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Abstract

Abstract

In recent decades, an increasing interest in using meshless methods has existed due
to their beneficial properties in comparison to more commonly used numerical methods
such as the Finite Element Method (FEM). In this class of numerical approaches, the dis-
cretization of geometry and the approximation of unknown field variables have been done
by using only points that are not connected into elements. Hence, there is no need for
a time-consuming mesh creation process and the problems associated with the distorsion
of elements are avoided. Despite these attractive properties of meshless methods, high
numerical costs and low accuracy associated with the calculation of high-order derivatives
of approximation functions, which are particularly needed for solving problems involving
the gradient elasticity, still represent a severe setback. The use of meshless methods based
on the mixed approach can alleviate the aforementioned drawbacks since they require a
lower continuity degree of the approximation functions. The research conducted in the
frame of this Thesis is related to the improvement of numerical modeling of heteroge-
neous materials using newly developed meshless collocation methods based on the mixed
approach. The heterogeneous materials are defined by partitioning the total material do-
main into subdomains with different linear-elastic isotropic properties. These subdomains
define the homogeneous constituents. The discretization and approximation of unknown
field variables is done for each homogeneous material independently, therein the interface
of the homogeneous materials is discretized with overlapping nodes. The solution for the
entire heterogeneous structure is obtained by enforcing appropriate boundary conditions
at the nodes representing the interface boundary depending on the utilized formulation.
The methods are applied to the linear elastic and the strain gradient formulation of the
boundary value problem. For the approximation, the Moving Least Squares method with
the imposed interpolation condition and Radial Point Interpolation method with poly-
nomial reproduction are utilized. The numerical efficiency of the presented methods is
demonstrated by suitable numerical examples. The obtained results are compared with
a standard fully displacement meshless approach, as well as with available analytical and
numerical solutions. Excellent agreement of the solutions is obtained and improved mod-
eling of material discontinuity is achieved. Furthermore, the use of the mixed approach
reduces the required degree of continuity of the approximation function, which increases
accuracy and stability in comparison to the same class of meshless methods based only

on the approximation of the displacements used up to now.
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Uvod

Vec¢ina danasnjih inzenjerskih materijala koji se primjenjuju u praksi imaju heterogenu
strukturu. Cesto ih se klasificira kao visefazne ili kompozitne materijale. S inzenjerskog
stajalista, heterogeni materijali su pozeljni jer mogu biti izradeni tako da se iskoriste
najbolja svojstva svakog pojedinog konstituenta. U inzenjerskim konstrukcijama cesto se
koriste mnogi heterogeni materijali kao Sto su stijena, beton, drvo i drugi sli¢ni materijali.
Medutim, zbog svojih dobrih materijalnih svojstava, najvazniji i najvise upotrebljavani
su zasigurno vlaknima ojac¢ani kompoziti i legure metala. Znacajan utjecaj na ponasanje
materijala na makrorazini imaju veli¢ina, oblik, prostorni raspored, volumni udio i svoj-
stva pojedinih konstituenata koji ¢ine mikrostrukturu. Posljednjih godina posebna po-
zornost usmjerena je na istrazivanja odnosa izmedu makroskopskih svojstava materijala i
njihove mikrostrukture, pri ¢emu veliku primjenu imaju numericke metode.

Poznato je da klasi¢na mehanika kontinuuma ne moze uzeti u obzir strukturne efekte
u materijalu na mikrorazini te stoga ne moze dovoljno to¢no opisati procese deformi-
ranja heterogenih materijala. Iz tog razloga razvijene su tzv. viSerazinske (engl. multi-
scale) numericke metode koje omoguéuju procjenu ponasanja materijala na makrorazini iz
poznatih svojstava konstituenata i mikrostrukture. Pritom se rjesenja dobivena analizom
na mikrorazini odgovarajuéim numerickim postupcima prenose se na makrorazinu [1-3].
Za rjesavanje problema rubnih vrijednosti na mikrorazini najc¢esée se kao reprezentativni
model mikrostrukture koriste jedini¢na éelija (engl. unit cell) [4] ili statisticki reprezenta-
tivni uzorak materijala, reprezentativni volumenski element (RVE) [2]. Metoda jedini¢nih
¢elija pogodna je za opisivanje materijala s pravilnom mikrostrukturom kod kojih se moze
pretpostaviti pravilan raspored heterogenosti te se uvelike primjenjuje za analizu kom-
pozitnih materijala [5, 6]. S obzirom da su istrazivanja pokazala da prostorna nejednolikost
mikrostrukture ima znacajan utjecaj na svojstva materijala, u novije vrijeme problem
rubnih vrijednosti na mikrorazini rjesava se diskretizacijom reprezentativnog volumen-
skog elementa (RVE) uz primjenu postupka homogenizacije 7, 8]. Matematicki model
racunalne homogenizacije temelji se na analizi problema rubnih vrijednosti RVEa na
mikrorazini te izraCunavanju tenzora naprezanja i konstitutivne matrice uprosjecivanjem

po njegovu volumenu.
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Za rjesavanje problema rubnih vrijednosti primjenom viserazinskih algoritama pri
razmatranju heterogenih materijala u danasnje vrijeme najceS¢e se primjenjuje metoda
konacnih elemenata (MKE) [1, 7]. Za heterogeni materijal sastavljen od vise homogenih
dijelova sa svojim pripadnim svojstvima, stvaranje mreze konacnih elemenata u blizini
granice spoja podrucja s razli¢itim materijalnim svojstvima nije jednostavno kao sto se to
moze vidjeti na primjeru kompozitnog materijala [9, 10]. Radi $to to¢nijeg opisivanja polja
derivacija u blizini spoja podrucja s razlicitim materijalnim karakteristikama, potrebno je
primijeniti kona¢ne elemente manje velicine. Pri umrezavanju cesto dolazi do distorzije
elemenata, Sto moze narusSiti tocnost rjesenja. U nekim slucajevima velikih gradijenata
pomaka u blizini spoja potrebno je primijeniti i tehnike adaptivnog umrezavanja, Sto
moze dovesti do naglog povecanja broja nepoznanica sustava jednadzbi, a samim time i
povecati vrijeme racunanja. U opisanim slucajevima metoda konacnih elemenata nije naj-
bolji izbor numericke metode. Stoga su u sklopu ove disertacije razvijeni novi bezmrezni
postupci koji mogu biti primijenjeni i implementirani u viSerazinske numericke algoritme
za analizu heterogenih materijala u nekim od buduéih istrazivanja.

Uz poznatu klasiénu linearno-elasti¢cnu teoriju za analizu deformiranja materijala,
danas se takoder primjenjuje i tzv. gradijentna (engl. strain gradient) teorija [11, 12].
Za razliku od klasi¢nih teorija gdje gustoca energije elasticnog deformiranja ovisi samo
o simetricnom tenzoru deformacije, kod gradijentnih teorija funkcija je jos i gradijenta
deformacije. Gradijentne teorije uvedene su kako bi se tocno opisale fizikalne pojave koje
se ne mogu dovoljno tocno opisati primjenom klasi¢nih materijalnih teorija. Neke od njih
ukljucuju pojavu lokalizacije deformacija ili naprezanja na spoju dvaju razli¢itih mate-
rijala, odnosno pojavu popustanja materijala pri modeliranju osteéenja [13]. U danasnje
vrijeme postoji veliki broj gradijentnih teorija s razli¢itim brojem parametara koji se
uzimaju u obzir u svrhu sto tocCnijeg opisivanja ponaSanja mikrostrukture heterogenog
materijala. Radi jednostavnosti implementacije spomenutih teorija u numericke metode
pozeljno je da se koriste one s §to je moguée manjim brojem parametara. Stoga su
u danasnje vrijeme najkoristenije Eringenova [14] i Aifantisova [15] teorija s samo je-
dnim mikrostrukturalnim parametrom. Analiza deformiranja izotropnih materijala pri-
mjenom Aifantisove gradijentne teorije matematicki je problem opisan eliptickom dife-
rencijalnom jednadzbom cetvrtog reda. Stoga rjesavanje ovog problema nije jednostavno
i analiticka rjeSenja se mogu izvesti samo za najjednostavnije primjere. RjeSavanje ovog
problema primjenom metode kona¢nih elemenata uvijetuje osiguranje C' kontinuiteta
aproksimacijske funkcije. Stupnjevi slobode u tom slucaju sastoje se od ¢vornih pomaka
i gradijenata ¢vornih pomaka $to rezultira kompliciranim i neucinkovitim formulacijama
te velikim brojem ¢vornih nepoznanica po kona¢nom elementu [16, 17]. Osim formu-

lacija temeljenih na metodi pomaka, razvijeni su konac¢ni elementi temeljeni na mjesovitoj
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formulaciji koji zahtijevaju zadovoljavanje kompliciranih uvjeta za osiguranje stabilnosti
metode te takoder posjeduju velik broj nepoznanica [18]. Stoga je o¢ito da trenutno ne
postoji dovoljno u¢inkovita formulacija metode kona¢nih elemenata kojom bi se rjesavali
problemi opisani gradijentnom teorijom.

Kao alternativa MKE u novije vrijeme sve ve¢u primjenu imaju bezmrezne metode
zbog svojih komparativnih prednosti [19, 20]. Primjenom bezmreznih metoda moguce je
ukloniti numericki zahtjevan proces generiranja mreze kona¢nih elemenata, a u skladu
s tim i probleme s distorzijom mreze i adaptivnim umrezavanjem [21, 22]. Jo$ jedna
od prednosti bezmreznih numerickih metoda u odnosu na MKE jest jednostavno defini-
ranje aproksimacijskih funkcija visokog stupnja kontinuiteta [23]. Nedostatak bezmreznih
metoda jest dosta slozeniji postupak izracunavanja funkcija oblika i njezinih derivacija te
u opéem slucaju manje ucinkovita numericka integracija slabih oblika jednadzbi modela
[24]. Potonji nedostatak moze se izbjeéi primjenom kolokacijske metode [25]. Takoder,
primjena bezmreznih metoda za rjeSavanje problema gradijentnom teorijom uvelike sma-
njuje velicinu konacnog sustava jednadzbi te za isti broj ¢vorova mogu rezultirati toénijim
rjeSenjima u usporedbi s metodom kona¢nih elemenata [26]. Tocnost i ucinkovitost
trenutno koristenih metoda za analizu heterogenih materijala moze se stoga povecati pri-
mjenom i razvojem novih bezmreznih postupaka. Postoji velik broj razli¢itih bezmreznih
metoda koje su se pocele razvijati u zadnja dva desetlje¢a, medutim u ovoj disertaciji
znacaj je stavljen na metode temeljene na bezmreznom lokalnom Petrov-Galerkinovom
konceptu (engl. Meshless local Petrov-Galerkin (MLPG) concept) [27]. Primjenom MLPG
koncepta izvode se bezmrezne metode kod kojih nema potrebe za stvaranjem pozadinske
mreze za integraciju jednadzbi ravnoteze u slabom obliku [28]. Novo izvedene bezmrezne
metode sa svojim navedenim prednostima povecat ¢e to¢nost i numericku uc¢inkovitost
proracuna u odnosu na MKE. S obzirom na nacin stvaranja diskretiziranih sustava jedna-
dzbi, bezmrezne metode mogu se podijeliti u dvije osnovne skupine. Prva se temelji na
integraciji slabog oblika diferencijalnih jednadzbi ravnoteze [29, 30], dok je druga teme-
ljena na jakom obliku diferencijalnih jednadzbi ravnoteze (kolokacijske metode) [31, 32].
Slabi oblik temelji se na integralnom zapisu jednadzbi ravnoteze primjenom metode
tezinskog reziduala po nekom unaprijed odredenom podru¢ju. Primjenom slabog obli-
ka svi integrali u formulaciji rjeSavaju se priblizno tj. integral umnoska reziduala dobi-
venog uvrStavanjem aproksimacije nepoznatih veli¢ina polja i kinematicki prihvatljive
tezinske funkcije po nekom podruc¢ju mora biti jednak nuli. U kolokacijskim meto-
dama jednadzbe ravnoteze zapisuju se i zadovoljavaju u ¢vorovima diskretizacije nume-
rickog modela. Za jednak broj ¢vorova diskretizacije kolokacijske metode brze su od
metoda u kojima se koriste slabi oblici jednadbi jer nema numerickog integriranja. U

usporedbi s metodama temeljenim na integraciji slabog oblika jednadbi, kolokacijske
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metode su netocnije i nestabilnije ukoliko se u modelu javljaju prirodni (Neumannovi)
rubni uvjeti [33]. Postoji vise razli¢itih pristupa za zadovoljavanje prirodnih rubnih
uvjeta od kojih se najcesce koriste direktno zadovoljavanje te zadovoljavanje primjenom
kaznene metode [34]. Prilikom rjeSavanja fizikalnih problema primjenom bezmreznih
metoda javlja se potreba za izracunavanjem derivacija funkcija oblika viseg reda sto sma-
njuje numericku to¢nost samih metoda. Spomenuti problem moze se ublaziti primjenom
mjesovitog pristupa kod kojeg se uz velicine polja aproksimiraju i veli¢ine polja viseg
reda te smanjuje potrebni stupanj kontinuiteta aproksimacijskih funkcija i potreba za
izracunavanjem derivacija viseg reda ¢ime se povecava tocnost i stabilnost [35, 36]. Stoga,
primjenom mjesovitog pristupa, aproksimacijske funkcije moraju imati samo C' konti-
nuitet u slucaju rjesavanja problema linearno-elasti¢cnom teorijom. Definiranje bezmreznih
aproksimacijskih funkcija visokog stupnja kontinuiteta na razini modela je povoljno svoj-
stvo pri rjeSavanju problema kao §to su analiza savijanja tankih ploca [37] i ljusaka [38]
ili modeliranje materijala primjenom gradijentnih teorija [39]. Medutim, visok stupanj
kontinuiteta bezmreznih funkcija uzrokuje poteskoce u rjesavanju problema s diskontinu-
itetom derivacija nepoznatih velicina polja. Tako se pri modeliranju heterogenih mate-
rijala na granicama dijelova modela s razlicitim homogenim svojstvima javljaju diskonti-
nuiteti u polju derivacija. Modeliranje takvih materijala pomoc¢u bezmreznih metoda
stoga zahtijeva primjenu posebnih numeric¢kih postupaka koji osiguravaju globalni konti-
nuitet aproksimacijske funkcije nepoznate veli¢ine polja (npr. pomaci ili temperatura), ali
i nagli skok u njenim derivacijama na samom spoju [40, 41]. Vecina postoje¢ih spomenu-
tih postupaka za modeliranje diskontinuiteta prikazana je i opisana u sklopu pregleda
predmetnog podrucja. Analizom gore izlozenih prednosti i nedostatka moze se zakljuciti
da bezmrezne metode mogu biti prihvatljiva alternativa MKE za rjeSsavanje problema
deformiranja heterogenih materijala. U sklopu ovog istrazivanja odabrana je bezmrezna
mjesovita kolokacijska metoda ¢ije su glavne prednosti jednostavnost i brzina, a koja uz
primjenu mjesovitog pristupa rezultira povecanjem toc¢nosti dobivenih rezultata. Pregle-
dom dosadasnjih istrazivanja uoceno je da mjeSovita kolokacijska metoda do sada nije

primijenjena za rjeSavanje problema rubnih vrijednosti heterogenih materijala.

Trenutno stanje predmetnog podrucja

Naglim razvojem rac¢unalnih resursa zadnjih godina, bezmrezne metode pocele su se pri-
mjenjivati za rjeSavanje sve slozenijih problema. Jedan od tih problema jest i rjeSavanje
problema rubnih vrijednosti prilikom modeliranja deformiranja heterogenih materijala.
Pri modeliranju heterogenih materijala, najceséi problem koji se javlja kod bezmreznih

metoda jest kako opisati diskontinuitet u polju derivacija na spoju dvaju podrucja s
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razli¢itim materijalnim karakteristikama. Zbog visokog stupnja kontinuiteta aproksima-
cijskih funkcija potrebno je primijeniti posebne procedure za opisivanje diskontinuiteta
u polju deformacija, odnosno derivacija aproksimacijske funkcije za pomake duz granice
spoja. Istodobno, polje pomaka treba biti kontinuirano po cijelom podru¢ju. U ovom
odjeljku ¢e se prikazati do sada najcesée koristeni postupci za modeliranje diskontinuiranih
derivacija veli¢ina polja u bezmreznim metodama, zajedno s kritickim osvrtom na njihovu
numericku ucinkovitost. Takoder, ukratko ¢e se prikazati i do sada postojece i koristene
bezmrezne metode za modeliranje materijala primjenom teorija viseg reda. Prije toga
potrebno je spomenuti da su do sada sve dostupne bezmrezne metode za modeliranje
heterogenih materijala temeljene na aproksimaciji samo primarnih veli¢ina polja (pomak
ili temperatura) u kojima je potrebno izracunavati derivacije funkcija viseg reda, $to

povecava racunalne troskove i smanjuje to¢nost i stabilnost same numericke metode.

Modeliranje diskontinuiteta primjenom bezmreznih metoda

Postupke za modeliranje diskontinuiteta je moguce podijeliti u ¢etiri skupine s obzirom na
nac¢in zadovoljavanja geometrijskih (Dirichletovih) rubnih uvjeta na granici spoja dvaju
homogenih podruc¢ja: metodu Lagrangeovih multiplikatora, metodu sko¢nih funkcija,
metodu modificiranja baznih funkcija i metodu direktnog zadovoljavanja geometrijskih
(Dirichletovih) i prirodnih (Neumannovih) rubnih uvjeta. Prirodni rubni uvjeti na spoju
dvaju podrucja pritom mogu biti zadovoljeni koristenjem slabog oblika jednadzbi ravnoteze,
promjenom aproksimacijske bezmrezne funkcije ili direktno u ¢vorovima na granici spoja,

ovisno o odabranoj metodi koristenoj za zadovoljavanje geometrijskih rubnih uvjeta.

Metoda Lagrangeovih multiplikatora

Metoda Lagrangeovih multiplikatora koristi se uglavnom u bezmreznim formulacijama
temeljenim na slabom obliku jednadzbi ravnoteze [42, 43]. Dirichletovi rubni uvjeti tj.
kontinuitet pomaka zadovoljen je u integralnom obliku po granici spoja dvaju homogenih
podru¢ja. Neummanovi rubni uvjeti na granici spoja zadovoljeni su koristenjem slabog
oblika jednadzbi. Metoda vuce korijene iz prosirenih varijacijskih principa [44] izvedenih
za potrebe rjesavanja metodom konac¢nih elemenata [45]. Prvi put je primijenjena za
modeliranje diskontinuiteta materijala EFG metodom (engl. Element Free Galerkin) [46]
i to za probleme jednodimenzijskog Stapa izradenog od dvaju razlicitih materijala te za
problem kruzne uklju¢ine u beskonacnoj ploci [42]. Kasnije je primijenjena i za rjeSavanje
problema toplinskog provodenja u kruznom disku izradenom od dva razlicita homogena
materijala [43] pomoéu MLPG5 metode [47]. Heterogeno tijelo se u oba slu¢aja promatra

kao unija odvojenih homogenih podrucja i po svakom od njih diskretizacija se provodi
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zasebno, ukljucujuéi i aproksimaciju nepoznatih velicina polja. Za spajanje spomenu-
tih podrucja koriste se integralni uvjeti kontinuiteta. U integralnom uvjetu pojavljuje
se nepoznanica u vidu Lagrangeovog multiplikatora koji se fizikalno moze interpreti-
rati kao povrsinska sila potrebna za nametanje kontinuiteta pomaka [42]. Prednosti
metode koristenja Lagrangeovih multiplikatora su da za isti broj ¢vorova rezultira manjom
greskom u usporedbi s metodom skoc¢nih funkcija i daje veliku to¢nost rezultata za pomake
u ¢vorovima [43]. Medutim, metoda takoder posjeduje relativno velik broj nedostataka: u
nekim slucajevima potrebni su posebni rjesavaci za globalni sustav diskretiziranih jedna-
dzbi [48], povecava se broj ¢vornih nepoznanica [48], javljaju se oscilacije u derivacijama
polja pomaka oko spoja [42, 49], zbog koristenja slabog oblika jednadbi potrebna je inte-
gracija po granici spoja §to uzrokuje povecanje vremena racunanja [50] i konacno, toénost

je manja nego kod metode konac¢nih elemenata [50].

Metoda skoc¢nih funkcija

Metoda skoénih funkcija (engl. jump functions) temelji se na proSirenju aproksima-
cijske funkcije prikladnom sko¢nom funkcijom definiranom lokalno u podrué¢ju oko granice
spoja homogenih podrucja razli¢itih materijalnih karakteristika. Aproksimacijska funkcija
veli¢ine polja opisuje se preko cijelog heterogenog podrucja i sastoji se od dva dijela, regu-
larnog i singularnog. U regularnom dijelu aproksimacije koristi se standardna bezmrezna
aproksimacijska funkcija, dok se za singularni dio kao prosirenje odabire sko¢na funkcija.
Sko¢nu funkciju potrebno je konstruirati unaprijed i to tako da su aproksimacija i njena
prva derivacija kontinuirane svugdje osim na granici spoja, gdje prva derivacija mora
biti diskontinuirana. Ovakvo proSirenje aproksimacijske funkcije naziva se ekstrinzi¢nim
prosirenjem te rezultira novim nepoznanicama na globalnoj razini modela kao §to je npr.
amplituda skoc¢ne funkcije. Metoda je prvi put razvijena, testirana i primijenjena s EFG
metodom. Standardna bezmrezna aproksimacijska funkcija pomicnih najmanjih kvadrata
(engl. Mowing Least Squares - MLS) [51] prosirena je s dvije razliite sko¢ne funkcije
(engl. spline i ramp) [52]. Metoda skocnih funkcija primijenjena je takoder za rjesavanje
problema provodenja topline [43] u kombinaciji s MLPG1 metodom [47]. Provedena je
detaljna matematicka analiza metode iz [52] i izvedena je metoda kod koje se standardna
bezmrezna aproksimacijska funkcija MLS prosiruje klinastom skoénom funkcijom (engl.
wedge function) [53]. Tako dobivena prosirena aproksimacijska funkcija primijenjena je
u kombinaciji s kolokacijskom metodom (engl. Point collocation method - PCM) [54]
za rjeSavanje problema eliptickih diferencijalnih jednadzbi. Primjena metode skocnih
funkcija na modele s malim brojem ¢vorova na granici spoja rezultira manjom greskom u
usporedbi s metodom Lagrangeovih multiplikatora, ali trend se mijenja povecanjem broja

¢vorova [43]. Medutim, u nekim slucajevima mogu se dobiti vrlo toéni rezultati na spoju
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i u neposrednoj blizini spoja [52]. Nedostaci metode zabiljezeni i navedeni u literaturi
su sljede¢i: s povecanjem broja ¢vorova norme greSaka ostaju nepromijenjene [43], za
metodu je potrebna interpolacija u krivocrtnim koordinatama sto postaje vrlo slozeno
kod trodimenzijskih problema [50], sko¢nu funkciju je potrebno definirati unaprijed i njen
oblik utjece na tocnost dobivenih rezultata [49], potrebni su dodatni stupnjevi slobode za

odredivanje amplitude sko¢ne funkcije [49].
Metoda modificiranja baznih funkcija

U metodi modificiranja baznih funkcija standardne baze bezmreznih aproksimacija mije-
njaju se dodatnim ¢lanovima tako da se na granici spoja homogenih materijala razlicitih
svojstava dobije njihov diskontinuitet derivacija. Heterogeni materijal diskretizira se kao
jedno podrucje te se u skladu s tim aproksimacijska funkcija velicine polja takoder definira
preko cijelog heterogenog tijela. Prirodni rubni uvjeti na granici spoja direktno su zado-
voljeni koristenjem modificirane bezmrezne aproksimacije. Bezmrezne aproksimacijske
funkcije mijenjaju se direktno promjenom baze $to ne rezultira novim nepoznanicama
na globalnoj razini (intrinziéno prosirenje). Promjena bazne funkcije moze se izvrsiti na
dva nacina. Prvi nacin prikazan je u [49], gdje je za jednodimenzijski problem umjesto
standardne linearne MLS aproksimacijske funkcije definirana bilinearna MLS aproksi-
macijska funkcija koja ima diskontinuiranu derivaciju na granici spoja. Nepoznati koefi-
cijenti odredeni su minimiziranjem tezinskog funkcionala, slicno kao i kod standardne
MLS aproksimacije. Bezmrezna aproksimacija s modificiranom bazom primijenjena je
u EFG metodi za probleme jednodimenzijskog sStapa izradenog iz dva razlicita mate-
rijala, problem heterogenog rotiraju¢eg diska, problem savijanja grede sastavljene od dva
razli¢ita materijala i problem kruzne uklju¢ine u beskona¢noj ploé¢i [49]. Drugi nacin
prikazan je u [55] gdje je aproksimacijska funkcija podijeljena na dva dijela, regularni i
singularni. Kao i kod metode sko¢nih funkcija u regularnom dijelu aproksimacije koristi
se neka od standardnih bezmreznih aproksimacijskih funkcija, dok se za singularni dio
kao intrinzi¢no prosirenje odabire funkcija koja ne unosi dodatne nepoznanice u krajnju
bezmreznu aproksimacijsku funkciju. Tako modificirana aproksimacijska funkcija mora
osigurati kontinuitet velicine polja i diskontinuitet u derivaciji velicine polja na spoju
dvaju homogenih podruéja. U [55] je za singularni dio aproksimacijske funkcije odabrana
slicna klinasta funkcija (engl. wedge function) kao i u [53]. Takva modificirana aproksi-
macijska funkcija [55] iskoristena je u kombinaciji s kolokacijskom metodom (engl. Point
collocation method - PCM) za rjesavanje problema jednodimenzijskog heterogenog stapa
i Poissonovog problema sa skokom derivacija. Prednosti ove metode su sljedece: daje vrlo
tocne rezultate, nema potrebe za definiranjem dodatnih parametara funkcija te uvodenja

dodatnih stupnjeva slobode i aproksimacija se provodi jednostavno preko cijelog modela
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[49, 55]. Znacajan nedostatak je komplicirana aproksimacija za dvodimenzijske i trodi-

menzijske probleme [49].
Metoda direktnog zadovoljavanja rubnih uvjeta

U metodi direktnog zadovoljavanja rubnih uvjeta na granici spoja dvaju homogenih ti-
jela razlicitih materijalnih karakteristika u svakom od ¢vorova na granici eksplicitno se
postavljaju geometrijski i prirodni rubni uvjeti, odnosno postavlja se kontinuitet pomaka
ili temperature i reciproc¢nosti vektora naprezanja ili kontinuitet toplinskog toka. Hete-
rogeno tijelo promatra se kao unija odvojenih homogenih podrucja, slicno kao u metodi
Lagrangeovih multiplikatora. Na granici spoja diskretizacija se vrsi pomoc¢u dvostrukih
¢vorova, odnosno pozicije ¢vorova koji pripadaju razlicitim homogenim podrucjima se
medusobno poklapaju. Zbog svoje jednostavnosti metoda je Siroko primjenjiva i do sada
je posluzila za rjesavanje problema elasticnog deformiranja heterogenih materijala [48, 50,
56], mikromehanicke analize kompozitnih materijala [19, 20, 57] te problema provodenja
topline [58]. Koristena je u rjesavanju problema bezmreznim metodama temeljenim na
integraciji slabog oblika jednadzbi ravnoteze [19, 20, 48, 57, 58], na jakom obliku jednadzbi
ravnoteze (kolokacijske metode) [56] kao i na njihovoj kombinaciji [50]. Metoda posjeduje
neke od najvaznijih prednosti: jednostavna je za implementaciju, numericki je ucinkovita
i tocna [19, 20, 48, 50, 56, 57], zadovoljavanje rubnih uvjeta kontinuiteta na granici spoja
moze se izvesti bez numericke integracije (u jakom obliku) [56]. Jedini nedostatak metode
je potreba za istovremenim eksplicitnim nametanjem Dirichletovih i Neummanovih rubnih

uvjeta [56.

Iz prikazanih prednosti i nedostataka pojedinih metoda za modeliranje diskontinuiranih
derivacija veli¢ina polja moze se uociti da najmanji broj nedostataka imaju metoda modi-
ficiranja baznih funkcija i metoda direktnog zadovoljavanja geometrijskih i prirodnih ru-
bnih uvjeta. Metoda modificiranja baznih funkcija ima jedno jako nepovoljno svojstvo, a
to je komplicirana i rac¢unski skupa aproksimacija pri rjesavanju dvodimenzijskih i trodi-
menzijskih problema. S druge strane, metoda direktnog zadovoljavanja Dirichletovih i
Neummanovih rubnih uvjeta na granici spoja jednostavna je, uc¢inkovita i toéna metoda te
ne unosi dodatne nepoznanice u sustav na globalnoj razini kao sto je to slucaj kod metode
Lagrangeovih multiplikatora ili metode sko¢nih funkcija. Dosad je uspjesno primijenjena
za rjeSavanje Sirokog spektra fizikalnih problema, te je stoga koristena u sklopu novih

bezmreznih metoda sadrzanih u ovoj disertaciji.
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Modeliranje materijala primjenom bezmreznih metoda
temeljenih na teorijama viseg reda

Osim poznate klasi¢ne linearno-elasticne teorije za analizu deformiranja materijala pri-
mjenom bezmrzenih metoda u danasnje vrijeme primjenjuje se i tzv. gradijentna (engl.
strain gradient) teorija. Gradijentne teorije uvedene su kako bi se to¢no opisale fizikalne
pojave koje ovise o mikrostrukturi materijala i mogu se samo priblizno opisati primjenom
klasiénih materijalnih teorija kao npr. problemi deformiranja konstrukcije kada odziv
same konstrukcije ovisi o veli¢ini razmatranog uzorka [59] te problem opisivanja polja
naprezanja oko propagirajuce pukotine [13]. Deformiranje dvodimenzijskih izotropnih ma-
terijala primjenom gradijentnih teorija moze se opisati eliptickom diferencijalnom jedna-
dzbom cetvrtog reda te se stoga prilikom rjesavanja javlja potreba za izracunavanjem
derivacija funkcija oblika visokog reda. U podruc¢ju problema elasticnog deformiranja
konstrukcija razvila se posebna skupina deformacijskih gradijentnih teorija sa samo jednim
unutarnjim duljinskim parametrom (engl. internal length parameter) [15] koje se najcesée
koriste u kombinaciji s bezmreznim metodama radi svoje izravne i jednostavne imple-
mentacije. Gradijentne bezmrezne metode su do sada primijenjene na probleme modeli-
ranja utjecaja velic¢ine razmatranog uzorka na deformiranje konstrukcije [26, 39, 60, 61],
modeliranje oSte¢enja u nehomogenim materijalima [62], analizu utjecaja razine modeli-
ranja materijala na deformiranje mikro slojeva [63] i izvijanje ugljicnih nano cijevi [64].
Tako su dobiveni tocni rezultati, visoki troskovi izracunavanja derivacija veli¢ina polja
visokog reda opcenito predstavljaju velik problem u postojeé¢im numerickim kodovima.
Stoga postoji potreba za razvojem novih bezmreznih strategija za rjeSavanjem problema

gradijentnom teorijom.

Cilj i hipoteze istrazivanja

Cilj istrazivanja je razvoj bezmreznih kolokacijskih metoda temeljenih na mjesovitom
principu za numericku analizu procesa deformiranja heterogenih materijala. Primjenom
bezmrezne metode umjesto do sada najcesce koristene metode konacnih elemenata, una-

prijedit ¢e se nac¢in rjeSavanja problema rubnih vrijednosti heterogenog materijala.

e Prvi cilj istrazivanja jest izvesti bezmreznu mjeSovitu kolokacijsku metodu za rjesa-
vanje jednodimenzijskog i dvodimenzijskog problema rubnih vrijednosti heterogenih
materijala sastavljenih iz vise razlicitih homogenih podruc¢ja primjenom klasicne
linearno-elasticne teorije. Jednadzbe ravnoteze diskretizirat ¢e se u kolokacijskim
¢vorovima, nece biti potrebe za numerickom integracijom, te ¢e se do konac¢nog
sustava jednadzbi sti¢i puno brze i racunski ucinkovitije u odnosu na postojece

bezmrezne formulacije.
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e Drugi cilj istrazivanja odnosi se na prosirenje izvedene bezmrezne mjesovite koloka-
cijske metode za rjeSavanje problema rubnih vrijednosti heterogenih materijala na
rjeSavanje problema primjenom gradijentne teorije. Pomoc¢u spomenute bezmrezne
metode smanjit ¢e se broj nepoznanica u diskretizacijskim ¢vorovima, $to je znacajna
prednost u odnosu na metodu konac¢nih elemenata. Na taj nacin posti¢i ¢e se tocniji

i numericki ucinkovitiji algoritmi u odnosu na postojece formulacije u literaturi.

Hipoteze istrazivanja su:

1. Primjenom mjeSovite bezmrezne metode posti¢i ¢e se veca tocnost i numericka
ucinkovitost pri numerickom modeliranju procesa deformiranja heterogenih mate-
rijala u odnosu na postojeée numericke postupke temeljene na metodi konacnih

elemenata.

2. Bezmrezna metoda omogucéit ¢e uc¢inkovitije postizanje potrebnog kontinuiteta inter-
polacijske funkcije pri primjeni gradijentne deformacijske teorije, sto bi moglo pove-

¢ati tocnost modeliranja diskontinuiteta u heterogenim materijalima.

Zakljucak i doprinos rada

Sve do sada dostupne bezmrezne metode za modeliranje heterogenih materijala temeljene
su na metodi pomaka (osnovni pristup) u kojima je potrebno izracunavati druge derivacije
bezmreznih funkcija Sto povec¢ava racunalne troskove. U mnovo izvedenim bezmreznim
mjesovitim kolokacijskim metodama za modeliranje deformiranja heterogenih materijala
primjenom linearno elasti¢ne teorije sve komponente pomaka i naprezanja aproksimirane
su istim funkcijama koje moraju imati samo C' kontinuitet. Sukladno tome u izvedenoj
mjesovitoj kolokacijskoj metodi temeljenoj na Aifantisovoj gradijentnoj teoriji aproksimi-
rane su komponente gradijenata pomaka ili deformacija, odnosno komponente ¢vornih po-
maka ili deformacija koje takoder moraju posjedovati samo C' kontinuitet. Odnosno, za
sklapanje ¢vornih matrica krutosti kod obje formulacije problema potrebno je izracunavati
samo prve derivacije funkcija oblika. U oba sluc¢aja dobiva se sustav rjesivih jednadzbi
u kojima su nepoznanice samo ¢vorni pomaci, odnosno ¢vorne deformacije ovisno o
formulaciji. Primjenom adekvatnih kinematickih relacija i prikladne konstitutivne jed-
nadzbe mogu se izracunati sve ostale potrebne veliine. Numericka uc¢inkovitost i tocnost
modeliranja heterogenih materijala ovdje je stoga pove¢ana smanjenjem potrebnog reda
derivacija aproksimacijskih funkcija. RjeSenja dobivena primjenom izvedenih metoda
to¢nija su u odnosu na postoje¢e formulacije Sto se i ocituje analizom gresaka u nu-

merickim primjerima.
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Prosireni sazetak

Ocekivani znanstveni doprinos istrazivanja:

1. Razvoj nove mjesovite bezmrezne kolokacijske metode za modeliranje deformiranja
heterogenih materijala temeljene na linearno elasticnoj formulaciji problema rubnih

vrijednosti.

2. Izvod nove bezmrezne formulacije temeljene na gradijentnoj deformacijskoj teoriji
koja ¢e omoguciti toc¢nije i uc¢inkovitije modeliranje deformiranja materijala od do
sada raspolozivih bezmreznih numerickih algoritama temeljenih na teorijama viseg

reda.
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Introduction

1 Introduction

1.1. Background and motivation

Most engineering materials that are utilized in practice have a heterogeneous structure.
From the engineering standpoint, heterogeneous materials are desirable because they can
be designed to take advantage of the best properties of each individual constituent [65].
Size, shape, spatial distribution and properties of each constituent that make up the
microstructure have a significant impact on the behaviour of the material at the macro
level [66]. Accordingly, the development of new more durable materials is a challenge and
it is usually done empirically. In so doing, a large number of specimens with different
microstructure has to be fabricated and rigorously tested until a desired material behavior
is achieved, which increases costs. Consequently, accurate numerical models are preferable
in order to reduce the time and financial costs of the experimental methods. For this
reason, in recent time, the boundary value problem at the micro level is solved using
numerical methods, where the Finite Element Method (FEM) [67] is mostly applied. In
the numerical modeling of the heterogeneous materials composed of more homogeneous
parts with different material properties, creating of a mesh of finite elements near their
interface can be time-consuming and numerically demanding. Therefore, especially for
spatial discretization, there is a need for techniques that use adaptive remeshing. This
technique of using ever smaller elements increases the computing time by introducing new
nodal unknowns, as well as the risk of element distortion, which may corrupt the accuracy
of the solution.

Thus, as an alternative to FEM, meshless methods are applied because of their com-
parative advantages [68]. These methods have the potential to overcome time-consuming
mesh generation and element distortion problems associated with the widely used FEM.
In that way, computational models are discretized using only a set of nodes that are not
connected into elements [69]. In addition, the derivation of approximation functions with

a high degree of continuity can be accomplished in a relatively simple manner [70], which
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is extremely beneficial when gradient theories are utilized. Despite the recent wide use of
meshless methods in the scientific community, high computational costs associated with
the calculation of meshless approximation functions still represent a severe setback [69].
Hence, an improvement in this field is more than necessary and accordingly, even better
meshless methods have to be developed. The accuracy and numerical efficiency of cur-
rently used methods for the analysis of heterogeneous materials can therefore be improved
by the application and development of new meshless methods. In the presented research,
the Meshless Local Petrov-Galerkin (MLPG) [28] concept in combination with the col-
location methods based on the mixed approach [71] is utilized for the first time to solve
the deformation problem of heterogeneous materials. The developed mixed collocation
methods are applied for the classical linear elastic and gradient elasticity boundary value

problem.

1.2. Overview of meshless methods

It is well known that any occurrence, either of physical, geological, mechanical, elec-
trical or biological nature, can often be described using algebraic, differential or integral
equations. Getting the correct solution for the problems described by these equations is
an ideal scenario. Unfortunately, exact solutions are possible only for a limited number
of practical problems because most of the real problems in the nature are very complex.
Therefore, the use and development of numerical methods to obtain approximate solutions
are inevitable. The conventional numerical methods utilize the predefined connection be-
tween discretization nodes, hence relying on the use of predetermined meshes. The FEM
[72] and the Finite Volume Method (FVM) [73] are perhaps the best known examples
of these today already thoroughly developed methods. In contrast, in the last decades
a new class of numerical methods has been developed in which the approximation of
partial differential equations is performed only by using sets of scattered nodes, without
the need for burdensome creation of meshes. Therefore, in this section numerical meth-
ods called meshless methods are described along with their properties and chronological

development.

1.2.1. Description and properties of meshless methods

Throughout the last four decades, a large number of meshless methods has been re-
searched and, in doing so, attributed various different names. Despite the different names
it is interesting to note that in fact there are many similarities regarding all of these meth-
ods. Before the overview of todays meshless methods is given, a description of their most

important properties is presented. The mentioned properties are at the same time also
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compared with the properties of numerical methods that use meshes for the discretization

of the geometry.

e No mesh needed

¢ In meshless methods the connectivity of nodes is determined during the nu-

merical calculation.

¢ Conformity of discretization meshes does not have to be fulfilled. Big problem
with methods that rely on meshes, for example when modeling the propagation

of cracks or shear layer effects [74].

o Simple h-adaptivity by just adding nodes in a numerical model and calculating
of new connectivity between the nodes. The p-adaptivity is also performed in

a more simple manner compared to methods based on meshes.

¢ No adaptive meshing during calculation. When modeling problems with large
deformations or moving discontinuities with mesh-based methods, there is a
frequent need for remeshing, which can lead to significant problems in obtaining

accurate solutions [75].
e Construction of shape functions with arbitrary degree of continuity

© Meshless methods easily meet the required necessary continuity conditions of
shape functions for most engineering problems. In comparison, in the methods
that rely on the use of meshes, ensuring the needed continuity of the approxi-

mation functions can sometimes pose a problem [16].

¢ Additional post-processing is not necessary to determine the required smooth

contours of fields, for example strains and stresses.

o There are also special cases where high continuity meshless functions can be
a drawback. For example, when there is the discontinuity in the strain or
stress fields at the material interfaces or when modeling crack initiation and
propagation. These situations can be overcome by using various numerical
procedures [50, 76].

e Convergence

¢ For the same order of consistency, numerical tests indicate that the convergence
of meshless methods can be significantly faster than methods that rely on the

use of meshes [77].
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e Computational efficiency

¢ In practice, for certain reasonable accuracy, meshless methods require consid-

erably more time than the methods that use meshes.

¢ The construction of meshless shape functions is quite complex in comparison

to FEM where functions have polynomial form.

¢ The number of integration points required for the exact calculation of the
integrals in the weak form methods is significantly higher because the shape

functions are not of polynomial character.

¢ In collocation methods, there is no need for numerical integration, but they

have certain problems related to the accuracy and stability [27].

¢ In meshless methods, at each integration point, certain numerical procedures
for the calculation of a shape function and its derivatives are often needed, such
as: creating lists of neighboring nodes, solving of small systems of equations

and matrix multiplication operations.

¢ The bandwidth of the final system of equations in meshless methods is generally

higher when compared to the mesh-based methods [75].
¢ Essential and natural boundary conditions

¢ Some meshless shape functions do not possess Kronecker delta property, in
contrast to the methods that use mesh-based discretization. Therefore, the
fulfillment of essential and natural boundary conditions requires special atten-

tion [34], because it can affect the convergence of numerical methods [78].

As can be seen from the above properties, meshless methods have certain advantages,
but there are also some disadvantages. Therefore, great caution and a good critical
review of obtained numerical solutions are necessary regardless of the method applied.
Nowadays, there is a large number of meshless methods as a result of new improvements
and formulations added and developed over the years. Some of the most known meshless
methods are given in the approximate chronological order of development and comprised
in Table 1.1. A classification and overview of most meshless methods can be also found
in [74, 75, 79, 80].

In the scope of this Thesis, in order to solve the problem of deformation of hetero-
geneous materials, using both classical and gradient linear elasticity, the Meshless Local
Petrov-Galerkin procedure [27] with the Moving Least Squares (MLS) [28] with interpo-
lation properties (IMLS) [106] and the Radial Point Interpolation Method (RPIM) [107]
functions are utilized. The derived methods with the corresponding meshless interpolation

functions are shown in more detail in the chapters that follow.
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Table 1.1: Chronological overview of meshless methods

No. | Name of meshless method Abbreviation
L. Finite Difference Method [81] FDM
2. Method of Fundamental Solutions [82] MFS
3. Smooth Particle Hydrodynamics [83] SPH
4. Diffuse Element Method [84] DEM
5. Element Free Galerkin [85] EFG
6. Reproducing Kernel Particle Method [86] RKPM
7. Finite Point Method [87] FPM
8. HP-Cloud method [88] HPC
9. Partition of Unity Method [89] PUM
10. | Natural Element Method [90] NEM
11. | Meshfree Polynomial Point Interpolation Method [91] PPIM
12. | Local Boundary Integral Equation [92] LBIE
13. | Generalized Finite Element Method [93] GFEM
14. | Meshless Local Petrov-Galerkin method [94] MLPG
15. | Least-Squares Meshfree Method [95] LSMM
16. | Meshless Finite Element method [96] MFEM
17. | Meshfree Local Radial Point Interpolation Method [97] LRPIM
18. | Reproducing Kernel Element Method [98] RKEM
19. | Radial Basis Function Collocation Method [99] RBFCM
20. | Radial Basis Collocation Method [100] RBCM
21. | Discrete Least-Squares Meshless Method [101] DLSMM
22. | Smoothed Point Interpolation Method [102] S-PIM
23. | Viscous Vortex Domains method [103] VVD
24. | Optimal Transportation Method [104] OTM
25. | Radial Basis Integral Equation method [105] RBIE

1.2.2. Classification of meshless methods

Meshless methods can be divided into three basic groups according to the manner of
obtaining and solving discretized system of equations. This section will therefore briefly
describe the approach, limitations, applications, advantages and disadvantages of partic-

ular groups of methods.
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e Strong form methods

The methods are based on the strong form of differential equations of equilibrium
and are usually referred to as collocation methods [71, 108]. In the collocation
methods, the equilibrium equations are written and imposed at the discretization
nodes of the numerical model. There is no numerical integration, so there is also no
need to create background cells for integration. Hence, the strong form methods are
truly meshless methods. Therefore, they possess several attractive advantages. For
example, a simple algorithm for assembling a solvable system of equations, speed
and computational efficiency. Also, they are efficient in a sense that they result
in accurate solutions if only essential boundary conditions need to me enforced in
the numerical model. As some of the representatives of the methods based on the
strong form, the Finite Difference Method [81], the Radial Basis Function Colloca-
tion Method [99] and the Radial Basis Collocation Method [100] can be mentioned.
However, this type of meshless method can be often unstable and inaccurate, es-
pecially if natural boundary conditions are present in the numerical model. Unlike
integration that has a smoothing character, taking derivatives increases the error
of approximation. This input of errors is partly responsible for the instability of
solutions that occurs when solving the partial differential equations with the strong
form methods. In the collocation methods, there are several different approaches for
enforcing the natural boundary conditions of which direct collocation [71] and the
penalty method [34] are most commonly used. The procedure suitable for one type
of problem does not necessarily have to be the best option for a similar or different
type of problem. Therefore, there is still a need for the development of a stable
collocation method. The mentioned problems can be alleviated to a certain extent
by using a mixed approach. This approach reduces the demand on the continuity
degree of approximation function and the need for the higher derivative calculations,

which increases accuracy and stability [71, 76].

o Weak form methods

In weak form methods, the partial differential equations with the accompanied nat-
ural boundary conditions are reshaped to the integral form using different numerical
approaches. Weak forms are then used to obtain the system of algebraic equations
through numerical integration procedure using predetermined background cells that
can be defined globally over the entire problem domain or locally over the part of
the computational domain [28, 35]. There are several properties associated with
using the weak forms that should be noted. The operation of integration smudges

the error within the integrated area and this increases the accuracy of solutions.
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Integrating acts as some kind of regularization to stabilize the numerical solution.
A request on the continuity of a test function is also reduced by applying the diver-
gence theorem, resulting in the decreasement of the needed order of derivatives in
the integral equations. The natural boundary conditions are satisfied in the weak
sense, because they appear in the the weak form equations. Therefore, the system
of equations and the natural boundary conditions are a part of the same integral
equation. These properties give the weak form methods certain advantages such
good stability and excellent accuracy for a wide range of problems. There is no
need for additional equations and the numerical methods for the imposition of the
natural boundary conditions. Such meshless method is applicable to many prob-
lems, and a set of parameters used to solve one problem can be used for a wide
range of other problems. The mentioned robustness is shown in a large number
of solved practical engineering problems. Today, there are many variations of the
weak form methods. Hence, the meshless methods based on the global weak form of
equations are called simply meshless global weak form methods while those based
on local weak form of equations are referred to as meshless local weak form meth-
ods. The meshless global weak form methods are based on the integration of the
global Galerkin weighted residual equations and the use of meshless approxima-
tions functions. These methods are meshless only in terms of the approximation
of desired fields components. Background cells are required over the entire com-
putational domain for the purpose of integration. As some of the representatives
of the global weak form methods the Element Free Galerkin (EFG) [85] and the
Reproducing Kernel Particle Method (RKPM) [86] can be mentioned. The mesh-
less local weak form methods are based on the integration of the local weak forms
of Galerkin equations and meshless approximation of field unknowns over local do-
mains. Herein, local integration areas are often very simple, circular or rectangular
in shape, and are automatically constructed during the calculation process. Some of
the representatives of these methods are the HP-Cloud method [88] and the Mesh-
less Local Petrov-Galerkin (MLPG) method [94]. Numerical integration makes this
group of global and local weak form methods computationally more expensive when
compared to the collocation methods. Although the development of meshless local
weak form methods is an important step in the reaching the ideal meshless method,
numerical integration is still a severe obstacle. This is especially the case for the
nodes positioned at or near the outer boundary of the computational domain when
the boundary is complex shaped. Local integration is also computationally expen-
sive for some practical engineering problems. It is therefore desirable to reduce the

need for integration in the numerical methods.
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o Weak-strong form methods

Weak-strong form methods have been designed to utilize the advantages of both
weak and strong methods, and avoid their disadvantages [109, 110]. They have
been created for the purpose of removing the need for background integration cells as
much as possible, and at the same time to provide stable and accurate solutions even
in problems in which the derivative boundary conditions are present. The main idea
of this type of methods is to create a system of discretized equations where weak and
strong methods are used selectively, depending on the position of the discretization
nodes. The weak form methods are used only for nodes in which or near which the
natural boundary conditions are prescribed. The strong form methods are utilized in
all remaining nodes of the computational model. The advantage of this approach is
that the natural boundary conditions can be enforced simply and precisely using only
the weak form for arbitrary arrangements of nodes. Furthermore, the methods use
only a small number of background cells for integration to speed up the calculations.

Also, the methods are regarded as stable, accurate and computationally efficient.

Each meshless method has certain advantages and disadvantages. After a detailed
analysis of these advantages and disadvantages, a suitable method for solving each par-
ticular problem can be chosen. In order to asses the quality of a meshless method the
convergence speed and the accuracy of the solution are most important. Here, it should
be stated that this Thesis deals only with the development of collocation methods of the
mixed type that are fast and applicable for solving of the boundary value problem of
heterogeneous materials. Hence, these type of methods will be presented and described

in detail in the upcoming chapters.

1.3. Meshless modeling of heterogeneous materials

The definition of the meshless approximation functions with a high degree of continu-
ity at the level of the numerical model is a convenient feature when solving problems such
as bending of thin plates [111] or shells [112]. However, a high degree of continuity of the
meshless functions causes difficulties when solving the problems with the discontinuity
of unknown field variables. Also, the modeling of such problems with meshless methods
requires the application of special numerical approaches to ensure the continuity of the
global approximation functions of unknown field, and a sudden jump in its derivatives at
the material interface [50]. Furthermore, using classical linear elasticity formulation only
sharp jump in derivative fields at the material interfaces can be captured [56]. There-
fore, for more accurate description of the derivative fields and the behaviour of the entire

heterogeneous structure at the micro scale, strain gradient elasticity formulation can be
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applied [113]. Lately, strain gradient material formulations are often used for the mod-
eling of size effects in homogeneous materials [39] or the removal of discontinuities in
heterogeneous materials [13]. They are still very much utilized when solving the problem
using FEM, but with the continuous increase in the computational power, more meshless
methods based on higher-order theories should arise. In the following subsections, the
existing methods for the modeling of material discontinuity and meshless methods based

on gradient elasticity are presented and discussed.

1.3.1. Modeling of material discontinuity

Besides well-known finite element procedures, through past decades a large number of
various meshless methods has been considered for the modeling of heterogeneous struc-
tures. Some of these methods include the Element Free Galerkin method (EFG) [85], the
Reproducing Kernel Particle Method (RKPM) [86], the Meshless Local Petrov-Galerkin
method (MLPG) [28], the Point Collocation Method (PCM) [91], the Radial Basis Col-
location Method (RBCM) [100], the Discontinuous Galerkin Meshfree Method (DGMM)
[114] and the Smoothed Point Interpolation Method (S-PIM) [115], with appropriate en-
hancements in order to accurately capture the derivative fields in heterogeneous problems.
One of the first methods developed for the modeling of material discontinuity is based
on the introduction of the interface continuity condition in the classical variational form
using Lagrange multipliers [42] in the EFG method. In general, this type of Lagrange
multiplier method yields a non-positive definite matrix and increases the global number
of unknowns. The work in [42] was later expanded using the approach based on the aug-
mented Lagrangian formulation [44]. Therein, neither the Lagrangian multipliers nor the
penalty method needed to be utilized. Accordingly, no additional unknowns had to be
determined and the discretized system of equations remained well-conditioned. Another
strategy considered for the modeling of the material interface is the enrichment of conven-
tional meshless approximation schemes with special jump or wedge functions [52]. This
enrichment can be done in two different manners. The first one is intrinsical [49, 55], where
the basis of the approximation function is modified without introducing any additional
unknowns whilst at the same time ensuring the accurate description of the derivative field
near the interface. The second one is extrinsical [53, 116], where the approximation func-
tion is simply expanded with a term governed by the jump (wedge) functions, which is
only activated for the nodes near the material interface. This methods demonstrate better
accuracy that using classical variational form with Lagrange multipliers [49]. However,
additional degrees of freedom are sometimes required in order to determine the amplitude
of the jump function [52]. Approximations can be constructed where no additional degrees

of freedom are needed [116], but the jump (wedge) functions still need to be determined
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in advance and the choice of their shape also affects the accuracy of the methods consid-
ered. Similar enrichment methods in combination with the Reproducing Kernel methods
can be also found in [40, 117]. A more detailed comparison of the discontinuity methods
using the Lagrange multipliers and jump functions are presented in [43] for the modeling
of axisymmetric transient heat conduction in bimetallic disks, where two different MLPG
(MLPG1 and MLPG5) [47] methods are employed. Another procedure for the modeling
of derivative discontinuity that follows straightforward from using the DGMM is the im-
position of field variable continuity and the interface traction fluxes across the interface
boundary in a weak form [41]. Very recently, an interesting approach has been introduced
[118], which combines the meshless and isogeometric approximations in order to exploit
the robustness and flexibility of meshless methods in local discretization refinements and
the geometrical exactness of the isogeometric approach in the frame of a single formu-
lation. In [119], the isogeometric approach is used to accurately describe the geometry
of the material interface, as well as to describe the jump in the strain field. Thereby,
the fact that the C° continuity of the B-spline approximation at the interface boundary
can be easily achieved by simply repeating the B-spline knots positioned at the interface
is exploited. In the regions away from the interface, a quasi-convex meshless scheme is
applied for the approximation purposes, and the isogeometric and meshless regions are
blended by defining coupled isogeometric-meshless functions. It has been found out that
such approach yields better accuracy than a comparable classical meshless formulation,
while retaining the exact geometry description of the isogeometric approach. Probably
the most broadly prevailed methods for modeling the material discontinuity are the direct
methods. These methods can be also divided into two sub-groups. The first one deals
only with the direct imposition of essential boundary condition at the interface [48, 120],
while the second one uses the direct imposition of essential and natural boundary con-
ditions using the double node discretization of the material interface [50, 56]. From the
available literature [56], it can be observed that the better accuracy of the solution can
be achieved by enforcing both the appropriate displacement and the traction conditions
at the interface. Concerning the class of MLPG methods which is used in this Thesis, for
modeling of the derivative jump on the interface, the combination of MLPG2 and MLPGbH
approaches [27] can be utilized as in [50]. Therein, the MLPG2 method is used at the
nodes on the boundaries, while the MLPG)5 computational strategy is applied for the
nodes within the domain, so the domain integration is eliminated and the best features
of both methods are exploited. Nevertheless, for each method different basis functions
are considered, so the method lacks the consistency condition of the applied formulation
[41, 49]. Other applications of the direct imposition method include such problems as the

steady state heat conduction in heterogeneous materials [58] and the micromechanical
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modeling of unidirectional fiber reinforced composites [20, 57].

1.3.2. Meshless gradient elasticity modeling

Along with the well-known classical linear elastic material theory for the analysis of the
deformation of materials, nowdays also the so-called gradient theory [11, 12] is utilized.
In contrast to the classical theory, where the density of the elastic deformation energy
depends only on the symmetric strain tensor, in the gradient theory it is also a function of
strain gradient. Gradient theories have been introduced in order to describe more accu-
rately the physical phenomena that can not be precisely described by the application of a
widely known laws of continuum mechanics. Such problems include: problems of plastic
deformation of structures with a very complex response [59], the problem of describing
the stress fields around propagating cracks [13] and the description of the appearance of a
discontinuity in the strain field at the interface of areas with different material properties
[13]. Nowdays, there is a variety of gradient theories with a different number of param-
eters for the purpose of accurately describing the microstructure. In order to simplify
the implementation of the mentioned theories in numerical methods, it is preferred to
use those with the smallest possible number of parameters. For this reason, today most
used gradient theories are those with only one microstructural parameters such as the
Eringen [14] or the Aifantis [15] theory. The Aifantis theory is utilized and implemented
in the newly developed meshless methods presented in this Thesis. The analysis of de-
formation of isotropic materials using the Aifantis gradient theory is the mathematical
problem described by the elliptical differential equation of the fourth-order. Therefore,
solving this problem is not a trivial task and analytical solutions can be derived only for
the simplest examples. During the solution process, there is a need for the calculation of
high-order derivatives of the shape functions. Solving this problem using FEM requires
C! continuity of the approximation functions. In this case, the degrees of freedom consist
of nodal displacements and nodal displacement derivatives, resulting in complicated and
ineffective formulations with a large number of nodal unknown per finite element [16].
In addition to the formulation based on the displacement method, finite elements based
on a mixed approaches have been developed, which require complicated satisfaction of
the well known LBB conditions to ensure the stability of the method and also possess a
large number of unknown variables [18]. Therefore, it is obvious that currently there is
no efficient formulation of the finite element method for solving the problems with the
gradient material theory. In the elasticity, a special group of strain gradient theories
with only one internal length scale parameter [15] is developed. These theories are most
commonly used in the combination with meshless methods because of their direct and

simple implementation. So far, the gradient meshless methods have been applied to solve
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several demanding engineering problems. Some of these problems include: the modeling
of deformation in which the size of the considered numerical model directly influences the
response of the structure [60, 61, 63], damage modeling in the non-homogeneous material
[62] and buckling of carbon nano-tubes [64]. Although accurate results have been ob-
tained, in general the large computational costs of calculating the high-order derivatives
are a major drawback in the existing numerical codes. Hence, there is a need to develop

new meshless strategies for solving the problems using the deformation gradient theory.

1.4. Hypotheses, scope and objectives of the thesis

This section is dedicated to presenting the research hypotheses and the conducted
research covered in the Thesis. Firstly, the hypotheses of the newly developed meshless
methods for heterogeneous materials are mentioned. Secondly, the research conducted in

two phases is thoroughly described.

1.4.1. Hypothesis and goals of the thesis research

The objective of the presented research is the development of the mixed meshless
collocation methods for the numerical analysis of deformation of heterogeneous materials.
The solution of the boundary value problems using classical linear elastic and strain

gradient theory has been investigated.

The hypotheses of the research are:

1. The application of the mixed meshless method will ensure greater accuracy and
numerical efficiency in the modeling of deformation process of the heterogeneous
materials in comparison to the existing numerical methods based on finite element
method.

2. The mixed meshless method will enable more efficient implementation of deforma-
tion gradient theories in the numerical meshless methods, which could increase the
accuracy and the reliability of numerical modeling of realistic materials deformation

at both the micro and the macro level.

1.4.2. Description of the research conducted

As mentioned earlier, the research in the scope of the Thesis is divided into two phases.
In the first phase, the research is concerned with the solving of the standard boundary

value problem of heterogeneous materials. The mixed meshless collocation formulation
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for the numerical modeling of one-dimensional (1D) and two-dimensional (2D) boundary
value problems of heterogeneous materials is developed and compared to the existing
formulations based only on the approximation of unknown displacement components [56].
Each homogeneous area is discretized by a set of nodes in which the equilibrium equations
are employed in accordance to the collocation method [55]. The strong form of the
equilibrium equations in a meshless formulation can be considered as a special case of the
MLPG method, where the Dirac delta function [47] is chosen as the test function. It is
assumed that the homogeneous areas have linear elastic properties and the theory of small
strains is applied. The equilibrium equations are discretized using the stress components
and the system of equations is closed by employing the relations between displacements
and stress components [121]. Because the equilibrium equations are written only at the
discretization nodes, numerical integration is avoided and therefore the calculation of
the system matrix is very easy and quick. The displacement field solution for the entire
domain of heterogeneous material is obtained by connecting the subdomains with different
material properties by directly enforcing the essential and natural boundary conditions
at the collocation nodes on the interface of these regions [50], i.e. at the nodes on the
interface the displacement continuity and traction reciprocity conditions are imposed.
The independent variables are approximated by using the same meshless approximation
functions in such a way that each homogeneous area within the heterogeneous material
is considered separately. All the displacement and stress components are approximated
using the interpolation functions which must have at least C! continuity, i.e. the function
and the first derivatives of the function must be continuous [71]. For the approximation,
meshless approximations utilizing the Interpolating Moving Least Squares (IMLS) method
[122] and the Radial Point Interpolation Method with polynomial reproduction (RPIM)
[123] are used. The displacement conditions on the external boundaries are imposed
directly at the collocation nodes as in FEM due to the interpolatory properties of the
meshless shape functions.

In the second phase, the derived mixed collocation meshless formulation based on the
classical linear elastic theory is extended to solve the problem of deformation by applying
the gradient theory [13]. Herein, the model of the deformation strain gradient elasticity
according to Aifantis [15], based on the Mindlin theory [12], is implemented. Since solv-
ing the deformation problem of isotropic heterogeneous materials using Aifantis gradient
theory can be replaced by solving the elliptic differential equation of fourth-order, there
exists a need for calculating the relatively high-order derivatives of the approximation
function, which creates inaccuracy in the considered numerical method. This problem
can be overcome by splitting the problem into two related problems described by the

differential equations of second-order [124]. This can be only done when linear gradi-

13



Introduction

ent elasticity according to Aifantis is utilized [13]. In addition to the displacement and
strain components, the derivatives of displacement and strain components are also ap-
proximated with the same interpolation functions. Therefore, the equilibrium equations
are discretized using displacement or strain components and derivatives of displacement
or strain components, and then the solvable system of equations is obtained by using the
appropriate kinematic relations which link displacements or strains to derivatives compo-
nents of both fields. The application of these numerical methods results in the solvable
system of equations with only nodal displacements or strains as unknowns, dependent on
which operator split procedure is utilized. At the nodes on outer boundaries the classical
and gradient boundary conditions are enforced directly.

When using meshless collocation methods, some problems with convergence of the so-
lution can be observed if there are natural boundary conditions [71] present in the model,
so their impact on the accuracy and instability of the obtained solutions is investigated
in both phases. Since the problems with large strain gradients are analysed, the influence
of the discretization on the achieved accuracy of the numerical methods is investigated.
Herein, the impact of non-uniform and random nodal discretizations of the computational
domain on the accuracy is considered. The appropriate values of the meshless parame-
ters that affect the numerical solutions are determined by using parametric analyses.
All the developed numerical procedures are programmed in FORTRAN. New algorithms
are tested by appropriate numerical examples. Results are compared with the available
analytical and numerical solutions to determine the efficiency and accuracy of the new

proposed algorithms.

1.4.3. Expected scientific contribution

In this dissertation, the Meshless Local Petrov-Galerkin (MLPG) procedure based on
the mixed approach [71] is considered as an efficient remedy for the deficiencies arising
in FEM or primal meshless methods for the modeling of heterogeneous materials. Previ-
ously, this method has been successfully applied for solving certain demanding engineering
problems, such as bending of plates [121] and shells [125], topology optimization [126] and
the modeling of steady-state heat transfer [127]. Herein, it is considered for the modeling
of material discontinuity in heterogeneous structures for the first time. The collocation
method (MLPG2) is applied which may be considered as a special case of the MLPG
approach [27], where the Dirac delta function is employed as a test function in a local
weak form obtained by using the weighted residual approach at each discretization node
in the model. Since the collocation method is utilized, no cumbersome numerical integra-
tion over the computational domain or the boundaries is necessary. This ensures that the

discretized system of governing equations is obtained in a fast and straightforward man-

14



Introduction

ner. The mixed approach is considered, where each homogeneous region is discretized by
using independent interpolations of both displacements and stress components. The in-
terpolatory property of the meshless shape functions allows simple and direct impositions
of the boundary conditions at the discretization nodes, as well as the imposition of the
appropriate conditions at the material interface. No additional treatment or parameter
determination at the material interface is needed. A final closed system of discretized
governing equations with the displacements (strains) as unknown variables is obtained

through the kinematic and constitutive relations.
The expected scientific contribution of the Thesis is:

1. The development of a new mixed meshless collocation method for the modeling of
deformation of heterogeneous materials based on the linear elastic formulation of

boundary value problem.

2. The Development of a new meshless formulation based on the Aifantis strain gra-
dient theory, which will enable more accurate and efficient material modeling in

comparison to the available numerical algorithms.

1.4.4. Outline of the thesis

The Thesis is organized in seven chapters. In Chapter 2 overview of basic continuum
mechanics relations regarding classical linear elasticity and strain gradient linear elastic-
ity is given. Therein, kinematics, constitutive relations, equilibrium equations, essential
and natural boundary conditions are discussed for both material formulations. Global
and local weighted residual approaches are presented in Chapter 3. Herein, the utilized
MLPG procedure is also shown. The construction and derivation of meshless approxi-
mation schemes used in this dissertation, IMLS and RPIM, are presented and explained
in Chapter 4. Furthermore, Chapter 5 describes the derivation of the proposed mixed
collocation method for the classical linear elasticity. In addition, the discretization of the
displacement and stress field variables using meshless functions and an overview of the
discretized governing equations for the considered two dimensional heterogeneous mate-
rial problem are shown. Several numerical examples showing the accuracy, computational
efficiency and robustness of the proposed mixed collocation method are also presented.
Chapter 6 is dedicated to the modeling of the material deformation using gradient elastic-
ity. Two mixed meshless collocation methods based on different operator split procedures
are investigated along with the discretization of the equilibrium equations and appropriate
boundary conditions. Several one dimensional and two dimensional numerical examples

of homogeneous and heterogeneous structures are utilized in order to describe material

15



Introduction

deformation using newly developed methods. Herein, the accuracy of the methods, the
ability to describe the size effect behaviour in a homogeneous material and the removal
of discontinuities in a heterogeneous material is tested. The final concluding remarks and

future investigations are given in Chapter 7.
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2 Overview of continuum

mechanics relations

2.1. Classical linear elasticity

In this section, the basic relations of continuum mechanics for linear elasticity neces-
sary to derive the meshless formulations contained in this dissertation are presented. Since
the heterogeneous materials are comprised of different homogeneous areas, the geometry
and deformation modeling of these are firstly discussed. It should be noted that only
problems of two-dimensional linear-elastic deformation analysis of materials with the as-
sumption of small displacements and small strains are analyzed. In addition, appropriate
boundary conditions are highlighted. Also, the equilibrium equations for two-dimensional
continuum are shown. All of the indices used in this chapter can only adopt values 1 or

2, if not specified otherwise.

2.1.1. Geometry and kinematics

In this research only two-dimensional problems of simple geometry are analyzed. The
geometry of the problems is described using discretization nodes of the models. The
discretization nodes in the meshless methods are in the general case chosen arbitrarily,
but in most examples discussed here, a uniform distribution of nodes is utilized in order
to avoid problems with the stability of collocation methods. Each point in the two-
dimensional deformable continuum has two displacement components u; and us, in the
direction of Cartesian coordinate axes x; and x,. In technical practice, it is common to

denote displacement components by u and v, and the coordinate axes by x and y.
The displacement vector at any 2-D continuum point is

u' =[u vl (2.1)
Under the assumption of small strains according to [128], the strain tensor can be written

and calculated as

1
81‘]‘ = E(ui,j + iji). (22)
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In the case of two-dimensional isotropic problems the strain tensor is reduced to only
three different independent components, which are often written in a vector form in order
to facilitate numerical implementation in codes and to reduce needed computational time,

as

el =[e. & 264 (2.3)

The equation (2.2) can also be written in the matrix form
g = DKu, (24)

where Dk represents the 2-D kinematic differential operator matrix in the form

8 0
D= [0 0,|. (2.5)
8, 0,

In the relation (2.5), the operators 0, i 0, denote the first-order partial derivatives with

respect to Cartesian coordinates x i y.

2.1.2. Constitutive relations

Constitutive equations for a two-dimensional classical linear elasticity case, which
provide a link between the strain tensor and the stress tensor, can be written using the
generalized Hooke’s law [128]

Oij = Uijki€ki, (2-6>
where the o;; represents the Cauchy stress tensor, while Cjjy; is the material tensor. As in
the case of a strain tensor ¢;;, for two-dimensional isotropic material, there are also only
three different independent components of the stress tensor. These are usually displayed

in the field of computational mechanics in the form of a stress vector
o =[o, 0y Oyl (2.7)
In the Cartesian coordinate system components of the material tensor can be written as
Cijrt = N0 + 11(dix0j1 + 6udj), (2.8)

where A i o denote the two Lame’s elastic constants

Ev
A:(L+Wﬂ—2m’ (29)
yzﬂﬁ%ﬂ. (2.10)
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In the relations (2.9) and (2.10), E represents the Young’s modulus, while v describes the
Poisson’s ratio. The constitutive equation (2.6) is also easily transformed to the matrix
form which states

o = De, (2.11)

where D denotes the linear elasticity material matrix or simply the elasticity matrix. For
the purpose of numerical modeling of two-dimensional linear-elastic isotropic materials,
two well-known approaches are usually utilized, referred to as plane stress and plain strain
state. Accordingly, two different elasticity matrices are used. Therefore, to describe the

plane stress state

-1 v 0 ]
E
D=_—3 " 10 |, (2.12)
1—v
0 0
- 2 -

is applied, while for the plane strain case elasticity matrix is equal to

1—v v 0
E v 1—v 0
= . 2.1
(1+v)(1-2v) (2.13)
0 0 1-—-2v
- 2 =

2.1.3. Equilibrium equations and boundary conditions

Consider the two-dimensional continuum which occupies domain €2 bounded by the
global outer boundary I', shown in Figure 2.1 in time . On the continuum surface, the
traction forces t defined per unit edge boundary dI' and volume forces b defined per unit

surface area df) are applied.

Figure 2.1: Equilibrium equations - Balance of momentum
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By writing the balance of linear momentum for the above continuum with respect to

the Cartesian coordinate system (z1, x) according to [129], for every moment of time ¢

D’UZ'
0ij,j + bl = pﬁ, (214>

is obtained. Herein, b; represents the body force vector, p denotes the material density
and v; the velocity vector. Equations (2.14) are also called the equations of motion. Since
only static problems are considered here, the acceleration in this case is equal to zero for

each point within {2 and the equations of motion transform to the equilibrium equations.
0ij,.4 + bz =0. (215)

The essential and natural boundary conditions associated with the classical linear elastic-
ity on the outer boundary I', are the prescribed displacements or the prescribed traction
forces. For the meshless functions with the Kronecker delta property, such as IMLS and
RPIM used here, the imposition of the essential boundary conditions is as simple as in
FEM and is done in a direct manner. The enforcement of the natural boundary depends
on the choice of the utilized meshless method [33, 126]. The traction forces t on the outer
boundary I' are calculated as

ti = n;ojj, (216)

where n; is the unit normal vector on the outer boundary. The traction vector (2.16) can

be written in the matrix form using (2.7) as
t = No, (2.17)
where N is the matrix of the unit normal vector components on the outer boundary I"

T 0 Ty

N = . (2.18)
0 Na 1Ny

2.2. Strain gradient linear elasticity

Gradient elasticity theories used in this work provide extensions of the classical contin-
uum theories, with additional higher-order spatial derivatives of strains, in order capture
the influence of the microstructure on the macroscopic deformation response of the mate-
rial. The focus is on the gradient theories where the higher-order terms are the Laplacian
of the corresponding lower-terms. These theories are often utilized for such problems
as the removal of discontinuities in heterogeneous materials, as well as the size depen-

dent mechanical response of structures. In this section, a brief overview of historical
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development of these theories is shown, along with the their differences and numerical
implementation issues. The utilized Aifantis theory which has only one additional pa-
rameter is more thoroughly discussed. Due to its versatility and simple implementation
in numerical procedures, it was the best choice for the presented research. Furthermore,
the utilized staggered solution procedures for the gradient elasticity are presented. The
use of these procedures decreases the continuity requirements of the meshless trial func-
tions. Hence, the calculation of the high-order derivatives in the developed numerical

methods is also avoided.

2.2.1. On the historical development of strain gradient theories

The utilization of the gradient theories for the modeling of material deformation is
not a novel concept, it has been around since the 19 century. The first efforts in this
field were done by Cauchy and include the idea to enrich the continuum equations of
elasticity with additional higher-order derivatives in order to approximate the behaviour
of discrete lattice models. These formulations had more of an explorative character and
lacked mathematical completeness. They were later extended and completed by Voigt
to include the description of kinematics, balance laws and constitutive relations for lat-
tice models of crystals [130]. However, the solutions for the formulated boundary value
problems were complicated and obtainable only for a limited number of cases using ad-
ditional assumptions [131]. Later on, in the early 20" century Voight’s research was
expanded by the Cosserat brothers. They suggested the formulation of 3-D continuum
equations with three displacement components and three micro-rotations. Furthermore,
they included the couple-stresses in the equations of motion which they conjugated with
the aformentioned micro-rotations [132]. Cauchy, Voigt and the Cosserat brothers are
today considered as pioneers in the field of gradient elasticity. After the work of the
Cosserat brothers in took scientists several decades in order to revive the research in this
field. Hence, in 1960s a large number of papers was published regarding this topic. Two
groups of independent researches, Soviet and Western school, concerned with improving
gradient theories could be distinguished. The work of the Soviet scientists can be found
in papers from Aero and Kuvshinskii [133], Pal’'mov [134] and Kunin [135], while the
most known papers from the Western scientists include ones from Toupin [136], Mindlin
[137] and Kroner [138] to mention a few. At the time, most of the research was focused
on expanding the existing Cosserat continuum theories [132] and the couple-stress the-
ory [11, 136], but from this also full gradient theories have arisen [12, 137, 138]. These
full gradient theories consider including the mathematically complete set of higher-order
gradients in the formulation which results, in elaborate and complicated theories which

are not applicable for use in computer codes due to a large number of material parame-
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ters. Hence, the need for a more simple theories with fewer higher-order terms and smaller
number of additional constitutive constant that need to undergo experimental testing was
inherent. In the 1980s Eringen and Aifantis developed two such theories that utilize only
one additional constitutive parameter. Eringen derived his theory using his earlier work
on integral non-local theories [14]. On the other hand, Aifantis formulated his gradient
elasticity theory for finite [139] and infinitesimal deformations [15] inspired by his earlier
research in plasticity [140]. In these simpler theories, only higher-order terms that are
necessary to more accurately describe the analyzed material behaviour are included in the
formulation. In recent years, because of the rapid increase in the computational speed
and power, gradient elasticity is becoming more and more interesting for numerical imple-
mentation. Herein, mostly FEM formulations prevail but there are also some papers on
meshless formulations. The implementation of gradient elasticity with FEM is not such a
trivial task due to the more complex formulation resulting from the use of element-based
interpolation. Nevertheless, researchers have successfully applied FEM formulations not
only using the simpler newer gradient theories [141, 142], but also the more complicated
theories from the 1960s as can be observed in [143, 144]. Some authors also used meshless
methods for the implementation of gradient elasticity since the required C' continuity of
the approximation is easily obtained, unlike in FEM. These formulation can be found in
[26, 39, 63]

2.2.2. Aifantis form of strain gradient theory

Many different formats of gradient elasticity theory exist, Cosserat-type theories, cou-
ple stress theories or Laplacian based theories, as already mentioned. Herein, the main
goal is to present the utilized linear elasticity Aifantis theory under assumption of small
strains. It should be stated that the Aifantis theory is formally a special case of the
Mindlin theory of elasticity with microstructure [145]. However, the Mindlin’s full gradi-
ent theory [12] is not appropriate for implementation in numerical codes. In his theory,
Mindlin distinguished between the kinematic quantities at two different scales, micro and
macro, and also suggested that the kinetic and deformation energy density also be written
using quantities at both scales. This lead to a very complex formulation with 6 different
constitutive tensors of various orders containing 903 different independent coefficients for
a general material representation. If only isotropic material is considered the number of
elastic coefficients drops to 18 (2 Lame’s and 16 additional constants) but this is still a
large number of parameters which have to be experimentally determined. Later, Mindlin
also developed simpler version of his theory in which the deformation energy density is
only expressed in terms of macroscopic displacements which lowers the needed number

of additional parameters to only 3. These independent parameters were named length
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scales since they have the dimension of length, and can be linked to the microstructure
of the material. Aifantis further simplified Mindlin’s theory by taking two length scale
equal to each other thus arriving to the probably most well-known formulation with only

one material (microstructural) parameter [15].

2.2.2.1. Constitutive relation based on Aifantis form

In the field of statics, the gradient elasticity is mostly applied for removing the sin-
gularities at crack tips and smoothing the discontinuities at material interfaces. These
kind of research can be found in a wide variety of publications [146-148]. The Aifantis
gradient elasticity falls into the category of Laplacian based theories since Laplace oper-
ators are used for the description of the non-local redistribution effects. Furthermore, in
this Thesis the special form II of the Mindlin theory is utilized, where the microscopic
deformation gradient is assumed to be the first gradient of the macroscopic strain [13].

For this simplest form of gradient elasticity [149], the constitutive relation is taken as
Oij = Oij — Hijy (2.19)

where o;; represents the Aifantis stress tensor which is defined as a difference between the
classical Cauchy stress tensor o;; and the higher-order stress tensor p;;. In the relation

(2.19) the mentioned stress tensors are defined as
Oij5 = Uijki€ki, (2-20)

ti; = Cijral*extmm.- (2.21)

In the equations (2.20) and (2.21) the Cj;; and €y, are the material tensor defined by (2.8)
and the strain tensor equal to the ones in classical linear elasticity, while [ denotes the
Aifantis microstructural material parameter. Kinematic relations connecting the strain
tensor and the displacement components for the gradient problem remain the same as
in the classical elasticity and are defined by relation (2.2). By inserting the relations for
stress tensors (2.20) and (2.21) into the equation (2.19), a slightly different form of the

Aifantis constitutive relation can be obtained
0ij = Cijri(en — l25kl,mm)- (2.22)

Herein, the introduced parameter [ represents the underlying microstructure and can
be related to microstructural properties. For example, for a regular lattice of discrete
particles it can be linked to the distance between particles comprising the lattice, for
a heterogeneous material consisting of various randomly distributed constituents in a

material matrix it can be connected to the utilized size of the RVE used in homogenization
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procedures [150]. Furthermore, it should be stated that the negative sign in front of the
higher-order term in equation (2.22) is chosen because of the issues related to stability
and the uniqueness of the problem solution [145, 151]. Through the years also a positive
sign has been considered. The obtained numerical solutions have been compared to the

behaviour of the methods where the negative sign has been utilized [151, 152].

2.2.2.2. Equilibrium equations and boundary conditions based on Aifantis

form

The equilibrium equations of gradient elasticity for the two-dimensional continuum
depicted in Figure 2.1 are derived in a similar manner as explained for the classical linear

elasticity and can be simply written as

As evident, the above relation represents the fourth-order differential equations. If the
differential equations are solved in a direct manner, C' continuity of the approximation
function is needed [13]. This should not be a problem if the discretization and approxima-
tion is done using a meshless method [26], but leads to relatively complex element formu-
lations [153] if FEM is utilized. Since the equilibrium equations are of higher-order, the
associated essential and natural boundary conditions are not as simple as is the classical
linear elasticity. In recent years, the variational consistency of these boundary conditions
was thoroughly investigated [154, 155]. Herein, the essential boundary conditions are the
displacements u; and their normal derivatives n;, while the natural boundary conditions
are the classical traction ¢; and the higher-order tractions m; [143]. The essential bound-
ary conditions are related to the kinematic variables (displacements and their derivatives)

and can be defined as

Ou; _
oty = (2.25)
J

while the natural boundary conditions are linked to the stress variables and are equal to

on O(nyi; _
nj(aij + nhrijh(élm - nmm)ax—l) — ((5] — n]nm)% = ti, (226)
nNinpTijh = m;. (227)

Herein, in the natural boundary conditions (2.26) and (2.27), 7;;, represents the higher-

order stress tensor
Tijh = PCijuern, (2.28)

while d;; denotes the Kronecker delta tensor. From the analysis of boundary condition

(2.27) and (2.28), it can be seen that the higher-order tractions are related to the strain
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derivatives or the second-order derivatives of displacements. Furthermore, it is easily
observed that the calculation of high-order derivatives of the meshless functions is needed
for the discretization of the standard tractions (2.26) and the higher-order tractions (2.27).
This can be a burdensome task because most of the meshless functions do not have
polynomial character. Furthermore, it is also computationally not efficient since the time
needed for the calculation increases rapidly with each order of derivatives. Because of these
drawbacks, only in the case of linear gradient elasticity, there is certain remedy in using
the staggered solution procedures [124] in which the fourth-order equilibrium equations
(2.23) are solved as an uncoupled sequence of two second-order equations. Hence, the use
of these procedures changes the field equations. They are no longer the same as those of
the original fourth-order equations. Furthermore, the corresponding boundary conditions
are also transformed into a less complex form. More on this, as well as the reason why
the staggered solution strategy based on the Aifantis theory is chosen for the analysis,

can be found in the following subsection.

2.2.2.3. Staggered solution procedures (operator-split methods)

Different solution procedures have been developed [156] depending on the point at
which the fourth-order equilibrium equations (2.23) are split into two second-order dif-
ferential equations. In this subsection two different solution strategies (u-RA and e-RA)
with the accompanying boundary conditions are presented. Firstly, by introducing the
relations (2.19) - (2.21) into equation (2.23), the third-order differential equations in terms
of strains is obtained

Cijra(ert — Pertmm) ; + b = 0. (2.29)

Secondly, if the kinematic relations (2.2) are also applied to the above equation, fourth-
order differential equations in terms of displacements is written

1
éCijkl [uk’jl —|— ul,jk — ZQ(Ukyjl —|— ule),mm] + bz = 0 (230)

The above equation for gradient linear elasticity can be rewritten by rearranging the order

of derivatives and according to [124]

1
§Cijkl[(uk — ZQuk,mm)vﬂ -+ (ul — lQUl,mm)J‘k] + bl = 0 (231)
As stated before, the above equations are not suitable for the numerical solving of a prob-
lem because of the need for high-order derivative calculation, not only in the equilibrium
equations (2.29) and (2.31), but also for imposing natural boundary conditions (2.26) and
(2.27). Therefore, the application of staggered solution procedures in order to lower the

needed order of derivatives can be beneficial.
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e u-RA staggered procedure

The differential equation (2.31) describing gradient elasticity can be transformed
into two problems in such a way that the terms expressed in the parentheses are
declared a new classical displacement field uj. This exchange is possible since the
resulting differential equation of the second-order describes the behavior of a linear
elastic homogeneous material when classical linear elasticity is utilized. Hence, the
first equation of the u-RA procedure is equal to

1 C C

Accordingly, the second equation that links the classical displacement field u; and
the gradient displacement field u% can be derived from the substitution. This equa-

tion is a second-order non-homogeneous Helmholtz equation

up — b, = (2.33)

i, mm 7

Boundary value problems defined by equations (2.32) and (2.33) are now solved
using a staggered scheme, or one after the other, where the solution of the first
problem is used as an input on the right hand side of the second differential equation
(2.33). As a result, both the classical displacement components uj, as well as the
gradient displacement components uf are obtained. Here, relation (2.32) actually
represents the equation of the classical problem of elasticity analogous to (2.15),
where the Cauchy stress is written through constitutive and kinematic relations. It
can be seen that the complexity of the solution of the gradient elasticity problem
(2.32) - (2.33) is reduced when compared to the original fourth-order equation (2.31)
once the classical solution from the first equation is obtained. In the literature,
this has been extensively analyzed by employing the analytical solution strategies
[152, 157]. In this staggered procedure based on displacements, as discussed in [156],

the boundary conditions of the classical problem

ue = s, (2.34)
t; = ogng =1, (2.35)

and boundary conditions of the gradient problem

uf = uf, (2.36)
2uF
R} = —gnZ; = ki, (2.37)

on the outer boundary I' can be distinguished. As seen, the second-order of normal

derivatives in terms of gradient displacements are needed for the imposition of the
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natural boundary conditions when solving the second equation using direct ana-
lytical methods [124] or meshless collocation methods [158]. However, within the
framework of weak form methods, for instance FEM, after the use of the divergence

theorem in the gradient equation the first-order of displacement derivatives should
suffice [141].

e-RA staggered procedure

This approach is based on using the operator-split procedure at the strain level. So
the first equation is simply obtained by introducing the new classical strain field e},

into equation (2.29) and is equal to
Cijrigl,; +bi = 0. (2.38)

Now, by utilizing the kinematic relations (2.2) in the equation (2.38), the relation
equal to (2.32) is obtained. This means that the first equation of the staggered
procedures is the same for both cases, and so are the corresponding boundary con-
ditions. By performing a simple derivation of the Helmholtz equation (2.33), the
equation in terms of corresponding strain fields [159] is observed

e — 128 =¢., (2.39)

1 ij,mm i

The above equation relates the non-local (gradient) strain tensor £; to the local
(classical) strain tensor e;. Both strain tensors can be written in terms of cor-
responding displacements using kinematic relation (2.2). This staggered approach
consists of solving the classical elasticity problem defined by (2.32), then computing
the local strain tensor &;; and using it as a source term for solving the Helmholtz
gradient equation now written in terms of strains (2.39). It should be noted that

the solution of the second equation in this procedure is the gradient strain field
&
Zj’
equation of the staggered solution procedure changes, so do the corresponding gra-

€% not the gradient displacement field uf as in u-RA approach. As the second
dient boundary conditions. While the boundary conditions corresponding to the
classical equation remain the same and are equal to (2.34) and (2.35) the boundary

conditions of the gradient problem are changed and can be written as

e = ip» (2.40)
oS
_ v

Herein, ef; denotes the gradient strain tensor defined according to (2.2) on the outer

boundary I'.
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It is obvious from the presented relations that the field equations solved in the stag-
gered procedures are different from those represented by the original fourth-order Aifantis
gradient elasticity. Hence, the boundary conditions are also not the same. All of the pre-

sented solution procedures along with the boundary conditions are comprised and shown
in Table 2.1 [156].

Table 2.1: Boundary conditions in Aifantis gradient elasticity

Solution method / Original equation u-RA e-RA
Boundary condition (4™ order) (2" order) | (2" order)
Essential Uj ug u;
Natural t t &
. . 0uz g g
Higher-order essential us g%
on J
928 0et.
Higher-order natural m; i —
on? on

The second equation of the staggered approach can also be expressed in terms of
stresses. For instance, if both sides of equation (2.39) are multiplied by the material

tensor Cjx; the relation reads

g 2_8 _ c
Cijkl(gij —1 %‘,mm) = Cijklgijy (2.42)
or in terms of stresses
g 2_g __ ¢
i = 105 mm = Tij- (2.43)

The same relationship linking the local (classical) of; and the non-local (gradient) o3,
stress fields is observed when Eringen’s integral strain gradient theory is utilized [14].
This leads to the conclusion that these two gradient elasticity theories are quite similar,
so here the main difference between these approaches should be noted. In the Aifantis
theory, when employing the operator-split procedures in the first equation, the equilibrium
is expressed in terms of the divergence of the classical (local) stress field [156]

0% +b; =0, (2.44)

15,J
while in the Eringen’s theory this is done by applying the divergence of the gradient

(non-local) stress field [13]
o5+ b; = 0. (2.45)

J,J
Hence, a clear distinction between the two theories can be observed. Furthermore, the
difference in the equilibrium equations (2.44) and (2.45) results in different solution pro-

cedures that need to be applied. If the Aifantis theory is utilized, the local stress field
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tj
solving (2.32). The computed classical displacements can then be used as an input for

o;; is obtained directly from the derivative of the local displacements u;, for instance by
the Helmholtz equation (2.33), and the gradient fields in the process of computation are
obtained in a staggered manner using an uncoupled set of equations. In comparison, it
can be seen from (2.43) that the relation between the non-local stress field afj and the
displacements u; is a differential equation. Consequently, the equations (2.43) and (2.45)
remain coupled and should be solved at the same time. Hence, the staggered solution

strategy cannot be used if the Eringen theory is utilized.
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3 | Weighted residual
methods and MLPG

concept

3.1. Weighted residual approach for partial

differential equations

Since the newly proposed meshless methods are based on the use of the weighted
residual approach, these mathematical techniques will be briefly discussed and presented
in this section. The weighted residual methods utilize the weak form of differential equa-
tions in order to determine the approximated solution of a chosen problem. Furthermore,
they can differ depending on the size of the area that they are applied upon. Therein,
two different approaches can be distinguished, the global and the local weighted residual
approach. The discussion start with the weighted residual methods based on the global
approach. Later, it is transferred to the application of the local approach. In addition,

the main differences between the two approaches are discussed.

3.1.1. Global weighted residual approach

In the process of numerical solution of one-dimensional partial differential equation
(PDE), the goal is to find a solution function f that satisfies the general equation ® f = g,
where ® is the differential operator dependent of the problem being solved, while g denotes
to the right hand side of the equation. One of the most popular methods for solving the
PDEs are the methods based on the weighted residual. As some of the representatives
of these methods the Finite Volume Method (FVM), the Finite Element Method (FEM)
and the Meshless Methods (MM) can be mentioned. In these methods the approximation
of the required field variable f is in general defined by using functions ®;, usually called

the shape functions, and the unknown nodal values f; as

W) =) ofi = @'t (3.1)
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By substituting the approximated function f™(x) into the initial PDE we obtain
DfM(x)—g=R., (3.2)

where R, is the residual error that appears as a consequence of the utilization of the
approximated solution function. Furthermore, the methods are based on the integration of
the obtained residual error multiplied by arbitrary kinematically admissible test (weight)
function W. By applying the appropriate test (weight) function and by integrating over

the global domain €2 depicted in Figure 2.1, the following relation is written

/ WR.AQ = / W(®fM(x) - g)dQ =0 (3.3)

The integral expressions of the weak form of PDEs are usually evaluated numerically. This
is necessary to obtain the solutions. In doing so, firstly the initial boundary conditions
have to be satisfied. Thereafter, the essential and natural boundary conditions of the
problem have to be taken into account during the solution process. The resulting algebraic
system of equations can be written in the classical form Lf = s and the unknown nodal
solutions f can be determined. It should be noted that in the derivation process of the
integral equations of the weak form the Gauss-Ostrogradsky (divergence) theorem is often
utilized. This is done in order to reduce the need for calculation of high-order derivatives
within the integrands and to incorporate the natural (Neumann) boundary conditions
directly in the integral equation of the weak form.

The procedure of the global weighted residual method is presented here for the case
of linear differential equations. For the 2-D continuum according to equations (2.15) and

(2.16), two general forms of symbolic system of PDE can be written
Mi(u) =0, within €, (3.4)

MN(u) =0, on I (3.5)

The equation (3.4) refers to the F' system equations of the static problem defined
within the domain €2, where u is the vector of unknown solutions of displacements, while
relation (3.5) refers to the G system equations comprised of essential and natural boundary
conditions on the outer boundary I'. The differential equations M¥(u) and D¥(u) can be

also written in their strong forms as follows
Dg(u) —b =0, within €, (3.6)

Or(u) —t =0, on I, (3.7)

where D¢ and Dr are the differential operators, while b and t are known vectors of body

forces within €2 and traction forces on outer boundary I'. From the analysis of (3.6) and
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(3.7), it can be determined that if k is the highest order of derivatives within the operator
g, the highest order of derivatives within ®r can only be k-1. For the purpose of solving
the equation systems the approximation of the solution @"(x) in accordance with (3.1) is
defined, based on one of the meshless schemes. The approximate displacement solution

function is defined as a linear combination of independent base functions
o' =, dy - U e Ul (3.8)

By substituting the approximated function (3.8) into the systems of differential equations

(3.4) and (3.5) the residual errors are observed
Rg = M(i") = Do(@") — b, within €, (3.9)

Rr = MN(@") = Dr(a") - t, on I'. (3.10)

In an arbitrary case, it is very difficult to assume the exact shape and type of the solution
function in advance. Therefore, the presented residual errors are generally not equal to
zero. For this reason, the weight residual method (3.3) is applied and it is expected that

the approximated solution fulfills the integral condition within the predefined domain §2

/WTRQdQ =0, (3.11)
Q

where w is the vector of arbitrary test (weight) functions defined as

wli=[w wy -+ w - w,] (3.12)
For a detailed description of constraints that a function has to meet in order to be consid-
ered admissible for the weight function the reader is referred to [160]. The total number
of test functions is equal to the total number of equations (3.4). Hence, for an arbi-
trary selection of the admissible test function in w it can be shown that the relation
(3.11) is equal to strong forms of the equations (3.6) and (3.7) if the essential boundary
conditions (displacements) are fulfilled in advance (a priori) [160]. The solutions of the
system of equations (3.11) can be determined only if it is possible to calculate the inte-
gral expressions appearing in the accompanying weak form. For this reason, there are
certain limitations also on the choice of the approximation function. Accordingly, the
demands made on the approximation (trial) function @" are that the derivatives up to the
order k-1 must be continuous [72], if k is the largest order of derivatives which appear in
the kinematic operator ®g. Such functions are generally referred to as C*~! continuous
functions, which means that all the derivatives of the order j, where j is in the interval
0 < j < k—1, exist and are continuous within the domain 2. On the test (weight)

function on the other hand there are no special demands, it’s selection is arbitrary and
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can also be a C™! function. Therefore, by choosing a variety of test functions different
meshless methods can be derived. In the general case, as a approximation function, any
function that satisfies the aforementioned condition of continuity can be used. However,
the accuracy of the solutions can be greatly impaired by a bad choice of approximation
function. The same can be stated also for the choice of the test function, which can be
completely arbitrary in character. Therefore, nowdays there are already established and
often employed acceptable sets of test functions [160]. Depending on the choice of the test
(weight) function, different forms of classical methods of weighted residual can be derived
[21].

The satisfaction and imposition of boundary conditions play an important role in
every numerical method. For this reason treatment of boundary conditions within the
framework of weighted residual methods is discussed. In order to increase the accuracy
of the weighted residual method, often before the direct integration of the weak form of
equations (3.11), the Gaussian integral theorem is applied that reduces the demand on the
continuity of the approximation functions @". After applying the Gauss theorem, natural
(force) boundary conditions contained implicitly within the integral terms can be observed
[47, 72]. In this way, the natural boundary conditions are satisfied directly in a weak form
of equations or a posteriori. All other boundary conditions which are not included in the
weak form (displacement boundary conditions) are called essential boundary conditions
and their imposition is necessary for the validity of the method. The essential boundary
conditions can be imposed a priori, by selecting such approximation functions which
presatisfy the conditions, or a posteriori in the system of discretized equations using
additional numerical procedures. When solving complex problems, it is difficult to define
the approximation function of solutions @" that satisfies the essential boundary conditions
in advance. Therefore, for this purpose the constrained weighted residual method is often
utilized in the literature [22]. In this method one of the most common approaches used
to impose the essential boundary conditions is the penalty method [23, 161]. The weak

form of the equations in this case is written as

/ wTRqdQ + / wla(a" a)dl =0, (3.13)
Q Ty

where I, is a part of the outer boundary I" on which the essential boundary conditions are
prescribed. In equation (3.13), o denotes a diagonal matrix of penalty parameters, while
the w represents the vector of arbitrary test functions associated with the essential bound-
ary conditions. As a rule, for simplicity the functions in W are chosen to be the same as in
the vector (3.12). However, this is not always the case. Penalty parameters in the matrix
«a are arbitrary positive scalar values that must be large enough to ensure the fulfillment

of basic boundary conditions. On the other hand, caution is needed when choosing the
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values for the penalty parameters, because excessive values can cause problems with the
stability of numerical method. The penalty approach is a very simple method that does
not increase the number of global unknowns of the final algebraic system. Hence, it is
often implemented into numerical codes. As an alternative to the penalty methods, the
method of Lagrange multipliers [22] is often utilized. Therein, additional unknowns to
be determined are Lagrange multipliers for each boundary condition set in the problem.
The method of Lagrange multipliers is often used in the EFG method [46] which is based
on the global Galerkin weighted residual method.

3.1.2. Local weighted residual approach

Instead of writing the global equation (3.11) over the entire global domain, there exist
a different approach, where the weighted residual method is applied only over small local

domains €2 which cover the global problem domain €2, as shown in Figure 3.1.

Figure 3.1: Global domain 2 with the outer boundary I" and local regions QY

That approach is in the literature referred to as the local weighed residual method
and is applied for the derivation of truly meshless methods [21]. These meshless methods
do not use any background mesh of integration cells for evaluating the integrals of the
weak form of equations. To solve the problem described by the (3.6) analogous method
is applied but this time over small local domains 2. Hence, the integral weak form of
the problem is then

/ wIRdQ + / Wla(a" a)dl = 0, (3.14)
Qv Tus
where 'y is the part of the outer boundary of the local domain €27 which coincides with
['y,. Or in other words, it denotes the part of the outer boundary 92" on which the

essential boundary conditions are prescribed, as presented in Figure 3.1. Local small
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domains €2} are found within the global domain 2 and theoretically the local approach
(3.14) should be equivalent to the global residual approach (3.13) as long as they cover

the entire computational area.

3.2. Meshless Local Petrov Galerkin concept

The Meshless Local Petrov Galerkin (MLPG) concept is based on the presented local
weighted residual method [47]. Since the application of local regions to integrate the weak
form of equations alleviates the need of the use of background mesh, all meshless meth-
ods based on the local Petrov-Galerkin approach belong to the group of truly meshless
methods [22]. In order to develop the solvable algebraic system of equations, the global
domain €2 bounded by the outer boundary I' is firstly discretized using a set of nodes
S =A{x;, I =1,2,.... 7 : x;CQUI'}, where Z represents the total number of discretization
nodes. Secondly, a local subdomain €2} is defined around each node I with the position
X7, as previously presented in Figure 3.1. In the next step, the weak form of the govern-
ing equations is employed over every local subdomain €2} using the local Petrov-Galerkin
weighted residual approach. The choice of the size and the shape of local subdomains
is arbitrary and they can also overlap. As already mentioned, as long as they cover the
entire domain €2, the equilibrium equations (3.4) and boundary condition (3.5) are satis-
fied in their weak forms. However, it has also been deducted that a high-quality solution
can be obtained even if the subdomains do not cover the entire global region [35]. By
using the MLPG concept, numerous meshless methods depending on the choice of the
test (weight), approximation functions and appropriate integration procedures [29], can
be derived. Thus, the main characteristic of the Petrov-Galerkin procedure is the free
choice of the test and approximation (trial) functions. Furthermore, the test and approx-
imation functions typically do not have to be the same and can be defined in different
spaces, which is not the case in classical Galerkin method.

In the methods derived by utilizing the MLPG concept, also different types of local
subdomains appear which need to be distinguished. Here, they will be only briefly men-
tioned for the purpose of completeness and understanding of the terminology in the later
discussion at the end of the section. There are five different regions that arise when apply-
ing the general MLPG procedure. There is the aformentioned local subdomain for a node,
which is denoted as €2Y. This region is the domain over which the numerical integration
of the local weak form is carried out in order to obtain the solvable algebraic system of
equations. Secondly, there is also the test (weight) function support domain for the node,
usually referred to as €2;. Within this region, the value of the chosen test function for the

discretization node is different from zero. The third region is the trial (approximation)
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function domain for the node or{),. Similarly to the previous region, here the chosen trial
(approximation) function associated with the discretization node x; has non-zero values.
Another region that is present in all the methods derived using the MLPG concept is
the domain of definition of the point of interest x which can be denoted as Q4cr. This
region includes all of the nodes within S that influence the approximation at the point of
interest x. The last area that can be noted is the domain of influence of the node or ..
This region cover all the nodes whose shape functions have non-zero values over the local
subdomain (2} of the node. In theory, the shapes of the regions (), €} and €2, can be
chosen arbitrarily. However, the choice of more complex shapes often results in numerical
implementation issues. Hence, in most engineering applications, only simple shapes of
these domains are used, i.e. circular or rectangular, with the nodes positioned at their
center. For a more extensive explanation on each of the regions the reader is referred to
27, 35]. In addition, based on the choice of the test function, meshless MLPG methods

can be divided into six categories [27]:

e MLPGI1
The test function is equal to the weight function of the MLS or RKPM approxima-
tions. The test function is bell-shaped and its value is zero at the outer boundary
of the local subdomains 027 in case €2} does not intersect the global boundary of

the considered problem T'.

e MLPG2
As a test functions, the Dirac delta function is chosen, which yields the collocation
method [56]. At each discretization node, strong form of differential equations is

solved, so there is absolutely no need for numerical integration.

e MLPG3
For the test function, the error (residual) function obtained by the discrete least

squares method is utilized.

e MLPG4
The test function is the modified fundamental solution of the differential equation.
The derived method is identical to the LBIE method [162].

e MLPG5
The Heaviside function is applied as the test function in every local subdomain
QY. As a result, the evaluation of the integrals over the regions €27 is no longer
needed, only the integration over the local subdomain boundary OS2 are carried
out. Therefore, this type of method is very attractive for reducing the computational

time of the problem.
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e MLPGG6
The test function is equal to the approximation (trial) function. The resulting
method is similar to the EFG method [46] or DEM [163], with the important differ-
ence that the approximation is carried out over local approximation (trial) function

domains {2, rather than over the entire domain by a background mesh.

For the derivation of the meshless methods based on the mixed approach comprised in
the framework of this Thesis, only the MLPG2 (collocation) methods have been utilized.
Hence, for the test function the Dirac delta function is chosen, which has the value zero
everywhere except at the discretization node. The delta function can be also described
as a hypothetical function whose graph is an infinitely high, infinitely thin spike at the
origin, with total area equal to one. With the utilization of this type of test function the
weight function support domain §2; for the node x; does not exist. The weak form over a
local subdomain €2 is simply transferred to the strong form of equations at a collocation
node. This means that the discretized system of equations is solved without any need
for numerical integration. Therefore, the size of the local subdomain €2} is equal to zero.
Furthermore, only the trial support domain €) is utilized for the purpose of construction

the meshless approximation functions.
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4 | Meshless approximation

schemes

In meshless methods (MM), a very important and vital part of the entire numerical
method are the approximation functions. For the approximation in MM, functions that
can describe the data on an grid of arbitrarily positioned points are utilized [164]. In
doing so, no additional predefined meshes are used. Thus, when comparing to the FEM,
the approximation is not carried out over some predefined regions (elements). In FEM,
to approximate the field values within the element, only the nodes that belong to that
element are used, which limits the use of arbitrary degree of approximation. In MM, for
constructing the approximation at some point of interest, a finite number of nodes in the
immediate vicinity of that point is utilized. But in MM, these point are not connected.
As an exception to this rule, there are also MM that use Voronoi cells [165] or Delaunay
triangulation [166] for the approximation of field variables. Approximation of unknown
field values in these cases is constructed using the nodes that are positioned at the vertices
of adjacent cells or triangles.

Given that the numerical procedure of creating the meshless approximation functions
is more complex when compared to the calculation of the polynomial functions in FEM,
the process requires a longer computational time. The reason for that lies in the analytical
form of meshless functions, which is far more complex and in general have non-polynomial
rational character. Therefore, in order to reduce the calculation time, it is beneficial that
the number of points affecting the approximation at the point of interest x is as low
as possible. Of course, this number cannot be to low since the requirement of minimal
number of nodes influencing the approximation needs to be fulfilled. This depends directly
on the order of the approximation applied for solving of the considered problem. Thus, it
can be stated that the order of the approximation function in MM is arbitrary, provided
that a sufficient number of discretization nodes in utilized within the domains in which the
approximation is being constructed. Another convenient feature of the meshless functions
is the locality of the approximations. As a result, a sparse system matrix which can be

solved quickly by utilizing appropriate numerical solvers is obtained. In comparison to
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FEM, domains used for the approximation and integration of a weak form of governing
equations do not necessarily have to be same. Sometimes this can lead to large problems
when numerically evaluating the integrals in the weak form. The most of the meshless
functions do not possess the Kronecker delta property at the nodes which is always the case
when FEM is used. In these cases, the imposition of essential boundary conditions is not
so simple as in FEM and requires additional numerical procedures. In the last decades,
the researchers have developed and applied a large number of meshless approximation
methods in order to solve the most demanding engineering problems. Some of these
methods include: the Moving Least Squares (MLS) method [28], the Interpolating Moving
Least Squares (IMLS) method [106] and the Radial Point Interpolation Method (RPIM)
[23].  Herein, only the methods utilized in the research comprised in this Thesis are
mentioned. These methods, along with their characteristics, are described and presented

in this chapter. A more detailed summary on all of the approximation functions that are
often used in meshless methods can be found in [23, 164, 167, 168].

4.1. Moving Least Squares (MLS) approximation

The Moving Least Squares approximation can be considered as a variation of a more
known method of the Discrete Least Squares, which is often used for accurate description
of curves and surfaces using only a set of arbitrary scattered points [169]. Hence, in this
section the construction of the utilized MLS approximation and its derivatives is presented
and explained. The main characteristics of the approximation are also noted. At the end
of the section, the imposition of the interpolatory properties on the MLS approximation

is discussed.

4.1.1. Construction of MLS approximation

Construction of the MLS function is based on the assumption that the approximation
of an arbitrary function f(x), which is here denoted as f*(x), is influenced the most
by the points in the vicinity of the point for which the approximation is written. In
the literature, this point is usually referred to as the point of interest x. In such a
manner, the locality of the approximation is introduced since the points that are far
enough from x do not influence the approximation. According to [170], the approximant
™ (x) approximates the function f(x) using an arbitrarily distributed set of points x; =
1,2,..., N positioned within the domain 2. Hence, in the MLS procedure, to obtain

the value of the approximated function at point x, the vector of basis functions p(x) is

39



Meshless approximation schemes

multiplied by the vector of unknown coefficients a(x),

FP(x) = pt(x)al(x). (4.1)

In the equation (4.1), the vector of basis function of the MLS approximation is equal to

Px)" =[p(x) p(x) 0 omx) o pa)], (4.2)

where m represents the total number of monomials in the basis vector. As a general
rule, for the vector of basis function, complete polynomials are used in order to preserve
the consistency of the MLS approximations. For this purpose, various polynomials [171]
or other functions are considered if they are suitable for solving of the problem [172].
The number of terms in the complete polynomial of the order s which are used in the
vector od basis functions are usually determined using Pascal’s triangle [72]. This number
can also be calculated by using the expression m = (s + 1)(s 4+ 2)/2. In the numerical
examples presented in this dissertation, complete polynomial from first- up to third-order

are utilized. The vector of unknown coefficients a(x) in equation (4.1) is defined as
ax)" =lai(x) axx) o oapx) o am(x)] (4.3)

As obvious, it is a function of x and should be evaluated for every point of interest. The
values of the unknown coefficients are influenced only by a small finite number of points
near the point of interest x. According to the common meshless procedure, around each
point of interest x, a local domain of definition of the MLS approximation for that point
is formed. Here, it is denoted simply as QM5 The vector of coefficients a(x) is obtained

by minimizing the weighted discrete Ly-norm

~

J(ax) =) Wix)(p(x)ax)) - f1), (4.4)

where W;(x) is a MLS weight function at x, and 7 is the value of the function associated
with the node J. The total number of nodes within the domain QM is denoted as n.
Hence, within QM there is a set of nodes x;, J = 1,2,...,n, whose weight function
values are bigger then zero at the point of interest x. The domain of definition of the
MLS approximation for the point of interest x can be seen in Figure 4.1. By minimizing

the functional in (4.4), following system of equations is obtained
A(x)a(x) = B(x)f, (4.5)

where A(x) is the moment matrix of the MLS approximation defined as

A(x) = Z W (x)p(x,)p" (%), (4.6)
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while the matrix B(x) is equal to

B(x) = [Wi(x)p(x1) Wa(x)p(x2) -+ Wyx)pxy) - Wox)px,)]. (4.7)

Figure 4.1: The domain of definition for the MLS approximation function at the point x

Vector f is comprised of the fictitious nodal values

=1/ fo - fr )] (4.8)
The unknown coefficients are determined by solving the system of equations (4.5) accord-
ing to

a(x) = A~ (x)B(x)f. (4.9)

By inserting the unknown coefficients (4.9) into the MLS approximation function (4.1)
we obtain

FP(x) = p"(x)A () B()L, (4.10)

The equation (4.10) is often written in the following form

&) =3 6s(x) (4.11)
J=1
where ¢;(x) is the shape function associated to the node x; defined as
$s(x) =Y pe(x)[AT (%) B(x)]1- (4.12)
k=1

It should be stressed out that in the general case the MLS approximation function does not
interpolate the nodal values at x, or in other words " (xy) = f 7 does not stand. For that

reason, the nodal values f ; are called fictitious values. The non-interpolating property
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of the MLS approximation function is presented in Figure 4.2 for an one-dimensional

approximation problem.

£

x

Figure 4.2: Non-interpolating property of the MLS approximation function

By analyzing the equation (4.10), it is obvious that the necessary condition to obtain a
good approximation is the existence of the inverse of the moment matrix A, It is there-
fore essential to ensure that the momentum matrix is non-singular and well conditioned.
The inverse of the moment matrix is usually determined by utilizing standard numerical
procedures like the LU factorization with pivoting, the QR factorization or the Singular
Value Decomposition (SVD) [173]. With a more detailed analysis, it can be shown that
the inverse of the moment matrix exists only if the number of nodes n within the area of
approximation €2, is greater or equal than the number of monomials m within the vector
of basis functions p(x). Also, it is preferred that the arrangement of the nodes within
the approximation domain is not uniform. In other words, nodes should not be arranged
in such a way that some of their coordinates are equal. These type of distributions can
sometimes cause the non-invertible moment matrix. A detailed theoretical analysis of the
MLS approximation functions can be found in [174].

The choice of the weight function (4.4) also has a significant impact on final properties
of the MLS approximation function. According to [47], the chosen weight function has to

fulfill certain necessary conditions:

e Positivity
The weight function has to have a value greater than zero over its support domain,
ie. Wy(x) > 0. This type of weight function guarantees the existence of the

minimum of the discrete Ly error norm defined by (4.4).

e Compactness
The weight function has the value zero, W;(x) = 0, outside the support domain.
The compact support ensures the locality of the function since only the nodes within
the support domain influence the approximation at the point of interest x. For these

nodes, W;(x) # 0 can be written.
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e Monotonic decrease
Such weight function should be chosen that it has the largest value at the point
of interest x, which then monotonically decreases away from x. This guarantees
that the nodes within the support domain closer to x have a larger impact on the

approximation.

Any arbitrary functions that satisfies the presented conditions can be used as a weight
function in the MLS approximation. As a desirable feature of the weight function for
the MLS approximations, Kronecker delta property can be mentioned. In the case that
the chosen weight function W;(x) has a delta property, that will be also true for the
constructed MLS approximation function [106]. Thus, the Kronecker delta property facil-
itates the fulfillment of essential boundary conditions, which can be enforced in a simple
manner identical to the procedures in in FEM. However, in the case that the chosen
weight function does not possess the delta property, the essential boundary conditions
need to be enforced by utilizing additional numerical procedures. In doing so, the com-
plexity and the computational time of the method is increased. Furthermore, the choice
of the weight function W;(x) also directly influences the order of continuity of the ap-
proximation function f®(x). The most utilized weight functions are those of Gaussian
or polynomial character. More details on these functions can be found in [23, 175]. One
of the most common selection for the weight function is a polynomial (spline) function of

the fourth-order with a circular support domain which is defined as
d d d

1—6(=L)? +8(=L)° —3(<

Wi (x) = wsy(x) = TsJ TsJ Ts.J

0 dJ > Tsg

)Y 0<dy<ry
. (4.13)

In the relation (4.13) d; = |x — x| denotes the distance between the node x; influencing
the approximation to the point of interest x, while ry; represents the size of the MLS
weight function W;(x) support domain. It should be noted that the weight function
defined in (4.13) is also one of the most commonly used in the MLPG meshless methods
[47]. The size of the support domain is often determined by multiplying the characteristic
average distance between the nodes hs with any chosen scalar value ag such that the
support domain covers a sufficient number of nodes within the approximation domain
Q.. The accuracy and stability of the MLS approximation is directly influenced by the
choice of the parameter ag. Therefore, for the purpose of optimizing the computational
procedure parametric analyses of the accuracy of the solution depending on the size of

the ry; are often carried out.
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4.1.2. Characteristics of MLS approximation

All of the approximation functions based on the MLS scheme possess similar proper-

ties, which are mentioned and noted in this subsection. These properties include:

e High order of continuity
A order of continuity of the MLS approximation is directly affected by the continuity
of the functions used within the base vector p(x) and the choice of the weight
function W;(x). In most cases, the continuity of functions in p(x) is higher than
the continuity of W;(x), so the MLS approximation function inherits the continuity

order from the weight function [22].

e Reproducibility
The MLS approximation functions possesses the property of reproducibility, which
means that they can replicate the functions contained within the vector of basis

functions p(x) [75].

e Consistency
The consistency is defined as the ability of the approximation function to reproduce
the complete polynomial function of a certain order [21]. Since the MLS function
has the property of reproducibility, it can be observed that it is also consistent if a
complete polynomial is used in p(x). The order of consistency is equal to the order

of the complete polynomial comprised in the vector of basis functions p(x).

e Partition of unity
The partition of unity is a very common property of the meshless approximation
functions. It refers to the characteristic that the sum of all shape function values
function within the approximation domain is equal to one. This property allows the

description of rigid body motions in computational mechanics [23].

e Complex shape function form
For the construction of the meshless shape functions, the computation of the matrix
A~1isrequired. Hence, the needed computational time is much larger in comparison
to the construction of the polynomial shape functions in FEM [47]. The MLS shape
functions are rational polynomial functions. This often leads to a more demanding
numerical integration procedures in meshless methods based on the weak form of

equations.

e Robustness
The MLS scheme achieves the reasonable accuracy of the approximation using ran-

domly scattered data points if the parameters that influence the quality of the
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approximation are chosen correctly. This parameters include the size of the ap-
proximation domain and the shape parameters associated with the chosen weight
function. For this reason, the parametric analyses of the accuracy of the solution
depending on the mentioned parameters are often initially performed. Also, differ-
ent methods for defining the optimal size of the approximation domain are available
in the literature [168, 176].

4.1.3. Derivative calculations of MLS approximation

The derivatives of the MLS approximation function needed for the numerical solving
of the problems can be calculated in two different manners. The first one is the classical
approach, which is based on the direct differentiation of the approximation function f®,
while the second one is proposed by Belytschko and Fleming [172] and is based on the
introduction of the auxiliary vector «(x) and solving of the system of equations. The
application of both manners produces exactly the same derivatives of the approximation
functions, but the second one is computationally faster and more efficient. Thus, in the
numerical methods presented in this Thesis, the latter manner of derivative calculation is
utilized. In this subsection, the most important relations for the calculation of derivatives

for both manners are presented.

The direct differentiation of the relation (4.11) leads to

) =3 0s.x) /s, (4.14)
J=1

where ¢; ; represents the first-order partial derivative of the shape function for the Jy,
node influencing the approximation at x, which is equal to

by = Z[pm(A—lB)M +pu(A7'B+AT'B ). (4.15)
k=1
In the relation (4.15), the first-order partial derivatives of the inverse moment matrix A~

appear which are calculated as

Al=—-A'A,A7 (4.16)

N3

The second-order partial derivatives of the MLS approximation function ¢, are calcu-

lated by differentiation of (4.14) and can be written

m

¢J,z‘j = Z[Pk,ij(AilB)kJ + pk,i<A,_le + AilB,j>kJ+

k=1
pk,j(Ang + AilB’Z’)k‘] + pk(A;;B + A;lB,j‘F
Ang,i +A7'B )l

(4.17)
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where the second-order derivatives of the inverse moment matrix are equal to
A =ATAATTAAT - ATTA AT (418)
ATTAATTA AT '

The more efficient way of calculating the derivatives is based on the rewriting of the

equation (4.12) in the form
¢s(x) = p(x)A™ (x)B,(x) = v(x)Bs(x), (4.19)

where B(x) denotes the J™ column of the matrix B(x) which is associated with the J*™
node within the approximation domain Q. In the relation (4.19), «(x) represents the

auxiliary vector which is obtained from solving of the system of algebraic equations

A(X)v(x) = p(x). (4.20)

Since the vector v(x) can be determined from the above system of equation by simple LU-
decomposition, this approach is computationally more efficient. Hence, there is no need
for the calculation of the inverse moment matrix. The derivatives of the shape function

are determined by further differentiation of the relation (4.19) which leads to

¢,(x) = 7:(x)B(x) + v(3)By (%), (4.21)

G7,45(x) =745 (x)Bs(x) +7.:(x)By ;(x)+
7.5 (x)Bi(x) +v(x)By;;(x).

As obvious, the derivatives of the auxiliary vector «y(x) also appear in the equations (4.21)

(4.22)

and (4.22). They are calculated after v(x) is determined as the solution of the system of

equations given by (4.20) using following relations
A(x)7i(x) = pi(x) — Ai(x)v(x), (4.23)

A(x)7,5(x) = Pij(x) — A j;(x)y(x)—
A (x)7,5(x) — A (x)7,i(x)

Now, the values of the shape functions ¢;(x) and its derivatives ¢; ;(x) and ¢ ;(x) are

(4.24)

determined by substituting the solutions of the system of equations given by (4.20), (4.23)
and (4.24) into equations (4.19), (4.21) and (4.22)

4.1.4. Interpolatory MLS approximation with regularized weight

function

The MLS approximation function constructed using the weight function according

to (4.13) does not possess the Kronecker delta property. In other words, they do not
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interpolate the nodal values [177], which makes the imposition of the essential boundary
conditions more difficult. This leads to the use of additional numerical procedures for
enforcing of the necessary boundary conditions.

However, there are different approaches with which the interpolation property of the
MLS approximation can be achieved. The first of them is referred to as the kinematic
transformation procedure [47], wherein the values of the approximated functions at the
nodes have a predefined value. In this approach a system of equations for all the nodes
in the numerical model is obtained. This system needs to be solved in order to determine
the fictitious nodal values as a function of the interpolated nodal values. However, this
often results in the approximation function with bad properties. It can be proven that the
condition number of the coefficient matrix of the approximation system of equations gets
worse as the number of degrees of freedom in the numerical model increases [178]. Another
simple and efficient approach that results in the interpolation properties of approximation
functions at the nodes is the application of the regularized weight functions according to
[106] in the form

Wi () = o) (4.25)
Izzjl ’LTJR[(X>
where g (x) is equal to
Ty (x) = () +e) —(+e)” (4.26)

e2—(14¢)2

In the equation (4.25), n denotes the number of nodes within the approximation domain
()., q represents the arbitrary parameter of the regularized weight function, while ¢ is the
regularization parameter of the considered function. In (4.25), the values of parameters
q and ¢ influence the layout of the weight function and need to be chosen so as to ensure
the Kronecker delta condition of the MLS shape function with high accuracy [122]. In
this dissertation, for the calculation of the numerical examples values of parameters g =
4 and ¢ = 107° are used. In the literature, the weighting function 1gs(x) is often
substituted with Wg;(x) to reduce the calculation time. By using any of these weight
functions, the same MLS shape functions are obtained. Furthermore, the first- and second-
order derivatives of the weight function (4.25) are not equal zero at the boundary of the
support domain and have only C° continuity. Given that in the numerical solution process
high-order of derivatives are often needed, the sufficient continuity of the approximation
function is achieved my multiplying the regularized weight function (4.25) with some

standard function that possesses a higher-order of continuity [122]. Herein, this is achieved
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by multiplying the fourth-order spline function (4.13) and the regularized function (4.26)

wsy(X)Wry(x) 0<d; <rygy

W;(x) = (4.27)

0 dJ > Tsg

By utilizing the weight function according to (4.27), the constructed MLS function pos-
sesses the interpolation properties at the nodes, which ensures easier imposition of the

essential boundary conditions using numerical procedures analogous to FEM.

4.2. Radial point interpolation method (RPIM)

As the name implies, in the Radial Point Interpolation Method (RPIM) the approxi-
mation is constructed by letting the function pass through the function values at all of the
nodes positioned within the defined domain of approximation [22]. Herein, it is considered
as an alternative approximation to MLS. Furthermore, meshless methods that employ the
Radial Basis Functions (RBF') have some clear advantages in comparison to other meshless
methods due to numerically simpler construction of interpolatory approximation functions
[179]. Traditional RBFs that use global domain approximation yield fully-populated ma-
trices [180], which is a big limitation to their wider engineering application. Therefore, in
this dissertation, efficient RPIM [107] is utilized for the approximation, which uses RBF's
in a locally supported domains, so that the obtained system of equations is sparse, which
decreases required computational effort. Within the RPIM, the polynomials are added
into the basis in order to ensure the consistency of the shape functions. As stated in [22],
adding polynomial terms can also attribute to the accuracy of the numerical solution.
Hence, in this section the construction of the used RPIM function with polynomial repro-
duction is explained. Since the approximation is highly dependent on the choice of RBF,
an overview of the most common functions is given. A more detailed description for the
utilized Gaussian RBF is also presented. Furthermore, the main properties and features
associated with this type of approximation are mentioned. At the end of the section, the

calculation of derivatives of the RPIM functions is discussed.

4.2.1. Radial Basis Functions

The Radial Basis Functions (RBF) are the most important part of the considered
approximation since they ensure the non-singularity of the moment approximation matrix
[181]. To the present day, within the mathematical community a large number of different
forms of RBFs have been utilized. Newer forms [182] are often derived from the classical

(conventional) ones [22]. The classical forms have been widely tested and applied to
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problems of surface fitting [183, 184] and for the construction of approximate solutions
for PDEs [185, 186]. As some of the most popular RBFs used for the approximation of
the field variables, the Gaussian function (EXP) [187], the Multi-quadrics (MQ) function
[188] and the Thin Plate Spline function (TPS) [189] can be mentioned. These RBFs
with the dimensionless shape parameters [190] are given in the Table 4.1. A more detailed

classification and characteristics of the most commonly used RBFs can be found in [191].

Table 4.1: RBF's with dimensionless shape parameters

Radial Basis Functions | Mathematical definition | Shape parameters
Gaussian R;(x) = exp[ — ac(%)z} Q.
Multi-quadrics Ry(x) = (r5 + (aede)®)™ Qq s q
Thin plate spline R;(x) =1 n

Depending on the RBF chosen for the approximation, several shape parameters of the
function need to be chosen in advance. In general, these parameters are often obtained by
numerical examinations. Fine tuning of the shape parameters can result in more accurate
and better performance of the meshless method. In this dissertation, the 2-D Gaussian

RBF

Ry(z,y) =exp| — ac(;—i)ﬁ. (4.28)

is considered for numerical computations. In the equation (4.28), d. is an average nodal
spacing calculated using all nodes within the local domain of approximation, while r;
denotes the radial distance of the node to the other nodes that influence the approxima-
tion. The function uses only one shape parameter a. that needs to be determined. The
detailed investigations of this parameter are done using appropriate numerical examples

in the next chapter.

4.2.2. Construction of RPIM function

By using n nodes within the approximation domain RPIM with the included polyno-

mial basis functions approximates a field variable in the form
FP(x) =Y Ry(x)a;+ > pu(x)by = R"(x)a+p" (x)b, (4.29)
J=1 H=1

where R;(x) is the chosen RBF, n is the total number of nodes that influence the approx-
imation at x, py(x) are the monomials, m is the number of polynomial basis functions.

The unknown coefficients, a; and by, are determined by enforcing that the interpolation
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passes through n nodes within the approximation domain. In doing so, often the minimal
number of monomials in the basis is required, and more terms in the radial basis (m < n)
are utilized in order to obtain better stability of the approximation. As obvious, here
the unknown coefficients are not functions of the point of interest x as is the case in the
MLS approximation. The interpolation equations for n nodes within the approximation

domain can be presented in the matrix form as
f = Roa+ Ppb, (4.30)

where f denotes the vector comprised of all the field nodal values within the approxi-
mation domain, while Ry and P, represent the moment matrices of the approximation
corresponding to the radial basis and the polynomial functions, respectively. According
to [192], an additional constraint condition of the polynomials should be satisfied. This

constraint guarantees the uniqueness of the approximation [193] and is written as
Pla=0. (4.31)
Equations (4.30) and (4.31) can be combined to obtain the system of equations

a f
-1 i

The coefficient matrix on the left hand side of the above system of equations is often

Ry P,
P’ o

referred to only as

= §£ I;m (4.33)
Herein, the moment matrices P, and Ry are equal to
(Pi(x1) Pa(xi) o Palx)]
P = Pl('X2) Pz(.Xz) mexz) | (4.34)
| Pi(xp) Pa(xn) -0 Pa(Xa)
(Ri(r1) Ra(r1) -+ Ra(r)]
|09 ) )| eas
Ri(r) Ra(ra) - Ralra)]

In this approximation the value of RBF at the point of interest is dependent on the
radial distance from the other nodes within the approximation domain. Thus, this radial

distance is usually computed as

re =V (xe — 2:)% + (ye — )7, (4.36)
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where z; and y; denote the coordinates of the point for which the approximation is being
constructed, while z; and y; are the coordinates of the nodes influencing the approxima-
tion at x. Because the Ry is symmetric, the matrix G will also be symmetric. Hence, if

the inverse of matrix G exists, the unique solution for the interpolation coefficients can

al %
]-o[1] i

However, the calculation of the inverse of the matrix G in every approximation domain can

be obtained as simple as

be computationally burdensome. Hence, the equations for determination of the unknown
coefficient vectors a and b can be rearranged into a slightly different but more efficient
procedure. Since, the moment matrix Ry is a non-singular matrix, from the equation

(4.30), the vector a can be expressed as
a=Ry'f - R;'P,b. (4.38)

Now, if the equation (4.38) is substituted into the polynomial constraint equations (4.31)

the expression for the vector b follows
b = S.f, (4.39)

where Sy, represent the auxiliary matrix of the RPIM approximation associated with the
vector b, computed as

S, = [PLR,'PL|PIR,. (4.40)
It should be stresses that PLRy*' in the above relation has to be evaluated only once,

which speeds up the numerical computation. Furthermore, if the unknown vector b (4.39)

is now inserted back into relation (4.38), the unknown vector a is now computed as
a=S,f, (4.41)
where
S. =Ry' —Ry'PuS. (4.42)

From the analysis of the above expression, it can be observed that Ry'P,, is easily
obtained from transposing PLRy! which has been already computed in (4.39). This
feature is also beneficial and further decreases the needed computational time of the
approximation. Now, when the vectors a and b are known, the RPIM approximation

function is written as follows
fP(x) = [RY(x)S. + p" (x)Su)f, (4.43)
where the expression in the brackets denotes the vector of shape functions

®(x) = R'(x)S, + p"(x)Sy. (4.44)
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In the above equation, the terms in vector ®(x) denote the shape function values associ-

ated with nodes influencing the approximation equal to

Oy(x) =Y Ry(x)Sas + Y pu(x) S (4.45)

It is easily observed that the auxiliary matrices S, and S}, are constant matrices for the
given locations of the n nodes within the approximation domain. Hence, as long the same
nodes within the approximation domain are utilized these matrices do not change, which is
of great significance in the derivative calculations. Finally, the constructed RPIM function
defined by (4.43) passes through all of the nodal values at x; within the approximation
domain. In addition, it can be observed that at every node, the equation f (xy) = f J
can be written. Thus, the function possesses the interpolation properties at the nodes, as
well as the Kronecker delta property. The interpolatory charachter of the RPIM function

is depicted in Figure 4.3 using simple one-dimensional approximation example.

fi

-—
X

Figure 4.3: Interpolating property of the RPIM approximation function

4.2.3. Properties and features of RPIM function

The main characteristics of the RPIM approximation are presented in this subsection.

Some of the properties and features of this type of approximation are:

e Delta function property
All of the shape functions based on the PIM approximation schemes posses the

Kronecker delta property which can be easily proven [22].

e Reproducibility
The approximation augmented with polynomial terms can exactly reproduce the

order of the polynomials comprised in the basis.

e Partition of unity
RPIM shape functions have the partition of unity property if the linear polyno-
mial terms are added in the basis. The feature is easily shown if the reproduction

properties of the function are utilized [23].
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e Compactness
The shape functions are constructed using only a finite number of nodes within the

local approximation domain. Thus, the functions are compactly supported.

e Continuity
The RPIM function usually have higher-order continuity than most meshless ap-

proximations due to a high-order of the utilized RBFs.

e Compatibility
It is possible that the compatibility of the functions in the entire global domain
is not ensured if the RPIM approximation is constructed using the local approx-
imation domain concept. Furthermore, the approximated field functions could be
discontinuous when resolving problems where nodes frequently enter or leave the

moving support domains.

4.2.4. Derivative calculations of RPIM functions

In this subsection main relations for computing the derivatives of the RPIM shape
functions are presented. The derivatives of RPIM functions with polynomial reproduction
are performed in a simple and straightforward manner due the auxiliary matrices S, and
Sy, being constant. Thus, by the direct differentiation of the RPIM shape function (4.45),
the first-order

D, i(x) = Z Ry i(x)Sas + ZPH,i(X)SbH7 (4.46)
J=1 H=1

and the second-order derivative
(%) = Z Ry ij(x)Sas + Z pr i5(X)Svm, (4.47)
J=1 H=1

of the shape functions are obtained. As obvious, the first-order derivatives of radial basis
R;;(x) and polynomial basis p; ;(x) functions are needed for computing the first-order
derivative of the shape function (4.46). Herein, the derivatives of the polynomial terms are
easy to obtain while the first-order derivatives of the utilized Gaussian RBF are computed

as

200,

RJ,z(xay> - - 2 RJ(xay)<x - 'IJ)? (448>
20,

Ry, (z,y) = — pp Ry(z,y)(z —xy). (4.49)

Furthermore, to compute the second-order derivative of the shape function (4.47), the

second-order derivatives of the radial R;,;(x) and the polynomial part p;,;(x) of the
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approximation need to be utilized. For that purpose, the second-order derivatives of the

Gaussian RBF are given by

Riuale,y) = [ 2(5) +4(5) (@ — 2] Ro(a,), (4.50)
Rygla.y) = [ =2(55) +4(5) (v - )] Rale,y), (451)
Ry ay(y) = 4(55) R, y) (@ = 2)(y = y). (4.52)
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5 | Meshless modeling of
heterogeneous materials

using classical linear

elasticity

For solving the boundary value problem of the heterogeneous materials using classi-
cal linear elasticity two different collocation methods are considered. The heterogeneous
material is here composed of two different homogeneous isotropic materials with linear
elastic properties. Both methods are based on the local MLPG concept. The methods ap-
plied can be denoted as the Meshless Local Petrov Galerkin collocation method (MLPG2)
[194], which uses the IMLS function [195], and the Radial Point Interpolation Colloca-
tion Method (RPICM) [196] with RPIM [197] for the approximation of the unknown field
variables. Furthermore, two different approaches, a fully-displacement (primal) [27] and
a mixed [71], of each method have been utilized. Hence, this chapter is dedicated to
meshless modeling of material discontinuity using collocation methods. Firstly, the gov-
erning equations and boundary conditions for the heterogeneous structure are presented.
Secondly, the discretization of the heterogeneous structure is explained. Also, the dis-
cretized forms of equilibrium equations and the boundary conditions for the primal, and
the mixed approach are derived. Since the collocation methods are utilized, the numerical
integration is avoided so the system of discretized equations is obtained in a quick and
straightforward manner. In the primal approach, for the unknown field variables, two
components of displacements are considered, while in the mixed approach two compo-
nents of displacements and three components of stresses are utilized. All field variables
are approximated using same meshless functions, which are constructed independently
for each homogeneous material. Since the applied approximations possess the interpola-
tory property at the nodes, the essential (displacement) boundary conditions are imposed
using a simple procedure analogous to classical FEM. The natural (traction) boundary
conditions are enforced at the discretization nodes using the direct collocation method.
At the nodes representing the interface boundary between two homogeneous materials

the displacement continuity and traction reciprocity are enforced in order to obtain the
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unique solution for the entire heterogeneous structure. In both the primal and the mixed
approach the final system of discretized equations has only nodal displacements as un-
knowns. At the end of the chapter, the numerical efficiency and accuracy of the applied

collocation methods are closely examined in a several numerical examples.

5.1. Governing equations and boundary conditions

For the purpose of deriving the discretized system of governing equations for the ma-
terial discontinuity problem, a 2-D heterogeneous structure which occupies the global
computational domain Q (Q = QTUQ™) bounded by the global outer boundary I' (I’ =
['tUl'™) is considered, as shown in Figure 5.1. The boundary I'y represents the inter-
face between two homogeneous isotropic materials QF and Q~ with different linear elastic
material properties, while n™ and n~ denote unit outward normal vectors on outer bound-

aries, I'" and I'", and on the interface boundary T.

I

Figure 5.1: Heterogeneous structure consisting of two homogeneous materials

For the stationarity state of the two dimensional solid heterogeneous structure depicted
in Figure 5.1, a strong form of elasto-static governing equations (2.15) can be written for
each homogeneous material separately

o +b7 =0, within QF, (5.1)

o;;+b; =0, within Q. (5.2)

J

In the equilibrium equations above, cr;; and o;; are the Cauchy stress tensors, while b

and b; denote body forces for each homogeneous domain, Q" and Q~, respectively.
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Figure 5.2: Boundary conditions of the discretized heterogeneous structure

On the outer boundaries Q1 and Q= of the heterogeneous structure, the following dis-

placement and traction boundary conditions have to be satisfied

uf =45, on [}, (5.3)
u;, =u;, on I, (5.4)
ty =o5n; =t, on Iy, (5.5)
ty = o n; =t;, onIy. (5.6)

According to Figure 5.2, in the boundary equations (5.3) and (5.4), 'l and T’ represent
the parts of boundaries I'" and I'” where the displacement conditions are prescribed, while
in equations (5.5) and (5.6), T’} and T'; denote the parts where the traction conditions
are prescribed. The superposed bar indicates the prescribed values of the displacements
and the tractions. In order to obtain the solution for the entire heterogeneous structure,
interface conditions on the boundary I'y should also be applied. These conditions are
needed to ensure the continuity of the displacement field along with the discontinuity
(jump) in the displacement derivative field across the interface boundary T's. In this

dissertation, this is fulfilled in a simple manner by enforcing equations on I'y

uf —u; =0, (5.7)
tot 4 oo —
on; +ogn; =0. (5.8)
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5.2. Discretization of the heterogeneous structure

The discretization of the global computational domain {2 is performed by two different
sets of nodes ST = {x;,I =1,2,..., N : x;CQTUI'"Ul} and S~ = {xp, M =1,2,..., P :
xpy CQ U UL}, where N and P indicate the total number of nodes within homogeneous
materials Q7 and Q, respectively. Furthermore, the discretization of the interface bound-
ary I'y is achieved by using the overlapping nodes belonging to different homogeneous
materials. According to the MLPG concept [28], a small domain of circular shape called
a local subdomain, denoted as Y, is defined around each discretization node xeSTUS™.
The local subdomain for the nodes positioned on the interface boundary I’y is truncated
on either side of the interface, as seen in Figure 5.2. In that manner, the discretization
nodes in the material Q" can only be influenced by the nodes contained in that material.
The same applies for the discretization nodes belonging to the material Q7. If the well-
known weighted residual approach [27] is employed over each local subdomain €Y, a local

weak form of equilibrium equat