces on a Vertical Cylinder

(a) t = T/5. (b) t = 2T/5.

(c) t = 3T/5. (d) t = 4T/5.

(e) t = T .

Figure 6.50: Total pressure field near the cylinder during the last (15th period), ka ≈ 0.2 case.
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6.5. Seakeeping KCS Model Simulations at De-

sign Speed

The final set of test cases considers seakeeping of a realistic hull form. Recently,
numerous seakeeping studies have been conducted with various CFD methods.
Orihara and Miyata [122] performed validation and verification for the SR–108
container ship, while Carrica et al. [123] performed simulations of the KCS model
in head waves. The CFD seakeeping studies also included less conventional hull
forms: a fast catamaran [124] and a trimaran [125]. Tezdogan et al. [126] per-
formed a detailed study regarding KCS hull form in slow steaming regime in
head waves, indicating that CFD simulations may be used to investigate realistic
scenarios used to reduce the fuel consumption. The CFD studies regarding sea-
keeping rarely include sensitivity studies related to temporal discretisation and
hydro–mechanical (fluid–flow/6–DOF) coupling, while the grid refinement stud-
ies are often carried out for a single case. Since almost all of CFD algorithms
solve the governing equations in time domain, periodic convergence tests should
be reported in order to determine number of encounter periods that need to be
simulated to achieve periodically steady state solution. This has not yet been
investigated in detail. This section attempts to address these sensitivities and
uncertainties related to numerical settings, while validating and verifying the
present methodology for most common seakeeping problems.

In general, the seakeeping of a ship or offshore structure may be viewed as
marine hydrodynamics problem which depends on two sets of parameters:

1. Geometrical parameters (i.e. size, shape and quality of the computational
grid, strongly related to particulars of the ship) and

2. Physical parameters (i.e. frequencies and amplitudes of the wave system
(incident, diffracted and radiated waves), and ship speed).

In CFD simulations, the geometrical parameters are closely related to physical
parameters to ensure proper wave propagation on a FV grid, as demonstrated
in Sec. 6.3.3. (wave reflection study by varying relaxation zone length). Although
the wave systems depend on many different physical quantities, the following ones
may be viewed as the most influential:
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6.5. Seakeeping KCS Model Simulations at Design Speed

• Incident wave height H,

• Fundamental wave frequency ω and the corresponding wave length, λw,

• Froude number Fr = U/
√
|g|LPP , where U is the forward speed of the ship,

• Encounter frequency ωe = ω(1− Uω
|g| cosχ), where χ is the encounter angle,

• Brard number τ = Uωe/|g|,

• Reynolds number Re = ULPP/ν.

For fixed or specified g, ν and LPP , the six items depend on only four parameters:
wave height H, wave frequency ω, forward speed of the ship U and encounter
angle χ. The possibility of simulating different wave heights, wave frequencies
(consequently wave lengths) and encounter angles using the same computational
domain is investigated in this study. The design ship speed is considered, while
the Brard number always remains high enough so the diffracted and radiated wave
fields remain behind the ship. Within linear potential flow models, wave systems
are usually taken into account analytically (using a Green function), which rep-
resents the main difficulty since the Green function becomes extremely complex
for general applications. Within the general CFD model based on Navier–Stokes
equations, the wave systems are represented purely numerically, obstructing effi-
cient wave propagation often causing dissipation (loss of amplitude) and disper-
sion (phase shift) errors (as seen in Sec. 6.3.). Hence, a simplification shall be
made for seakeeping test cases as the same set of grids is going to be used for all
wave parameters, thus neglecting the relation between geometrical and physical
parameters. However, from a practical point of view, it is convenient to assess
the accuracy of the method using the same set of grids since the grid generation
process often takes a significant amount of time.

The KCS model particulars and computational grids shall be first presented
for the two models used for head and oblique wave test cases. Five head wave
cases are then considered, including uncertainty assessment for:

1. Periodicity (convergence of Fourier harmonics through successive encounter
periods),
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2. Time step resolution (uniformly coarsening the time step from 800 to 25
time steps per encounter period) for a single representative test case,

3. Hydro–mechanical (fluid–flow/6–DOF) coupling (varying number of hydro–
mechanical corrector steps from 2 to 8) for a single representative test case,

4. Grid uncertainty assessment using 3 grids for each test case.

A parallel scaling test is carried out for a single representative test case. Addition-
ally, a performance test is carried out with the coarsest grid and the lowest stable
temporal resolution (25 time steps per encounter period), where the results and
CPU times are discussed. Finally, five oblique wave cases are simulated, including
grid and periodic uncertainty assessments. The part of the results presented here
have been published in [11, 13], while the full results with all sensitivity studies
are published in [127].

6.5.1. KCS Model Particulars

The KCS model is a generic container ship designed by KRISO (former MOERI)
that is extensively used for validation and verification purposes in CFD. The
surface grids for KCS hull, rudder and propeller, along with the corresponding
geometrical parameters are available in [128]. The relevant geometrical parame-
ters are summarised in Table 6.15 for two models used in head and oblique wave
cases. The experimental measurements are performed for hull with fixed rud-
der, hence the wetted surface is reported for both hull and rudder. The Vertical
Centre of Gravity (VCG) is located at 0.378 m from keel for Model A and at
0.168 m for Model B. The Longitudinal Centre of Bouyancy (LCB) is located at
0.0148LPP (1.48%LPP ) behind the midship section for both models.

6.5.2. KCS Grid and Post Processing Details

The right–handed 3–D coordinate system as defined in [128] is presented in Fig-
ure 6.51. The origin of the coordinate system is at the still water line at F.P.
in the symmetry plane of the ship. x–axis is positive towards stern, y–axis is
positive towards starboard and consequently, z–axis is positive upwards.
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Table 6.15: Main particulars of the KCS models.

Main particulars Model A (head waves) Model B (oblique waves)

Length b.p. LPP , m 6.0702 2.7000

Draft T , m 0.2850 0.1268

Beam B, m 0.8498 0.3780

Displacement ∇, m3 0.9571 0.0840

Wetted surface Sw, m2 6.6978 1.3260

Radii of inertia
Kxx/B N/A 0.390
Kyy/LPP 0.252 0.250
Kzz/LPP 0.250 0.250

In order to assess grid uncertainty, three grids are used for all simulations
with following dimensionless extents:

• xmin/LPP = −1,

• xmax/LPP = 3.5,

• ymin/LPP = 0 (head waves) and −1.57 (oblique waves),

• ymax/LPP = 1.57,

Figure 6.51: Coordinate system definition for the KCS test cases [128].
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• zmin/LPP = −1.63,

• zmax/LPP = 1.13.

Symmetry plane is used for head wave cases in case set 2.10. [128], while for the
oblique wave cases in case set 2.11., the original grids are mirrored around the
symmetry plane in order to successfully simulate oblique waves. Details regard-
ing three grids for the head wave cases with the symmetry plane are outlined
in Table 6.16, while the cell count is increased by a factor of two for oblique
waves, without changes in y+ and ∆z.

The coarse grid details are presented in Figure 6.52. Figure 6.52a presents a
longitudinal cut corresponding to the symmetry plane of the ship, where it can
be seen that the grid is refined towards the free surface in vertical direction. Fig-
ure 6.52b presents the surface grid on the hull and rudder, where additional
refinement zones in bow and stern regions are visible. Transversal cut corre-
sponding to the midship section is presented in Figure 6.52c and the vertical
cut corresponding to the still water line is presented in Figure 6.52d, showing
the Kelvin angle refinement. Both coarse, medium and fine grids consist of ap-
proximately 90% hexahedral cells with 10% prismatic, tetrahedral and general
polyhedral cells. The maximum non–orthogonality of a face for the three grids
is approximately 75 to 85 degrees, with the average non–orthogonality being ap-
proximately 8 degrees.

As requested by the Tokyo 2015 Workshop organisers [128], the time–domain
signals are represented in Fourier series, where the moving window FFT approach
is utilised here in addition in order to assess periodic convergence. The final CFD

Table 6.16: Grid details for the head wave cases (with symmetry plane).

Grid Coarse Medium Fine
Index 1 2 3

Number of cells 607 114 954 016 1 585 526

Approximate average y+ 37.6 28.5 23.2

∆z/LPP at midship 0.00173 0.00136 0.00108
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6.5. Seakeeping KCS Model Simulations at Design Speed

(a) Longitudinal cut (symmetry plane), (b) Surface grid on the hull,

(c) Transversal cut (midship section), (d) Vertical cut (still water line),

Figure 6.52: Coarse KCS grid details.

result is reported for mean value and first order harmonic as the average value
during last 5 encounter periods. It is important to note that the zeroth order
harmonic (i.e. mean value) for all measured items is reported as twice the mean
value, following the guidelines in [128].

6.5.3. Notes on Fluid Flow and Six Degrees–of–Freedom

Coupling and Turbulence Modelling

The general procedure for the resolution of hydro–mechanical (fluid–flow/6–DOF)
coupling is presented in Sec. 4.5.2.. This procedure is used for the oblique wave
simulations, while the head wave simulations are performed with a more strongly
resolved strategy, briefly outlined here. In addition to the multiple 6–DOF solu-
tions in each outer corrector, SIMPLE loop (see Figure 4.4), the 6–DOF equations
are updated after each pressure correction step. The new 6–DOF solution is then
used to update the velocity field at the moving boundary (i.e. ship hull) for the
next pressure correction step. This procedure presents a negligible computational
overhead while further resolving the strong coupling between the dynamic pres-
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sure field and 6–DOF motion equations multiple times within a single time step.
This procedure shall be presented in detail in future publications. The oblique
wave cases have not been re–performed with this strategy due to limited amount
of time for the preparation of this thesis.

k − ω SST two–equation turbulence model has been used for all test cases,
where the turbulence intensity is set to 3%.

6.5.4. KCS Hull in Head Waves (Model A)

The validation and verification of the present decomposition model is first per-
formed for regular head waves at design speed of the KCS model. Experimental
results for 5 head wave cases: C1, C2, C3, C4 and C5 are publicly available
in [128, 4, 23], where C1 represents the shortest wave length and the smallest
wave height, see Table 6.17. The experimental measurements included total re-
sistance coefficient, heave motion and pitch motions. Other degrees of freedom
are constrained both in the experiment and in present simulations. The exper-
imental uncertainty has not been reported, although it has been mentioned at
the Workshop that the uncertainty for the total resistance may be estimated to
approximately 10%.

The sensitivity studies are organised as follows:

1. The time step resolution and the hydro–mechanical coupling study is per-
formed for the C5 test case, which has the largest wave height and wave
length, and consequently the finest relative grid resolution (the highest num-
ber of cells per wave height and wave length). The studies are performed

Table 6.17: Head wave KCS test case parameters [128].

Case C1 C2 C3 C4 C5

LPP , m 6.0702

Fr 0.261

λw, m 3.949 5.164 6.979 8.321 11.840

H, m 0.062 0.078 0.123 0.149 0.196
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for the coarsest grid (approximately 600 000 cells), while the periodic con-
vergence graphs are presented and discussed for both studies.

2. The grid refinement study is carried out for all test cases, comparing the
results with the available experimental data and assessing the grid uncer-
tainty.

3. The parallel scaling test is carried out for the C5 case on coarse grid, re-
porting the parallel speed–up and efficiency.

4. A single performance test is carried out by simulating only four hydro–
mechanical (fluid–flow/6–DOF, outer) corrector steps with only 25 time
steps per encounter period in order to assess the trade–off between accuracy
and performance.

Temporal Resolution Study

The temporal resolution study is performed by simulating 25, 50, 100, 200, 400
and 800 time steps per encounter period for the C5 case on the coarse grid (ap-
proximately 600 000 cells), yielding a constant refinement ratio r = 2. Simulations
below 25 time steps per encounter period were not possible due to numerical di-
vergence of 6–DOF motion equations. 6 outer (hydro–mechanical) correctors are
used per time step, while the pressure–velocity coupling is resolved within an
embedded PISO loop with 4 pressure correction steps. This yields 6•4 = 24 pres-
sure updates per time step and consequently 24 updates of the 6–DOF motion
equations, where the grid motion fluxes and grid position are updated 6 times
(in each outer corrector step).

Figures 6.53–6.55 present convergence of heave, pitch and total resistance co-
efficient, respectively, with increasing number of time steps per encounter period,
where it can be seen that all items converge with lower time step size as expected.
It is important to note that first order harmonic amplitudes do not exhibit sig-
nificant errors with substantial decrease of number of time steps per encounter
period, whereas the first order harmonic phases are most affected by low tempo-
ral resolution. This is in accordance with wave propagation temporal resolution
study presented in Sec. 6.3.4., where the dissipation errors are found to be signif-
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(a) Dimensionless heave amplitudes,
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(b) Dimensionless heave phase,

Figure 6.53: Convergence of heave with increasing number of time steps per encounter period,
C5 case, coarse grid (600 000 cells).
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(a) Dimensionless pitch amplitudes,
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(b) Dimensionless pitch phase,

Figure 6.54: Convergence of pitch with increasing number of time steps per encounter period,
C5 case, coarse grid (600 000 cells).

165



6. Test Cases

100 200 300 400 500 600 700 800
Time steps per encounter period, n

10

15

20

25

30
T

o
ta

l 
re

si
st

an
ce

 c
o

ef
fi

ci
en

t,
 C

T
  ·

 1
0

3

Mean, CFD

Mean, EXP

First order, CFD

First order, EXP

(a) Dimensionless resistance amplitudes,
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Figure 6.55: Convergence of resistance with increasing number of time steps per encounter
period, C5 case, coarse grid (600 000 cells).
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icantly smaller than dispersion errors. The temporal resolution of 25 time steps
per encounter period yields a time step ∆t ≈ 7.5 · 10−2 s, whereas the temporal
resolution of 800 time steps per encounter period corresponds to ∆t ≈ 2.3 · 10−3

s. As a reference, the encounter period for the C5 case is approximately T ≈ 1.87

s. Hence, a difference between 800 and 25 time steps per encounter period gives a
32× speed–up with sacrifice in accuracy for first order harmonic phase shifts and
mean values, while the first order harmonic amplitudes may be estimated reason-
ably well. This reasoning may be appealing for industrial applications since the
trade–off between accuracy and computational cost is often considered.

The corresponding temporal resolution uncertainties are calculated using three
solutions with the greatest number of time steps per encounter period: n =

200, 400 and 800. The uncertainties are reported in Table 6.18 in percentages,
where items coloured with black, blue and red denote oscillatory convergence,
monotone convergence and divergence (both monotone and oscillatory), respec-
tively. All uncertainties are generally lesser than 4%, except for a few outliers
which require further comments:

• The mean value of pitch has high uncertainty of 43% due to normalisation
of uncertainty with the very small reference solution (n = 800). This can
be seen in Figure 6.54a where the black line indicates that the mean value
of pitch converges towards very small experimental value.

• The first order harmonic phase of the total resistance coefficient achieves
monotone convergence with low order of accuracy of p ≈ 0.4, thus resulting
in high uncertainty. Here, the solutions with three time step values are not
within asymptotic range (see Eqn. (6.3)), hence Eqn. (5.5) cannot be used
for uncertainty estimate, and the global convergence for this item is better
observed in Figure 6.55b.

Out of nine measured items, five items exhibit oscillatory convergence (black
colour), two items exhibit monotone convergence (blue colour), while the re-
maining two items exhibit divergence (red colour) with time step refinement, as
indicated in Table 6.18
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Figure 6.56: Convergence of the zeroth order total resistance coefficient for increasing numbers
of time steps per encounter period, n.
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Figure 6.57: Periodic uncertainty convergence throughout periods.

Periodic uncertainty is quantified for all items via moving window FFT for
different temporal resolutions. As a representative example, Figure 6.56a presents
time–domain signal of the total resistance coefficient for different number of time
steps per encounter period. In order to investigate the periodic convergence in
detail, a corresponding moving window FFT plot is shown in Figure 6.56b, where
it can be observed that the convergence throughout successive encounter periods
may be classified as oscillatory. Generally, the band of oscillatory convergence
reduces with increasing n, however, even with n = 800 time steps per encounter

Table 6.18: Temporal resolution uncertainties (obtained with n = 200, 400 and 800 time steps
per encounter period).

Item
Heave uncertainty Pitch uncertainty Resistance uncertainty

Uζ ,% Uθ,% UCT ,%

Mean 3.29 43.00 1.81

Amplitude 3.00 2.12 2.13

Phase 3.99 10.77 31.45
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period, the maximum deviation of zeroth order total resistance coefficient between
encounter period 5 to 10 is approximately 9%. This indicates that a significant
number of encounter periods needs to be simulated in order to reach periodically
steady state solution. Furthermore, since the periodic uncertainty for all items is
calculated using Eqn. (5.6) with values from 5 successive periods, the convergence
of periodic uncertainty is shown in Figure 6.57. The graph demands further
comments: on the x axis, the last period in uncertainty calculation i indicates that
the corresponding periodic uncertainty is calculated using values from (i−5)th to
ith encounter period. Consequently, periodic uncertainty for each i is then viewed
as the uncertainty which would be obtained by simulating i encounter periods. As
shown in Figure 6.57, the periodic uncertainty is relatively high (4% < U < 8%)

when simulating only 6 or 7 periods, while it is reduced to U < 2% by simulating
more than 10 periods. It can also be observed that the increase of number of
time steps per encounter period n has a favourable influence: lowering the overall
periodic uncertainty to U � 1% and ensuring smoother convergence.

Periodic uncertainties are presented in Table 6.19 for all simulations in the
temporal resolution study, where the first column represents number of time steps
per encounter period, while the second and third column represent periodic un-
certainties of first order harmonic amplitudes of heave and pitch. Fourth, fifth
and sixth column represent periodic uncertainties of the total resistance coeffi-
cient: zeroth order, first order amplitude and phase, respectively. Table 6.19
indicates that relatively low periodic uncertainty (U < 5%) is obtained for all
harmonic amplitudes even for very low temporal resolution. Periodic uncertain-
ties of all items decrease further when the finer temporal resolution is used, where
usually U < 1%. For the first order harmonic phase of resistance, the periodic
uncertainty is high for n ≤ 50. It should be noted that overall low periodic un-
certainties are the result of simulating at least 30 encounter periods, as can be
seen in Figure 6.57.

Hydro–Mechanical Coupling Study

The hydro–mechanical coupling study is performed by using n = 2, 4, 6 and
8 outer correctors per time step for the C5 test case. The number of outer
correctors corresponds with the number of grid motion and relative flux updates
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Table 6.19: Periodic uncertainties for varying number of time steps per encounter period, n.

n Uζ1 ,% Uθ1 ,% UCT0
,% UCT1

,% UCTγ1
,%

25 1.31 0.45 1.37 0.51 19.8

50 2.45 0.58 4.30 0.79 64.2

100 0.91 0.19 1.59 0.20 1.99

200 0.20 0.06 0.47 0.06 0.46

400 0.03 0.02 0.08 0.02 0.26

800 0.03 0.01 0.12 0.04 0.15

within a single time step. 4 pressure correction steps are used inside each PISO
loop. Since a minor difference with 400 and 800 time steps per encounter period is
observed in the temporal resolution study, 400 time steps are used for simulations
in hydro–mechanical coupling study.

Figures 6.58–6.60 present convergence of heave, pitch and total resistance
coefficient, respectively, with increasing number of outer correctors per time step,
n. All items are extremely insensitive to varying n, indicating that accurate
results may be obtained with only 2 outer correctors. This result is expected since
the 6–DOF solution is strongly coupled with the pressure via velocity boundary
condition at the hull, which is still updated 8 times (2 outer correctors + 4 PISO
correctors = 8 pressure equations with updated hull velocity using 6–DOF motion
equations). This effect shall be further investigated in a future publication. Using
2 outer correctors instead of 8 yields a speed–up of 4× with extremely minor
influence on overall accuracy.

The corresponding numerical uncertainties for the hydro–mechanical coupling
study are calculated using simulation results from n = 2, 4 and 8 outer correctors
per time step, corresponding to a constant refinement ratio of r = 2. The uncer-
tainties are reported in Table 6.20 in percentages, where the blue colour denotes
monotone convergence and the black colour denotes oscillatory convergence. The
uncertainties for all items are generally lesser than 1%, with few exceptions:

• For the same reason as discussed in the temporal resolution study, the zeroth
order of pitch has unrealistically high uncertainty (see Figure 6.59a).
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(a) Dimensionless heave amplitudes,
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Figure 6.58: Convergence of heave with increasing number of outer correctors per time step,
C5 case, coarse grid (600 000 cells).
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Figure 6.59: Convergence of pitch with increasing number of outer correctors per time step, C5
case, coarse grid (600 000 cells).
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Figure 6.60: Convergence of total resistance with increasing number of outer correctors per
time step, C5 case, coarse grid (600 000 cells).
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• The relatively high uncertainty for the zeroth order of total resistance is
due to the fact that low–order (p ≈ 0.45) monotone convergence has been
achieved for this item, indicating that the solutions are not within asymp-
totic range. Insensitivity of the total resistance coefficient with the increas-
ing number of outer correctors can be seen in Figure 6.60a.

Compared to the temporal refinement study, all items exhibit convergence: 7
monotone and 2 oscillatory.

Figure 6.61a presents time domain signals of the total resistance coefficient for
all simulations in the hydro–mechanical coupling study. The time–domain signals
overlap, once again indicating the insensitivity of the solution to the number of
outer correctors. In order to visualize periodic convergence in detail, moving
window FFT plot of the zeroth order total resistance coefficient is presented
in Figure 6.61b. All signals exhibit oscillatory convergence, where the band of
oscillations is practically the same for all simulations. Again, in order to minimise
periodic uncertainty and reach fully periodic steady state solution, more than 10
encounter periods must be simulated. Periodic uncertainties for representative
items are calculated using Eqn. (5.6) with maximum and minimum values within
last 5 encounter period and are reported in Table 6.21. All measured items have
negligibly small periodic uncertainties, U � 1%.

Comparing the uncertainty estimates from the hydro–mechanical coupling
study with the temporal resolution study, it can be concluded that the decrease
of number of outer correctors has no detrimental effect on the quality of results,
whereas the decrease in number of time steps per encounter period (consequent

Table 6.20: Hydro–mechanical resolution uncertainties, obtained with n = 2, 4 and 8 outer
correctors per time step.

Item
Heave uncertainties Pitch uncertainties Resistance uncertainties

Uζ ,% Uθ,% UCT ,%

Mean 2.37 27.61 5.71

Amplitude 0.12 0.12 0.87

Phase 0.19 0.28 0.75

175



6. Test Cases

0 5 10 15 20 25 30

Dimensionless time, t/T
e

-20

-10

0

10

20

30

40

50

T
o
ta

l 
re

si
st

a
n
c
e
 c

o
e
ff

ic
ie

n
t,

 C
T
 ·
 1

0
3

n = 2

n = 4

n = 6

n = 8

n = 2

n = 4

n = 6

n = 8

(a) Time domain signals,

0 5 10 15 20 25 30
Encounter period index, i

8

12

16

20

24

M
ea

n
 v

al
u
e 

o
f 

to
ta

l 
re

si
st

an
ce

 c
o
ef

fi
ci

en
t,

 C
T

0
 ·
 1

0
3 n = 2

n = 4
n = 6
n = 8

(b) Moving window FFT plot,

Figure 6.61: Convergence of the mean value of the total resistance coefficient for increasing
number of outer correctors, n.
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increase of the time step size) has relatively significant effect on the zeroth order
and first order harmonic phases of measured items.

Grid Refinement Studies

Grid refinement studies are carried out for all test cases: C1, C2, C3, C4 and C5,
using the three unstructured grids (see Table 6.16 for additional details). The
grid refinement ratio is calculated as: r = ∆zc/∆zm ≈ ∆zm/∆zf = 1.262, where
∆z is representative height of the cell in vertical direction at the ship hull, while
indices c,m and f denote coarse, medium and fine grid. Although r = 1.262

might be considered low for grid refinement studies, larger values of r have not
been investigated due to limited time. 400 time steps per encounter period and 6
outer correctors per time step are used for all simulations in order to lower tem-
poral and hydro–mechanical coupling uncertainties to a negligible level. Heave,
pitch and total resistance coefficient are presented in Figures 6.62–6.64 in terms
of transfer functions for dimensionless zeroth order, dimensionless first order har-
monic amplitudes and first order harmonic phases in degrees, with respect to
dimensionless wave length, λ/LPP . The grid uncertainties are calculated for all
items and test cases, and are presented as error bars in Figures 6.62–6.64. All
results are compared with available experimental data, which did not include
uncertainty estimates.

Zeroth and first order amplitude of heave are compared with experimental
data in Figure 6.62a. The first order amplitude (solid red line) compares well
with experimental results (dashed red line) for all wave lengths. The error bars
and corresponding grid uncertainties are lesser than 2%, except for the C2 case
where the grid uncertainty is approximately 5%. The zeroth order of heave (solid

Table 6.21: Periodic uncertainties for varying number of outer correctors per time step, n.

n Uζ1 ,% Uθ1 ,% UCT0
,% UCT1

,% UCTγ1
,%

2 0.04 0.09 0.24 0.06 0.40

4 0.06 0.04 0.11 0.04 0.20

6 0.03 0.02 0.08 0.02 0.26

8 0.03 0.01 0.04 0.01 0.09
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Figure 6.62: Transfer functions for heave for the KCS model in head waves: comparison of
CFD (with error bars) with experimental measurements.
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Figure 6.63: Transfer functions for pitch for the KCS model in head waves: comparison of CFD
(with error bars) with experimental measurements.
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Figure 6.64: Transfer functions for resistance for the KCS model in head waves: comparison of
CFD (with error bars) with experimental measurements.
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black line) captures the correct trend as in experiments (dashed black line), where
the CFD results over–predict the experimental values. The corresponding grid
uncertainties are approximately 6% on average, except for the C2 case, where
the convergence with grid refinement is not achieved, yielding high uncertainty
of 20%.

The results for first order heave phases agree well with experimental measure-
ments for all wave lengths, as shown in Figure 6.62b. Grid uncertainties are 0.9%

on average, as indicated by small error bars.

Pitch motions are compared with experimental data in Figure 6.63a, where
both zeroth and first order harmonic amplitude compare well with experimental
data. The largest discrepancy for the first order harmonic amplitude is obtained
for the C5 case, under–predicting the experimental results by approximately 8%.
This might be related to large amplitude motions causing free surface to be
located in coarser grid regions at motion peaks, increasing dissipation errors.
Grid uncertainties are low, as can be seen from the error bars.

First order harmonic pitch phases are presented in Figure 6.63b, showing
good agreement with the experimental measurements for the whole range of
wave lengths. The grid uncertainties are very small, generally lesser than 2%,
as indicated by narrow error bars.

Zeroth and first order amplitude of the total resistance coefficient are pre-
sented in Figure 6.64a. Zeroth order of the resistance closely follows the trend of
experimental data, slightly over–predicting the experimental measurements. The
grid uncertainties are approximately 10% for C1 and C2 cases. In these cases,
the high uncertainties are the result of divergence with grid refinement. For C3,
C4 and C5 cases, oscillatory grid convergence is achieved with small uncertainty
of approximately 1%. While the mean value (zeroth order) of total resistance
is slightly over–predicted compared to experimental data, the first order ampli-
tude is slightly under–predicted. The grid uncertainties are smaller than 1% for
all cases for the first order amplitude. Note that the first order amplitude of
total resistance is not reported for the resonant C3 case due to difficulties in
experimental settings (see [128]).

First order harmonic phases of the total resistance coefficient are presented
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in Figure 6.64b. For 3 out of 4 wave lengths1, phases compare well with exper-
imental data. The largest discrepancy of approximately 35◦ is obtained for the
C2 case. This should be further investigated, since the corresponding grid uncer-
tainty is only 4%. Grid uncertainties for other first order harmonic phases (C1,
C4 and C5 cases) are below 3%.

Table 6.22 presents detailed grid uncertainty results for all test cases, where
black, blue and red colours denote: oscillatory convergence, monotone conver-
gence and divergence, respectively. 23 out of 45 items do not exhibit convergence
with grid refinement (red items), although their grid uncertainty2 is often be-
low 10% of the fine grid solution. Very large and unrealistic uncertainties (e.g.
zeroth order of pitch for the C3 case), often occur due to normalisation with
extremely small values. 17 out of 22 converging items (black) exhibit oscillatory
convergence with grid refinement, where the corresponding uncertainty is often
below few percents. 5 items exhibit monotone convergence (blue), where the grid
uncertainties are lesser than 1%, except for the first order of resistance for the
C3 (resonant) case where U ≈ 11%. It is also interesting to note that zeroth
orders have slightly higher grid uncertainties compared to first order harmonic
amplitudes and phases for most items.

From Table 6.22, it can also be observed that the converging items are clus-
tered at longer wave lengths and greater wave heights (cases C4 and C5). This
is expected since these cases have finer relative grid resolution (greater number
of cells per wave height and length) compared to other cases. Hence, in order to
further investigate grid convergence, finer grids need to be used for other cases.
For example, using fine grid (1 600 000) on the C1 case yields approximately only
9 cells per wave height (see Table 6.16). Having in mind the grid refinement
study results for the wave propagation presented in Sec. 6.3.5., only 9 cells per
wave height might not be sufficient for accurate wave propagation.

Periodic uncertainties are calculated for all test cases and grids, where the
same behaviour as presented in Figure 6.56 for 400 time steps per encounter

1Note that the resonant C3 case is excluded from the experimental report due to difficulties
in the experimental settings.

2Note that the grid uncertainty for diverging items is calculated as the largest deviation
multiplied with a safety factor (see Eqn. (5.7)), yielding a conservative estimate.
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Table 6.22: Grid refinement uncertainties.

Item
Heave uncertainties Pitch uncertainties Resistance uncertainties

Uζ ,% Uθ,% UCT ,%

C1
Mean 6.18 5.61 8.97
Amplitude 14.12 2.12 3.20
Phase 0.18 13.39 1.37

C2
Mean 20.85 15.34 10.34
Amplitude 5.07 5.87 0.03
Phase 2.24 1.32 4.24

C3
Mean 3.51 112.49 1.33
Amplitude 1.91 2.34 10.86
Phase 0.48 0.19 7.88

C4
Mean 4.15 35.76 1.17
Amplitude 0.19 0.10 0.21
Phase 1.07 1.44 2.36

C5
Mean 12.47 22.15 0.68
Amplitude 0.64 0.17 0.46
Phase 0.72 1.54 2.63

period is observed for all measured items. To quantify, periodic uncertainties for
the zeroth and first order harmonic amplitudes of heave, pitch and total resistance
are always lesser than 2%, where a major portion of items has extremely low
periodic uncertainty: U � 1%. Again, it is important to stress that such a low
periodic uncertainty is achieved by simulating 30 encounter periods.

6.5.5. Flow Field Visualization

Some details regarding flow visualization are presented in this section for the
resonant C3 case using the coarse mesh.

Figure 6.65 presents perturbation velocity field at the symmetry plane of the
ship near the bow during a representative period, while the free surface is denoted
with thin white line. The perturbation velocity has highest magnitudes in the
boundary layer and near the bulb and the deck, while it decays farther from the
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ship hull. Total velocity field in the same region is presented in Figure 6.66,
where the maximum velocity magnitude is approximately 3.5 m/s at the deck
when the ship pitches bow down. It can be seen that the velocity field at the
symmetry plane of the ship is similar to the velocity field obtained in single–phase
simulations for pitching airfoils [129]. Figure 6.67 presents perturbation velocity
field at the symmetry plane near the stern of the ship. Highest perturbation
velocities occur in the propeller region and behind the transom stern. This is
expected since the incident velocity field does not take into account the presence of
a ship. An overall effect of the perturbation velocity field to the total velocity field
can be seen in Figure 6.68, where the total velocity field has smaller magnitudes
in propeller region and behind the transom stern.

6.5.6. KCS Hull in Oblique Waves (Model B)

The final part of validation and verification of the present numerical framework
is performed by considering KCS model in regular oblique waves at design speed.
Experimental results are publicly available in [128, 4, 23] for five encounter angles:

• C1: χ = 0◦–head sea,

• C2: χ = 45◦–bow sea,

• C3: χ = 90◦–beam sea,

• C4: χ = 135◦–quartering sea,

• C5: χ = 180◦–following sea.

Table 6.23: Oblique wave KCS test case parameters [128].

C1 C2 C3 C4 C5

LPP , m 2.7

Fr 0.26

λ, m 2.7

H, m 0.045

χ,◦ 0 45 90 135 180
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(a) t = T/5. (b) t = 2T/5.

(c) t = 3T/5. (d) t = 4T/5.

(e) t = T .

Figure 6.65: Perturbation velocity field (uP ) at the symmetry plane near the bow during a
representative encounter period, resonant C3 case.
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(a) t = T/5. (b) t = 2T/5.

(c) t = 3T/5. (d) t = 4T/5.

(e) t = T .

Figure 6.66: Total velocity field (u) at the symmetry plane near the bow during a representative
encounter period, resonant C3 case.
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(a) t = T/5. (b) t = 2T/5.

(c) t = 3T/5. (d) t = 4T/5.

(e) t = T .

Figure 6.67: Perturbation velocity field (uP ) at the symmetry plane near the stern during a
representative encounter period, resonant C3 case.
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(a) t = T/5. (b) t = 2T/5.

(c) t = 3T/5. (d) t = 4T/5.

(e) t = T .

Figure 6.68: Total velocity field (u) at the symmetry plane near the stern during a representative
encounter period, resonant C3 case.

188



6.5. Seakeeping KCS Model Simulations at Design Speed

As shown in Table 6.23, the model is LPP = 2.7 m long, the wave length is
equal to LPP and the wave height is H = 0.045 m. The model is towed with a
spring system enabling heave, pitch and roll motions, where the total resistance
is reported along with the three motions. Following recommendations published
in [128], the spring system has not been modelled in present CFD simulations,
where surge, sway and yaw are fully constrained, while heave, roll and pitch
motions are calculated. The experimental uncertainty has not been assessed.

It should be noted that computational grids are obtained by mirroring the
grids with the symmetry plane, producing three grids with approximately 1 200 000,
1 900 000 and 3 200 000 cells, as discussed in Sec. 6.5.2.

Grid Refinement Studies

The grid refinement studies are carried out for all test cases: C1, C2, C3, C4 and
C5, where the grid refinement ratio remains the same: r = 1.262 (see Sec. 6.5.4.).
7 outer correctors and 3 PISO correctors per time step are used, where the original
hydro–mechanical coupling strategy is used (see Figure 4.4). Hence, the 6–DOF is
not updated after each pressure correction step in order to obtain a new estimate
of the hull boundary velocity as this procedure has only been recently developed
and only the head wave cases have been recalculated with this strongly–resolved
coupling procedure.

Number of time steps per encounter period (n∆t/Te), number of simulated
encounter periods (NTe) and the CPU time per encounter period (tCPU/Te) are
presented in Table 6.24. For all simulations except for the beam waves simula-
tion (C3) on the fine grid, a constant time step of 0.004 seconds is used. As the
encounter period increases from head to following waves, the relative temporal
resolution also increases from ≈ 200 time steps per encounter period in head
waves to ≈ 1 000 time steps in following waves. The third column in Table 6.24
reports the total number of simulated encounter periods, which is reduced to-
wards following waves due to limited computational resources. Nevertheless, it
is important to stress that more than 20 encounter periods are always simulated
in order to lower periodic uncertainty. All simulations are performed in parallel
using 56 cores, where the CPU time per encounter period is reported in the last
column of Table 6.24. The CPU time per encounter period for head, bow and
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Table 6.24: CPU times for oblique wave simulations.

Item n∆t/Te NTe tCPU/Te, h

C1
Coarse N/A N/A N/A
Medium 199 37 0.40
Fine 199 31 0.90

C2
Coarse 225 72 0.32
Medium 225 57 0.59
Fine 225 60 0.67

C3
Coarse 202 60 0.35
Medium 202 60 0.46
Fine 329 49 1.38

C4
Coarse 610 41 0.86
Medium 610 45 1.39
Fine 610 29 3.03

C5
Coarse 944 45 1.28
Medium 944 21 2.18
Fine 944 22 4.53

beam wave simulations is generally lesser than an hour, whereas for the following
waves, the CPU time per encounter period reaches up to 4 hours. This is a direct
consequence of using a fixed time step as the encounter period is significantly
higher with increasing encounter angles.

The results are presented in Figure 6.69 and Figure 6.70 in terms of transfer
functions for heave, roll, pitch and total resistance, with respect to wave encounter
angle (ship heading). As for the head wave cases, the grid uncertainties are
calculated and presented as error bars for all test cases and measured items.
The CFD results are compared with experimental data, which did not include
uncertainty estimates. Again, it is important to note that the zeroth order is
reported as twice the mean value, according to guidelines in [128].

Zeroth and first order harmonic amplitudes of heave are presented in Fig-
ure 6.69a. The first order harmonic amplitude is in good agreement with the
experimental data for all wave directions, where the CFD results slightly over–
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Figure 6.69: Oblique waves KCS transfer functions for heave and roll: comparison of CFD
(with error bars) with experimental measurements.
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(a) Dimensionless pitch transfer function,
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Figure 6.70: Oblique waves KCS transfer functions for pitch and resistance: comparison of
CFD (with error bars) with experimental measurements.
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predict the experimental heave amplitude for head and bow waves. The zeroth
order of heave significantly deviates from the experimental measurements for the
beam and quartering waves, which demands further investigation. The grid un-
certainty for the zeroth order of heave is approximately 6% on average, except
for the quartering wave (C4) case with grid uncertainty of 27%. The first or-
der harmonic amplitude of heave has grid uncertainties lesser than 2% for all
cases except for the following waves, where the grid uncertainty is approximately
18%. The high grid uncertainty for this case is caused by the smallest measured
response (compared to heave amplitudes in other cases).

The comparison of roll motions is presented in Figure 6.69b, where it is im-
portant to note two implausible experimental roll measurements:

• The zeroth order of roll measured in head and following waves is approxi-
mately 0.6◦. Author believes that this value should be closer to zero as the
parametric roll does not occur for this particular setting.

• The first order harmonic amplitude of roll in beam sea is approximately
the same as in following sea. Even with relatively high wave length to
ship breadth ratio (λ/B ≈ 7.14), it is reasonable to expect that larger
roll amplitudes would be obtained compared to following waves, where the
amplitude should be negligibly small.

Having this in mind, the CFD results seem more consistent since both the zeroth
and first order harmonic amplitudes of roll are very close to zero for head and
following waves. It should be noted that the roll motion was calculated for
all simulations, including head and following waves, where a negligibly small
response is obtained. The CFD results also report larger first order harmonic roll
amplitude for the beam waves compared to experimental results, as expected.
The first order harmonic amplitude of roll in bow and quartering waves is under–
predicted compared to experimental data. The zeroth order of roll for beam
waves is approximately two times smaller in CFD, while for the bow waves, the
sign of the zeroth order is opposite, possibly related to a post–processing error.
The zeroth order of roll in quartering waves is over–predicted by CFD compared
to experimental measurements. The grid uncertainty for the zeroth order of roll
in bow and quartering waves is approximately 7% and 3%, respectively, while
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for the beam waves the grid uncertainty is high, U ≈ 63%, which is caused by
very small measured values. The grid uncertainty for the first order harmonic
amplitude of roll in bow, beam and quartering waves is small, approximately
2.5% on average, which can be directly seen from error bars in Figure 6.69b.

The comparison of pitch motions obtained with CFD and experimental data
is presented in Figure 6.70a. The zeroth order of pitch as calculated in CFD
has opposite signs compared to experimental measurements, which is probably
related to an error in coordinate system orientation or post processing convention.
Otherwise, magnitudes of zeroth order pitch response compare reasonably well
with the experimental data for all headings. The first order harmonic amplitude
of pitch closely follows the trend of experimental data for all encounter angles.
CFD amplitudes slightly over–predict the experimental measurements in all wave
headings except in quartering waves, where the experimental value is under–
predicted. Narrow error bars denote small deviations with grid refinement for
zeroth order, with beam wave case being an outlier with U ≈ 50%. The grid
uncertainty for the first order harmonic amplitude of pitch is lesser than 2% for
all cases, except for the beam waves case with U ≈ 29%, which is expected due
to normalisation of uncertainty with extremely small values.

Zeroth and first order harmonic amplitudes of the total resistance coefficient
are presented in Figure 6.70b. As for the roll motion, certain implausible exper-
imental data have been observed:

• The experimentally measured mean value of the total resistance coefficient
in beam sea (case C3) case is reported to be 3.71 · 10−3, while the mea-
sured steady resistance coefficient with the same KCS model and the same
Froude number (case C0, see [128]) is 4.66 ·10−3. Hence, experimental mea-
surements report approximately 20% lower mean value of total esistance
in beam waves compared to calm water simulation, which is considered
implausible,

• The first order harmonic amplitudes of the total resistance coefficient are
very small for all encounter angles, probably due to the spring system used
in the experimental setting. This inconsistency is demonstrated by com-
paring the first order harmonic amplitude of the total resistance coefficient
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with respect to wave height divided by ship length (H/LPP ). In Figure 6.71,
circles represent the results from head wave cases (see Sec. 6.5.4.), and the
X denotes the head waves case from the oblique wave cases (case C1). The
measured first order harmonic amplitude of total resistance coefficient for
the C1 case in oblique wave cases is approximately 0.1, while for the same
H/LPP ratio, the interpolated total resistance coefficient should be approx-
imately 5, yielding a discrepancy of order of magnitude. Note that the same
Froude number of 0.26 is used for both head and oblique wave cases [128].

The zeroth order of the calculated total resistance coefficient follows the trend of
the experimental data, except for the already mentioned beam wave case where
the highest discrepancy may be observed. The zeroth order in head and bow
waves is well predicted and the CFD trend of decreasing resistance coefficient
from beam to following waves is expected. The first order harmonic amplitude
of the total resistance coefficient does not compare well with experimental data,
as expected following the previous comments. The CFD results for first order
harmonic amplitudes seem plausible since the smallest amplitude is obtained for
the beam waves case, which is not the case in experimental measurements. The
grid uncertainty for the zeroth order of approximately 10% on average is higher
than the corresponding grid uncertainty for the head wave cases. The first order
harmonic amplitudes of the total resistance coefficient have low grid uncertainty
lesser than 3%, with the exception of beam waves case with U ≈ 58%. High grid
uncertainty for the beam waves case is expected since an order of magnitude lower
response is measured compared to other cases (specifically bow and quartering
waves).

Periodic uncertainties are very low: lesser than 1% for almost all zeroth and
first order harmonic amplitudes of heave, roll, pitch and total resistance coef-
ficient. Low periodic uncertainties are achieved because a large number of en-
counter periods is simulated for each test case, as shown in Table 6.24. This
is demonstrated in detail in Figure 6.72 and Figure 6.73, where Figure 6.72a
presents time evolution of roll motion for the bow waves case on the fine grid,
while Figure 6.72b presents the convergence of zeroth and first order harmonic
amplitudes of roll throughout successive encounter periods. Only the roll is pre-
sented and discussed in detail since it usually represents the most challenging
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Figure 6.71: Discrepancy of the experimental resistance coefficient in head waves.

item for bow and quartering waves. From both the time domain and the mov-
ing window FFT plot in Figure 6.72, one can observe that at least 25 encounter
periods need to be simulated in order to reach fully developed periodic solution.
Also, Figure 6.72b reveals a small drift in the mean value of roll of approximately
9 · 10−4 degrees per encounter period, which needs to be further investigated.

As the most significant roll response is obtained for the quartering waves, the
periodic convergence is examined in detail and shown in Figure 6.73. Compared
to the bow waves case in Figure 6.72, the periodically steady state solution is
obtained within fewer number of encounter periods. This is expected for following
reasons:

• Note that the same time step is used for both bow and quartering waves,
yielding 225 time steps per encounter period for bow waves and 610 time
steps per encounter period for quartering waves (see Table 6.24). As ob-
served in Figure 6.56b from the temporal resolution study, the periodic
convergence is improved when larger number of time steps per encounter
period (i.e. smaller time step) is used,
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Figure 6.72: Periodic convergence of roll motion for the bow waves case on the fine grid.
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Figure 6.73: Periodic convergence of roll motion for the quartering waves case on the fine grid.
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• The first order harmonic roll amplitude is order of magnitude higher com-
pared to the bow waves case, making it easier to resolve.
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6. Test Cases

6.6. Case Specific Conclusions and Closure

Detailed V&V has been presented for increasingly complex sets of test cases:

1. Free surface flow over a ramp,

2. Progressive wave simulations,

3. Higher order forces on a vertical cylinder,

4. Seakeeping of KCS models at design speed in head and oblique waves.

Validation has been performed by comparing the CFD results with analytical,
other numerical and experimental data, depending on the test case. For all
test cases, extensive verification has been carried out by performing numerous
sensitivity studies, including: grid refinement study, temporal resolution study
and periodic uncertainty assessment. The attention is now turned to each test
case separately, where the global conclusions shall be outlined in Ch. 7..

Free Surface Flow Over a Ramp

Free surface flow over a ramp has been the first test case used to validate and
verify the present decomposition model. The results confirmed that the dynamic
pressure jump across the free surface is resolved across a single face as indi-
cated in Ch. 4. where a detailed derivation of the interface–corrected schemes
via GFM has been presented. Furthermore, a simple hydrostatic case has been
considered on the same geometry and the results have been compared to the
numerical model based on conditionally averaged equations (interFoam from
foam-extend-3.2 [117]), where the present model does not spuriously accelerate
the lighter phase because the pressure–density coupling has been transferred to
the pressure equation instead of the momentum equation.

Two grid refinement studies have been presented, using hexahedral and pris-
matic grids. The hexahedral grid refinement study yields monotone convergence
with the achieved order of accuracy of p ≈ 2.45, while the prismatic grid refine-
ment study yields oscillatory convergence. Corresponding numerical uncertainties
were approximately 0.06% for hexahedral and 3.6% for prismatic grids. Although
the grid refinement uncertainties are small for both grid refinement studies, it is
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interesting to note that the uncertainty is significantly higher when one uses un-
structured grids. However, this was expected since the uniform refinement is
extremely difficult to achieve using unstructured grids. All results show good
agreement compared to the analytical solution regarding height of the water at
the outlet.

Progressive Wave Simulations

Numerous sensitivity studies have been performed for the progressive wave sim-
ulations using relatively coarse grid with approximately 11 700 cells. All results
have been compared to fully nonlinear potential flow stream function wave the-
ory [60]. During wave propagation, the dynamic pressure jump across the free
surface is well captured, accurately resolving the dynamic pressure distribution
in both water and air.

The first sensitivity study considering the influence of the diffusion parameter
b in the LS transport equation (see Eqn. (4.16) and Eqn. (2.41)) revealed that
the solution is extremely insensitive to specified LS CFL number, CFLψ and
stabilisation parameter, γ.

The wave reflection study has been performed by varying relaxation zone
length from 50% to 150% of the incident wave length, where it has been observed
that the relaxation zone should be as large as possible to prevent wave reflection.
However, for practical purposes, very good results can be obtained with relaxation
zone length equal to the incident wave length, with reflection estimate lesser than
0.5%.

Temporal resolution study revealed that the dispersion (phase shift) error
is significantly larger than the dissipation error (loss of amplitude) when using
extremely low temporal resolution corresponding to 25 time steps per incident
wave period. To quantify, the phase shift difference compared to highly resolved
solution with 800 time steps per period is approximately 30◦, while the amplitude
is lowered by only 1%. The achieved orders of temporal accuracy range from
p = 1 to p = 1.25, which is smaller than theoretical order of accuracy p = 1.5

(recall that a blend of Crank–Nicolson and Euler implicit has been used). The
corresponding temporal resolution uncertainties are lesser than 1.5%.

Grid refinement study has been performed by considering one coarser and
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one finer grid compared to the original, medium grid. In spite of the coarse grid
having only 7.5 cells per wave height and approximately 3 000 cells, good wave
propagation results have been obtained. The achieved order of spatial accuracy
p = 1.64 and p = 1.80 has been obtained for amplitudes and phases, respectively.
The corresponding grid refinement uncertainties are lesser than 1%.

A steepness study has been carried out by considering eight waves with in-
creasing steepness up to ka ≈ 0.33, where good comparison with the stream
function wave theory has been obtained. It is interesting to note that with in-
creasing steepness, CFD tends to under predict the first order amplitude, while
over predicting higher order effects.

A long simulation lasting 100 incident wave periods has been performed to
address the conservative properties of the LS method and implicit relaxation
zones, and to estimate the periodic uncertainty via moving window FFT. During
the long simulation, the mean value of the global water/air ratio changes by
5 · 10−4%, which indicated very good conservative properties and is considered
negligibly low. The periodic uncertainty through 100 periods has generally been
smaller than 0.05%, while the signed distance property of the LS has been well
preserved.

As a last sensitivity study, a long domain simulation has been performed where
the maximum deviation in wave amplitude with respect to position of wave gauges
is 0.4%, while the maximum deviation in phase shift is approximately 4◦. This
again indicates that the dispersion (phase shift) error is higher.

Higher Order Forces on a Vertical Cylinder

Higher order forces on a vertical, circular cylinder due to regular waves with
increasing steepness (up to ka ≈ 0.24) have been assessed. In–line forces have
been compared to experimental measurements by Huseby and Grue [120] and fully
nonlinear potential flow solution by Ferrant et al. [118], where a good comparison
has been obtained up to seventh order. The agreement of harmonic amplitudes is
very good compared to both sets of results, while the phase shifts agree slightly
better with potential flow results [118] than with experimental measurements.
It is also interesting to stress that the seventh order response is three to five
orders of magnitude smaller than the first order response, depending on the wave
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steepness. Periodic uncertainty has been assessed for all measured items and
test cases, where it is negligibly low for harmonic amplitudes, while sometimes
significant for harmonic phases of orders higher than fourth in very steep waves.

The temporal resolution study has been carried out by simulating from 25 to
800 time steps per incident wave period. As expected, higher order effects have
not been accurately captured with extremely low temporal resolution, although
a very good estimate of all higher order effects can be obtained by using approxi-
mately 200 time steps per incident wave period. As in the wave propagation test
cases, dispersion error is more significant than the dissipation error when using
coarse temporal resolution.

The grid refinement study has been carried out by coarsening the original, fine
grid with 552 000 cells twice with refinement ratio of r = 1.5. Although the first
order effects are well resolved on the coarse grid, which has approximately 9 cells
per wave height, higher order effects deviate significantly compared to finer grid
solutions. However, both harmonic amplitudes and phases, from first to seventh
order vary only slightly from medium to fine grid.

Seakeeping KCS Simulations at Design Speed

The most extensive set of sensitivity studies has been carried out for seakeeping
KCS simulations at design speed and high Brard numbers. Validation of the
model is performed for 5 head wave cases and 5 oblique wave cases publicly avail-
able at the Tokyo 2015 Workshop [128]. For all head wave cases, mean values and
first order harmonic amplitudes and phases of heave, pitch and total resistance
coefficients compare well with the experimental data. For the oblique wave test
cases, the discrepancy between CFD and experimental results is larger, where it is
believed that several inconsistencies indicate some issues in the experimental set-
ting. Unfortunately, repeatability studies for experiments have not been reported
and consequently the experimental uncertainty has not been determined.

Various sensitivity studies included 48 simulations in total:

• 6 simulations for the temporal resolution study,

• 4 simulations for the hydro–mechanical coupling study,
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• 7 short simulations for the parallel scaling test,

• 1 performance test,

• 15 simulations for all head wave cases,

• 15 simulations for all oblique wave cases,

assessing four types of uncertainties related to: temporal resolution, grid refine-
ment, number of outer correctors for hydro–mechanical coupling and periodic
uncertainty.

The temporal resolution study revealed that the simulation with only 25 time
steps per encounter period is stable, as was the case in wave propagation and
cylinder diffraction studies. Compared to highly resolved temporal resolution
using 800 time steps per encounter period, first order harmonic amplitudes of
motions and the total resistance may be predicted reasonably well with signifi-
cantly lower temporal resolution. The largest detrimental effect when using low
temporal resolution is observed for the first order harmonic phases and mean val-
ues. The periodic convergence is also smoother and the corresponding periodic
uncertainty is lower when using increased number of time steps per encounter
period.

The hydro–mechanical coupling study has shown that the final solution is
extremely insensitive to the number of outer correctors when one uses the strong
coupling strategy where the 6–DOF equations are solved after each pressure cor-
rection step, thus providing updated velocity boundary condition at the hull.
Hence, a realistic speed–up of 4× is easily obtained by simulating only 2 outer
correctors instead of 8.

The strong parallel scaling test performed up to 56 cores has shown that the
significant speed–up may be gained even when the domain decomposition yields
approximately 10 000 cells per core. However, the achieved parallel efficiency
on 56 cores is approximately 60%, which is believed to be related to inefficient
memory bus. This still needs to be further investigated and optimised for High
Performance Computing (HPC) applications.

A single performance test has been carried out by simulating the C5 head
waves case on a coarse grid using 56 cores, with 25 time steps per encounter
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period and 4 outer correctors. The simulation finished in half an hour for 30
encounter periods, yielding approximately 30 seconds of CPU time for 1 second of
physical time. Such trade–off between accuracy and CPU time may be important
for industrial applications regarding optimisation of hull shape with respect to
added resistance in waves, where extremely high number of cases would need to
be considered.

Regarding periodic, temporal resolution, hydro–mechanical coupling and grid
uncertainties, following observations can be summarised:

• Periodic uncertainties for all simulations are generally an order of magni-
tude lower that temporal resolution and grid refinement uncertainties. It
is important to note that such low periodic uncertainties are ensured only
when one performs a significant number of encounter periods (at least more
than 10),

• Uncertainties related to hydro–mechanical coupling are also negligibly small
compared to temporal resolution and grid refinement uncertainties,

• Grid refinement and temporal resolution uncertainties are of the same order
of magnitude. The corresponding uncertainties are very small for first order
amplitudes and phases, often below few percent, while the grid uncertain-
ties, seem to be higher for the mean values, on average,

• Grid uncertainties for the oblique wave cases are higher compared to the
head wave cases, which has been expected since the complexity of the cases
is higher because of the roll motion. Large roll amplitudes cause the free
surface to be located outside the grid refinement region around the still
water line, possibly introducing additional numerical errors.

Periodic convergence of roll in bow and quartering waves has been presented
and investigated in detail, where it has been shown that at least 20 encounter
periods need to be simulated in order to lower the periodic uncertainty down to
a negligibly small level.

Finally, following conclusions may be drawn for seakeeping simulations in
head and oblique waves at design speed and high Brard numbers:
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• Accurate results regarding motions and total resistance may be obtained
by using relatively coarse computational grids (ranging from 600 000 to
3 200 000 cells). This is expected since the large portion of ship’s heave and
pitch motion is related to restoring forces and moments,

• In order to achieve a periodically steady–state solution, a significant number
of encounter periods needs to be simulated. The number of periods is
dependent on time step size and heading of the ship, where the convergence
of certain items can be observed by performing moving window FFT as a
post processing step,

• For the present numerical model, accurate results may be expected with
200 time steps per encounter periods and only 2 outer correctors (cou-
pling the flow field with rigid body motion), which is directly related to
the recently developed highly resolved strategy for fluid–flow and 6–DOF
equations coupling,

• For head wave cases, accurate results may be obtained by neglecting the
relationship between investigated wave systems and geometrical parameters
of the grid, thus indicating that relatively coarse grids with reduced number
of cells per wave height and length may be used.

206



7. Conclusions and Future Work

7.1. Decomposition Model Based on Ghost Fluid

Method

Most of today’s CFD algorithms for marine hydrodynamics rely on conditionally
averaged equations. This approach has been considered in the early stages of this
study, but has proven to be numerically inadequate when used with segregated
solution algorithms since the pressure–density coupling is resolved within the
momentum equations, often causing spurious acceleration of the lighter phase.
Furthermore, that model relies on calculating the gradient of the density, being
a step function, using ordinary discretisation schemes. For these reasons, the
starting point of this study is the Ghost Fluid Method [15, 45, 49, 47, 48] which
starts from the assumption that the jump conditions at the free surface have
to be taken into account by using one–sided extrapolates from corresponding
fluid. This approach, applied to arbitrary polyhedral FV discretisation proce-
dures, yields second–order accurate interface–corrected interpolation schemes for
dynamic pressure and density, both of which have a discontinuity at the free sur-
face. Hence, the Heaviside function for dynamic pressure and density is taken
into account in the discretisation, yielding accurate resolution of their jumps at
the free surface, across a single internal face. It is important to stress that the
present model does not make the assumption that the free surface is aligned with
internal faces of the grid, rather, the second–order accurate location of the inter-
face is calculated using the signed distance function in the LS interface capturing
method.

The LS method [35, 28, 82, 83, 46, 130] has been widely used as an accurate
interface capturing method for two–phase flow modelling. One of the main ad-
vantages of the method is the unboundedness of the signed distance field, making
it easier to advect. However, the LS method based on signed distance field has
two practical limitations:
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1. It is not conservative since the signed distance field does not represent any
conserved physical property (as is the case in the VOF method where the
volume fraction is the transported variable),

2. The signed distance property of the LS field is not preserved after the usual
advection step and some form of additional, explicit redistancing is often
required.

In this thesis, both problems are addressed by considering the PF method. The
PF method [36, 37] advects the tangent hyperbolic profile across the free sur-
face. However, the PF transport equation has additional terms which advect the
free surface while maintaining the tangent hyperbolic profile. Sun and Becker-
mann [36] have then derived the LS transport equation from the PF equation,
which now implicitly preserves the signed distance profile during the transport.
The present study implements the implicitly redistanced LS transport equation
into arbitrary polyhedral FV discretisation with reformulation of explicit source
terms into implicit convection terms, favourable for strongly conservative FV dis-
cretisation. The use of the LS signed distance field has a strong advantage when
combined with the solution decomposition by SWENSE approach.

The SWENSE solution decomposition, originally developed by Ferrant et
al. [20] splits the unknown variables in the mathematical model into incident,
potential flow wave field and perturbation components. Hence, considering the
LS method based on signed distance field, only the perturbation around the po-
tential flow solution is calculated in CFD. This facilitates wave transport as the
additional terms in governing equations are explicit and ordinary second–order
accurate interpolation schemes may be used. The SWENSE method hence effi-
ciently introduces waves in the computation, however, their unwanted reflection
off far–field boundaries needs to be addressed as well.

While several approaches for preventing wave reflection exist in the literature,
the domain decomposition approach by Jacobsen et al. [52] is followed in this the-
sis. The approach relies on relaxation zones, where the CFD solution is blended
with the target, usually potential flow solution. In this thesis, the implicit treat-
ment of relaxation zones, recently published by Jasak et al. [53] is used. Inside
relaxation zones, all perturbation fields are forced to zero, leaving non–reflecting
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potential flow solution.
Following a brief summary of the implemented numerical model presented

above, the contribution of this study in the field of large–scale, two–phase flow
modelling in CFD may be divided into following parts:

• Derivation and implementation of the GFM method for treatment of inter-
face jump conditions within arbitrary polyhedral FV method using compact
computational stencil, yielding second–order accurate interface–corrected
schemes for discontinuous fields,

• Reformulation and implementation of the implicitly redistanced LS method
in strongly conservative FV framework, where the additional terms are
mathematically recast into convective terms,

• Implementation of the solution decomposition strategy based on SWENSE
approach, where the original method is modified in accordance with the
strongly conservative FV method,

• Formulation of the domain decomposition strategy based on relaxation
zones has been modified in order to account for SWENSE solution de-
composition.

Finally, the combination of the above mentioned methods for treatment of discon-
tinuities at the free surface, interface capturing method and solution and domain
decomposition has not been implemented in any numerical framework prior to
this study.

7.2. Validation and Verification

The resulting numerical model is systematically tested by performing numerous
sensitivity studies on test cases of industrial importance. As the present method-
ology is especially suitable for wave modelling, most of the test cases consider
progressive ocean waves: wave propagation studies, assessment of higher order
forces on a circular cylinder and seakeeping of a ship. The model is successfully
validated by comparing the computational results with analytical, other numeri-
cal and experimental data. As today’s CFD algorithms are complex and generally
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have a significant number of input parameters, it is often possible to find the cer-
tain set of input parameters (time step size, grid resolution) in order to obtain
the correct solution to a given problem. In this thesis, a significant amount of
attention is given to various sensitivity studies in order to address different kinds
of numerical uncertainties: temporal discretisation uncertainty, grid refinement
uncertainty, periodic uncertainty and others.

Following general conclusions can be drawn from temporal resolution and grid
refinement studies performed for all test cases:

• Although the present numerical model is developed with arbitrary polyhe-
dral grid assumption, better convergence properties are obtained by using
successively refined block–structured hexahedral grids,

• The numerical model is stable with relatively coarse grids and large time
steps, while still providing a reasonably good estimate of the solution even
when only 25 time steps per period are used or there are only several cells
across wave height. This trade–off between accuracy and performance might
be beneficial and exploited for optimisation purposes, where the accurate
solutions are not sought in the early design stage,

• The dispersion (phase shift) errors are always higher than the dissipation
errors (loss of amplitude), yielding higher numerical uncertainties for har-
monic phases compared to amplitudes,

• The model accurately captures higher order nonlinear effects, even when
the CFD domain is relatively small.

The periodic uncertainty is also assessed for each case set by performing mov-
ing window FFT on the time domain signal. This yields convergence of harmonic
amplitudes and phases through successive periods, where the corresponding peri-
odic uncertainty may then be estimated. The periodic uncertainty is an indicator
regarding whether the truly periodic stead–state is achieved. For wave propaga-
tion cases and higher order forces, reasonable periodic convergence is generally
ensured within few periods. This is not the case in seakeeping simulations, where
it is shown that sometimes more than 20 encounter periods need to be simulated
in order to reach periodically steady–state solution. The author believes that this
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is strongly related to nonlinear coupling between the flow field and the 6–DOF
motion equations, where a significant amount of time is required for the mean
values of motions to converge.

Furthermore, the numerical model is efficient as, CPU times reported for
the seakeeping calculations in Sec. 6.5. indicate. As an example, 33 head wave
simulations have been carried out in two weeks using 56 cores. The outcome of
these simulations is a good estimate of the transfer function of the ship, including
four kinds of numerical uncertainties. Hence, if the uncertainty estimate is not
required (e.g. in the early design stage of the ship), it is possible to obtain an
accurate estimate of the added resistance transfer function at design speed in a
few days.

Interested reader is referred to group’s YouTube channel [129] for animations
regarding some simulations carried out for this.

7.3. Proposals for Future Work

The present numerical model is developed within foam–extend, which is a com-
munity driven fork of the Open Field Operation And Manipulation software.
Since Open Field Operation And Manipulation and foam–extend heavily rely on
object–oriented programming paradigm in C++, the framework is easy to extend
and maintain.

One of the topics for future work would be the analytical evaluation of ex-
plicit incident terms arising from SWENSE decomposition. Analytical evaluation
of explicit terms directly related to wave propagation, should further facilitate
wave transport as the discretisation error would then vanish. This approach has
been implemented by Ducrozet et al. [56] in differential FD framework and needs
further investigation for its implementation in integral FV framework.

The two–way coupling with more advanced numerical models should also be
investigated in future work. As an example, it might be beneficial to couple the
CFD solution with diffraction/radiation BEM potential flow solution, where the
computational cost of the BEM is significantly smaller than the CFD. This could
allow accurate propagation of radiated and diffracted fields towards the far–field
boundaries and consequently, the CFD computational domain could be further
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reduced.
Furthermore, if accurate simulations of slamming and sloshing events were to

be performed, it might be important to consider compressibility effects for the
air. The whole mathematical model would then need to be reformulated in order
to include varying density in governing equations. Nevertheless, this thesis could
then serve as a guideline to derive interface–corrected interpolation schemes via
GFM approach for treatment of discontinuities at the free surface.

Regarding V&V, seakeeping at low Froude and Brard numbers needs to be
investigated in detail. The author doubts that ordinary two–equation turbulence
models will provide suitable results for seakeeping of a ship at low Froude numbers
because the orbital velocity in the wave may be greater than the forward speed of
the ship. This would result in adverse pressure gradients along the hull, making
two–equation models inappropriate. On the other hand, simulations of freely
floating ships without the forward speed should not impose any difficulties as no
turbulence modelling needs to be employed.
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A Derivation of the Level Set Transport

Equation From the Phase Field Equation

Following Sun and Beckermann [36], the PF equation in the absence of curvature–
driven interface motion reads:

∂φ

∂t
+ u•∇φ = b

(
∇• (∇φ) +

φ (1− φ2)

ε2
− κ|∇φ|

)
. (A1)

The PF can be explicitly defined in terms of the LS field:

φ(ψ) = tanh
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ε
√

2

)
. (A2)

Noting the identity given by Eqn. (A2), each term in Eqn. (A1) may be written
in terms of the signed distance field ψ using the chain rule:

• Time derivative term (first term on the l.h.s., Eqn. (A1)):
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• Convection term (second term on the l.h.s., Eqn. (A1)):
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• Diffusion term (first term on the r.h.s., Eqn. (A1)):
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where Faà di Bruno’s generalisation of the chain rule for the higher order
derivatives (Laplacian second order term) has been used,

• Curvature driven term (second term on the r.h.s., Eqn. (A1)):
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(A6)

where sech2 x = 1− tanh2 x trigonometric identity has been used,
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• Counter curvature driven term (third term on the r.h.s., Eqn. (A1)):

− bκ|∇φ| = −bκ∂φ
∂ψ
|∇ψ| , (A7)

Furthermore, following identities may be easily obtained by differentiating Eqn. (A2)
with respect to signed distance field ψ:
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Inserting the identities given by Eqn. (A3) to Eqn. (A9) into the PF transport
equation, Eqn. (A1), yields implicitly redistanced LS equation:
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Multiplying Eqn. (A10) with ε
√

2/ sech2
(
ψ/(ε
√

2)
)
6= 0 yields the final form of

implicitly redistanced LS transport equation:

∂ψ

∂t
+ u•∇ψ = b

(
∇• (∇ψ) +

√
2

ε

(
1− |∇ψ|2

)
tanh

(
ψ

ε
√

2

)
− κ|∇ψ|

)
, (A11)

which is equivalent to Eqn. (2.41) using κ = ∇• (∇ψ/|∇ψ|).
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B Picard Linearisation of the Hyperbolic

Tangent Source Term

The Picard linearisation procedure is carried out for the hyperbolic tangent
source term in the LS transport equation, Eqn. (3.10). The source term can be
written in the following form:

S(ψ) = b

√
2

ε
tanh

(
ψ

ε
√

2

)
= a1 tanh (a2ψ) , (B1)

where a1 and a2 are non–negative constants, since b ≥ 0 and ε ≥ 0. Expanding
the r.h.s. of Eqn. (B1) in the Taylor series around the value from the previous
time step or iteration ψo yields:

S(ψn) = S(ψo) +

(
∂S

∂ψ

)o
(ψn − ψo) , (B2)

with: (
∂S

∂ψ

)o
= a1a2 sech2(a2ψ

o) . (B3)

Substituting Eqn. (B3) into Eqn. (B2) yields a linearised version of the source
term:

S(ψn) = a1 tanh(a2ψ
o) + a1a2 sech2(a2ψ

o) (ψn − ψo)

= S1 + Suψ
n − Suψo .

(B4)

This procedure divides the original source term into two parts: terms S1 and Suψo

are explicit since they are bound to the value of ψo from the previous time step or
iteration, while the Suψn term can be made implicit. However, Su appearing on
the r.h.s. of the LS transport equation, Eqn. (3.10) is always non–negative. For
its implicit treatment, this term would have to be transferred to the l.h.s. of the
equation, making Su non–positive. Hence, an additional diagonal contribution
of −Su would decrease the diagonal dominance of the resulting matrix. This
procedure is therefore omitted, and the original source term given by Eqn. (B1)
is treated explicitly in the LS transport equation, Eqn. (3.10). The explicit
treatment of the source term renders its solution decomposition unnecessary.
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