A proposal of an ontology-based methodological
framework for multi-platform mobile applications
development

Stapic, Zlatko

Doctoral thesis / Disertacija
2014

Degree Grantor / Ustanova koja je dodijelila akademski / strucni stupanj: University of
Zagreb, Faculty of Organization and Informatics Varazdin / Sveuciliste u Zagrebu, Fakultet
organizacije i informatike Varazdin

Permanent link / Trajna poveznica: https://urn.nsk.hr/ur:nbn:hr:211:752249

Rights / Prava: In copyright /Zasti¢eno autorskim pravom.

Download date / Datum preuzimanja: 2024-04-25

Repository / Repozitorij:

]
f SVYEDCILISTE U ZACRERL
FAEKULTET ORGAMIZACIJE I INFORMATIKE : . . _DiAi
o I Az Faculty of Organization and Informatics - Digital
Repository

DIGITALNI AKADEMSKI ARHIVI I REPOZITORILII

https://urn.nsk.hr/urn:nbn:hr:211:752249
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.foi.unizg.hr
https://repozitorij.foi.unizg.hr
https://repozitorij.unizg.hr/islandora/object/foi:518
https://dabar.srce.hr/islandora/object/foi:518

Ad LYY

L84 &84
(VYY) AdAA
[YY YY) [YYY Y)Y

University of Alcala
Computer Science Department, Postgraduate School
Doctoral program “Information and Knowledge Engineering”

University of Zagreb

Faculty of Organization and Informatics
Postgraduate doctoral study "Information Sciences"

ZLATKO STAPIC

A PROPOSAL OF AN ONTOLOGY-BASED METHODOLOGICAL
FRAMEWORK FOR MULTI-PLATFORM MOBILE APPLICATIONS
DEVELOPMENT

DOCTORAL DISSERTATION

Advisors:
Prof. Vjeran Strahonja
Dr. Luis de Marcos Ortega

Alcala de Henares & Varazdin, 2013

Sveuciliste u Alcalai
Odjel raunalnih znanosti, Poslijediplomska Skola
Doktorski program “InZenjerstvo informacija i znanja”

Sveuciliste u Zagrebu

Fakultet organizacije i informatike
Poslijediplomski doktorski studij “Informacijske znanosti”

ZLATKO STAPIC

PRIJEDLOG ONTOLOSKI UTEMELJENOG METODOLOSKOG
OKVIRA ZA RAZVOJ VISE-PLATFORMSKIH MOBILNIH
APLIKACIJA

DOKTORSKI RAD

Mentori:
Prof.dr.sc. Vjeran Strahonja
Doc.dr.sc. Luis de Marcos Ortega

Alcala de Henares i Varazdin, 2013

UNIVERSIDAD DE ALCALA, PATRIMONIO DE LA HUMANIDAD

@ ! Campus Universitario. Edificio Politécnico
a d Al 1 s 28805 Alcald de Henares (Madrid)
vl € cala Teléfonos: 91 885 66 51

Fax: 91 885 66 46

a
[
abd
o
adAAL

. . . DEPARTAMENTO DE
i UanEI'Sldad CIENCIAS DE LA COMPUTACION

Diia. Teresa I. Diez Folledo, Profesora Titular de Universidad del Area de Lenguajes y
Sistemas Informaticos, en calidad de Directora del Departamento de Ciencias de la

Computacion.

CERTIFICO: Que la Tesis Doctoral titulada “A Proposal of an Ontology-Based
Methodological Framework for Multi-platform Mobile Applications
Development” realizada por D. Zlatko Stapi¢ y dirigida por el Dr. D. Vjeran Strahonja
y co-dirigida por el Dr. D. Luis de Marcos Ortega, reune los requisitos para su
presentacion y defensa publica habiendo recibido la conformidad del departamento en la

comision permanente celebrada el dia 18 de Septiembre de 2013.

Y para que asi conste, firmo la presente en Alcald de Henares, a 26 de Septiembre de

2013

La Directora del Departamento de Ciencias de la Computacion

Diia. Teresa 1. Diez Folledo.

#£2% Universidad
2 de Alcald

%’g‘% Universidad

DEPARTAMENTO DE)
CIENCIAS DE LA COMPUTACION

\University of
) Zagreb

FACULTY OF ORGANIZATION AND INFORMATICS
VARAZDIN

Dr. D. Vjeran Strahonja, Catedratico de Universidad del Area de Ciencias de la
Informacion y Comunicacion de la Facultad de Organizacion e Informatica de la
Universidad de Zagreb.

Dr. D. Luis de Marcos Ortega, Profesor Ayudante Doctor del Area de Ciencias
de la Computacion e Inteligencia Artificial del Departamento de Ciencias de la
Computacion de la Universidad de Alcala.

HACEN CONSTAR:

Que, una vez concluido el trabajo de tesis doctoral titulado: “A proposal of
an ontology-based methodological framework for multi-platform mobile
applications development” realizado por Zlatko Stapi¢, dicho trabajo tiene
suficientes méritos tedricos, que se han contrastado adecuadamente
mediante validaciones experimentales y que son altamente novedosos. Por
todo ello consideran que procede su defensa publica.

Y para que asi conste, firman la presente en Varazdin y Alcala de Henares, a 22

de julio de 2013.

El Director de la Tesis El Co-director de la Tesis

Dr. Vjeran Strahonja Dr. Luis de Marcos Ortega

% UNIVERSITY £23% Universidad
J OF ZAGREB

Onima koji su me naucili sanjati,
koji su mi omogucili krenuti,
koji su vjerovali da ¢u stici i s ljubavlju bili uz mene.

Mojoj obitelji.

ACKNOWLEDGMENTS

Now, when looking back, | can hardly find words to express my gratitude to those who deserve to be
acknowledged and that have helped me a lot during the years of my work on this dissertation
project.

First of all | want to thank my advisors Prof. Vjeran Strahonja and Dr. Luis de Marcos Ortega, for their
help, patience, advices and support during all this time. Your useful recommendations, experience
and motivation were of great help. Thank you for everything!

Likewise, | want to express my gratefulness to the institutions and staff of the University of Alcala
(Spain) who have kindly offered their facilities and help during my research stays in 2012 and 2013. |
specially appreciate the scientific and other help provided by mentor Dr. de Marcos and Prof. José
Maria Gutiérrez Martinez, Prof. José Javier Martinez Herraiz, Ana Maria Privado Rivera and Maria
Begona Aurrekoetxea from the Computer Science Department at the University of Alcala.

I would like to acknowledge everyone at the Information Systems Development Department of the
University of Zagreb, Faculty of Organization and Informatics for their help and support during my
work on this thesis. My gratitude also goes to the Croatian Science Foundations for their financial
support of my research project and my stay at the University of Alcald. This project included
important part of the research performed in this dissertation.

The dissertation language and grammar would be (at least) funny without everybody who helped me
proofread the document. Thank you all, and especially thank you Tea for spending many hours in
reading and suggesting the corrections to this book.

Last, but not the least, this research would never have become reality, without the love, support and
motivation instilled in me by my wife Jelena, my children, mother, brother and the rest of my family.
Dear Jelena, thank you for all your love and support and for always believing in me. Dear Marta and
Emanuel, your smiles wiped away all exhaustion at the end of each day. Without the three of you,
the sun wouldn’t shine the same for me.

ABSTRACT

Software development teams are faced with the lack of interoperability during the development of
mobile applications for two or more target platforms. The development for second and every other
platform means a new project with a need to repeat almost all the phases defined by the chosen
methodology but with a narrow possibility of reuse of the already defined artifacts. The existing
efforts of professional and scientific community to solve this problem have a similar approach (“code
once, run everywhere”) with similar advantages and drawbacks. Thus, this dissertation aims to
propose a different solution and is concerned with: (1) analyzing the methodologies suitable for
mobile applications development, (2) observing the implementation of prototype application in
order to define artifacts that are created during the development process for two target platforms,
(3) semantic description of artifacts and their meaning, and (4) defining unique ontological definition
as a base for methodological interoperability.

The results of a systematic literature review performed on 6761 primary studies, show that current
state-of-the-art literature brings only 22 development methodologies and 7 development
approaches which can be identified as eligible for multi-platform mobile applications development.
Among these, Mobile-D methodology accompanied with Test Driven Development was chosen and
used in the observed development processes for Android and Windows Phone platforms. Total of 71
artifacts were identified and the artifacts reusability level when developing for second target
platform was 66.00%. In the last research phase, the artifacts for both platforms were semantically
described into a single ontological description comprising 213 classes, 14 object properties and 2213
axioms defined in ALCRIF DL expression sub-language. Having this ontology proved as correct and
valid, flexible, reusable and extensible we created the basis for development of an information
system to guide the development teams in a more efficient and interoperable process of multi-
platform mobile applications development.

Keywords: Methodology, mobile, multi-platform, development, ontology.

RESUMEN

Los equipos de desarrollo de software se enfrentan al problema de la falta de interoperabilidad
durante el desarrollo de aplicaciones para dos o mads plataformas. El desarrollo para la segunda y
subsiguientes plataformas significa un nuevo proyecto con la necesidad de repetir casi todas las fases
definidas en la metodologia elegida, pero con pocas posibilidades de reutilizar los artefactos
definidos. Los esfuerzos realizados por la comunidad cientifica y profesional para solventar este
problema tienen una aproximacion similar (“code once, run everywhere”) también con similares
ventajas e inconvenientes. Esta tesis pretende proponer una solucién diferente: (1) analizando las
metodologias adecuadas para el desarrollo de aplicaciones moviles, (2) observando Ia
implementacién de un prototipo de aplicacidn que sirva para definir los artefactos creados durante el
proceso de desarrollo para dos plataformas, (3) estableciendo una descripcion semantica de los
artefactos y su significado, y (4) creando una Unica definicién ontoldgica como base para la
interoperabilidad metodoldgica.

Los resultados de una revisidn sistematica de la literatura, realizada sobre 6761 estudios primarios,
mostraron que el estado del arte actual cuenta solo con 22 metodologias de desarrollo y 7 enfoques
de desarrollo (development approaches) adecuados para el desarrollo de aplicaciones méviles multi-
plataforma. De entre ellas se selecciond y empled la metodologia Mobile-D junto con un enfoque
dirigido por las pruebas (test driven development) para estudiar el proceso de desarrollo en las
plataformas Android y Windows Phone. Se identificaron un total de 71 artefactos y el nivel de
reusabilidad de los artefactos durante el desarrollo para la segunda plataforma fue del 66.00%. En la
ultima fase de la investigacion se describieron semanticamente los artefactos para ambas
plataformas en una Unica descripcidn ontoldgica definida en el sublenguaje de expresién ALCRIF DL
gue cuenta con 213 clases, 14 propiedades de objeto y 2213 axiomas. Habiendo comprobado Ia
correccion, validez, flexibilidad, reusabilidad y extensibilidad de la ontologia, hemos creado la base
para el desarrollo de un sistema de informaciéon que guie a los equipos de desarrollo hacia un
proceso de desarrollo mas eficiente e interoperable para la construccién de aplicaciones moviles
multi-plataforma.

Palabras clave: Metodologia, mdévil, multi-plataforma, desarrollo, ontologia

SAZETAK

Razvojni timovi susrecu se s problemom neinteroperabilnosti prilikom razvoja aplikacija za dvije ili
vise mobilnih platformi. Razvoj aplikacije za drugu i svaku sljedeéu platformu znaci novi projekt u
kojem je potrebno ponovno provesti vecinu faza definiranih odabranom metodikom razvoja, pri
cemu se kreirani artefakti tesko ili uopée ponovno ne koriste. Napori profesionalne i znanstvene
zajednice za rjeSenjem ovog problema imaju sli¢an pristup (, kodiraj jednom, koristi svugdje®), sli¢ne
prednosti, ali i zajednicke nedostatke. Stoga ova disertacija navedenom problemu pristupa na nov
nacin i bavi se: (1) analiziranjem metodika pogodnih za razvoj mobilnih aplikacija, (2) promatranjem
razvoja prototipne aplikacije u svrhu definiranja artefakata koji nastaju pri razvoju mobilne aplikacije
za dvije ciljane platforme, (3) semantickim opisivanjem definiranih artefakata i njihovih znacenja, te
(4) definiranjem jedinstvene ontoloske definicije kao osnove za metodolosku interoperabilnost.

Rezultati sustavnog pregleda literature provedenog nad 6761 radom pokazali su da se trenutno u
literaturi spominju 22 metodike i 7 pristupa koji su pogodni za razvoj vise-platformskih mobilnih
aplikacija. 1zmedu identificiranih metodika odabrani su Mobile-D metodika i pristup razvoju voden
testiranjem, koji su koriSteni pri implementaciji prototipnog rjesenja za Android i Windows Phone
platformu. Ukupno je identificiran 71 artefakt pri ¢emu je ponovna iskoristivost artefakata pri razvoju
za drugu platformu bila 66.00%. U posljednjoj su fazi istraZivanja artefakti semanticki opisani u
zajednicku ontolosku definiciju koja u konacnici sadrzi 213 klasa, 14 objektnih svojstava i 2213
aksioma definiranih pomoc¢u ALCRIF-DL jezika izraza. U radu je dokazano da je ontologija valjana,
fleksibilna, ponovno iskoristiva i nadogradiva, ¢ime je kreirana osnova za razvoj informacijskog
sustava koji bi vodio razvojne timove u efikasnijem i bolje interoperabilnom procesu razvoja vise-
platformskih mobilnih aplikacija.

Klju€ne rijeci: Metodika, razvoj vise-platformskih mobilnih aplikacija, ontologija

TABLE OF CONTENTS

| Ao B 57405 (TSRS \Y
| Ao 721 o) (S PP RRUSSRRUS VII
LISt OF ACTOMNYIMIS ...eeiiiiiieeiiieiie ettt ettt ettt et et e et e e b e e ssaeeabeesseeenseesssesnseessseanseanssesnsens IX
Lo INEEOAUCTION ...ttt ettt e et ettt et eenbeeeaee 1
1.1, Outlining the problemi.........c.ccciiiiiiiiiiiieiecie e 1
1.1.1. Development of mobile appliCations............ccceeevueerierciieriieeriienieeeeeee e sere e 1
1.1.2. EXIStING SOIULIONSeeutiiiiieiieeiieie ettt sttt e 4
1.1.3. The final remarks on platforms and tools...........ccccceeveiieiiinciieiienieceeeeee 10

1.2. Objectives and hypotheses.........ccueeuiiiiiiiiiiiiieee e 10
1.2.1. The main 0al........ccooiiiiiiiieii et et e 11
1.2.2. HYPONESES ...evieniieeiiieiiecie ettt ettt ettt et sia e esbeessaeensaessaeenseenens 11

1.3. Research scope and methodology...........cociiiiiiiiiiiiiiiiee e 11
13,1, SCOPE AefINItION.uiiitiieiiieiiecie ettt et e enbe e eenbee e 11
1.3.2. Research approach..........cccoecuiiiiiiiiiiiinieeceeste et 13

1.4, Dissertation diSPOSILIONc.evueerteriiruieniirienieerieete ettt ettt ettt sbe et sae e 15

2. Mobile applications development methodologies: a systematic reviewcccuveeeeveennne 17
2.1, Research Method..........cooiiiiiiiii et 18
2.1.1. Definition of systematic literature review (SLR)........cccccvevvviiiniiiiniiiiniieenen 19
2.1.2. Steps to be performed..........ccvieeiiiieiiieeiieeeeee s 20
2.1.3. Advantages and disadvantages of SLRc..ccoceoviriiniiiiiniiniieieeeeeeee 42
2,14, LAGHE SLR ..ottt ettt ettt 43
2.1.5. Conclusions 0N SLRcciiiiiiiiiiiiiieeieet ettt 44

2.2, Planning the TEVIEWcceeiiiiiiiieiiieiieeie ettt ettt ste et e sate e e e ssaeeseesneeens 44
2.2.1. Defining the basic CONCEPLS......ceriiieriieeiiieeiieeeireeeireeeireesreeesreeesreeeeaeeensees 45
2.2.2. Overview of methodologies targeting development of mobile applications...... 50
2.2.3. Identification of the need for @ TEVIEWcccceeiiiiiiiiiiiiiiiiieeceee e, 54
2.2.4. Specifying the research qUESHIONScccuieeiuiieeiiiieeiie et 56
2.2.5. Developing a reVIieW ProtoCOLccovuieriieriiieniieeieeiieeitesee et eeite et seeeeeee s ens 57
2.2.6. Evaluating the review protoColcccecvvieeiiieeiiieeieece e 62

2.3, CoNdUCHING the TEVIEWeeiuiieiieeiiieiieeiie ettt etteste et e st e et e sateebeesaaeenseessaesseesaeeens 62
2.3.1. Identification Of 1€SEAICHcceiviiiiiriiiiieierieeeeeeee e 62
2.3.2. Selection of primary StUAIESccueeeriieeiiieeiieeecie ettt e e e evee s 64

2.3.3. Study quality @SSESSMENL........veeeieiieeiiieeiieeeiteeeiteeeieeeereeesreeesreeesreeesaseeesarees 68

2.3.4. Data extraction and MONITOTING.......cccueerrieriieeriieriireriieereeseeereeseeereessneeseensneens 70
2 T TR D - £ 050 ¥ 4 U1 4 113 USSR 71
2.4. Choosing development methodologyceeevviiiiiieeiiiieieeee e 74
2.5. Relevance of the Chapter.........ccoociiiiiiiiieiieeeeee e 75
3. Methodology implementation..........cc.eeeeuiieeeuieeeiiie e eeieeeeiee e e e see e e eeeeereeeereeesaseeeens 77
3.1, MODILE-D OVEIVIEW.....cueiiiiiiieiiiieeitet ettt sttt ettt et sttt et nae e 77
3.1.1. Introducing Mobile-Dc.cccciiiiiiiiiiieiecieee e 77
3.1.2. MODIIE-D PrOCESS ...uviiiiiieeciieeciee et eetee et e et e e e et e e e aa e e e beeessbeeeseseeeensaeenes 78
3.1.3. MODIle-D artifactSocueeeieiiiiieiieie e 79
3.1.4. Test driven deVelOPMENTccviieiiiieiiie ettt ereeeseree e 81
3.1.5. MODbile-D 1efereNCeccoueiiuiieiiiiiieie e e 81
3.2, EXPIOTE PRASE ...oooiiiiiiieiiieieeie ettt ettt et ettt eraeeane e 82
3.2.1. Targeted users and stakeholders...........ccoouiriiieiiiniiiiiiiiie e 82
3.2.2. Initial TEQUITEMENLSeeuiieiiieiieeieeiieeteeeiee ettt et e steeebeesteeesseessnesnseessneenseensns 82
3.2.3. Architecture 11Ne deSCIIPtIONcccveerviieiieriieeieeiee ettt e seee e e 82
324, Project Plan.....oc.ooiiiiiee e e e 83
3.2.5. DOCUMENTATION ...eouiiiiiieiieeiieeite ittt ettt ettt sttt e et saeeesbeeeaneeeee 84
3.2.6. Monitoring and MEASUIEMENT..........coeerueriirienieeienieenieete ettt seeesee e 85
3.2.7. Project plan CheckliStccciiiiiiiiiiiieiiece e 85
3.3, INItIAIZE PRASE ...cooeiiieiiie e es 86
3.3.1. ENVIFONMENT SETUP....eirtiirtieiiiriieiteeteritenie ettt sttt ettt sae e s sae et ebeesae e 86
3.3.2. Project plan and architecture planccccceeeviieeiiiiniiieeeeeeee e 86
3.3.3. Initial requirements analysis........cccccoceereriiirieniinienieneeeee e 88
3.3.4. Product Backlog......cc.couiiiiiiiiiiiiiiiiirteeeeee e 88
3.3.5. ACCEPLANCE TESES ..eeeruriiiriiieiiieeiieeerteeesteeestee e aeeeeteeetreesnseeessseeessseeensseeennseeenns 89
3.3.6. User interface SKetChes.........covevuiiiiriiiiiiiiiece e 92
3.3.7. THIAL DAY weeiiiiieeieeee ettt ettt e e e nnraeenn 92
3.4, PrOQUCHIONIZE ..ottt ettt ettt e et e e eaeeas 103
3410 FIISTIEETATION ..evientieiiiriieniieieet ettt ettt ettt st 103
3.4.2. Other TETAtIONS ...cc.ueeiuiiiiieiiie ettt ettt ettt et e bt et e b e sabeesaeeeas 116
3.5 SHADIIIZE ..o 123
3.6, SYSEM LESt & FIX c.uiiiiiiiiieiieciie et et eneeas 123
3.7. Development of Windows Phone applicationccceeeveeeviieniiiencieeecie e, 125
3.7.1. EXPIOTE PRASEeeiniiiiiiieiiece ettt et en 125
3.7.2. INItIAlIZE PRASE.....eeieeiieciieeeiee ettt e s 126
3.7.3. ProdUCHIONIZE......ooiuiiiiiiiiieiiie ettt ettt ettt et e saeeeas 128

BT A, SEADILIZE ..o ———aaaaaaaaa 129

3.7.5. SyStem teSt & fIX .euiiiiieiieiiieiieeie ettt ens 129
3.8. Conclusions on implementationcccccueeecueeeriieeiieeeieeeesieeeieeeeeeeeereeeereeeeenes 130
3.9. Relevance of the Chapter.........cccoociiiiiiiiiicee e 132

4. Identification Of the artifactS.........cecevieriiriiiieniie e 133
4.1, ANALYSIS SN, ..ueieieiiieiiieeciiee et et et e ettt e et e e et eeeteeesbaeesbeeessbaeessseeennseeennneens 133
4.2. Artifacts targeting Android platform...........cccceeeiieiiiiiieniiiee 137
4.3. Artifacts targeting Windows Phone platform.............ccccoooviviiiiiiiniiniiiiceee 142
4.4. Cross-platform artifacts COMPATISONeeeeuiieeiiiiieiiieeiieeeiee e eereeeevee e 147

4.4.1. CommON ArtIfACESecueerieeiiriieieeie ettt 148

4.4.2. Platform dependent artifacts...........ccceeeeeiieeeiieeiiie e 149
4.5. Relevance of the Chapter..........ccoiiieiiieeiiieceeee e e 150

5. The ontology for methodological interoperability............cccceervvieiiienieeriienieeieeeieeieene 153
ST D 0 110 [0 T~ 2SSO PROPSORRP 154

S.LL. DETINITIONS .eutiiieiieiteeitesieete ettt ettt ettt ettt st e sttt et e bt et e saeeseeebeenees 154

5.1.2. USES Of ONEOIOZIES ...cvvieiiieiiieiieciieeie ettt ettt et e e ssaeenbeesane e 155

5.1.3. Ontologies and semantic interoperability..........cccceevveriinieniniicneeneniicneeenne. 156

ST B S O) 110 (0 e 0 1 o 1< USSR 157

5.1.5. Ontology development methodologies...........coceeveeviriiniiniiniiniciineneeenen 159

5.1.6. Ontology development tools and languages...........ccceeevveeeviieniieencieeeiieeeen 166

5.1.7. Final remarks on OntOlOZIESceevveeeiiiieiiieeiiie ettt eee e 168
5.2, Android artifacts ONtOlOZYcecveriiriiiiiiiiiiniieiceeetee e 169

5.2.1. The domain and the scope of the ontologycccccveveviieeiiiieniieeeieeeiee e 170

5.2.2. Reuse of exXiSting ONtOIOZIESc..eevveruiiriiiriiriinieieeiert ettt 171

523, 1dentified tEIMS ...cc.eeiiieiieiii et 171

5.2.4. Classes and class hierarchyccccceeviiiieiiiiciiieeceeeee e 172

5.2.5. Properties 0f CLASSEScc.eiiiiiiiiiiiieiieeie e et 176

5.2.6. Knowledge definition and inferencecceevvveeiiieeiiieeiieecie e 177

5.2.7. Final remarks on Android Case Ontology.........cccceevvreeriieeiiieeniieeniieeeiee e 182
5.3. Windows Phone artifacts ontology.........cccceevieriiiiiiiniiiiienieeeee e 182

5.3.1. EXIStING ONtOlOZY TEUSEeeouvieeiiieeiieeeiieeeriteeesiteeeieeeeereeeseeesseeesreeessseeennseens 183

5.3.2. Classes, properties and hi€rarchycccceeouieriiniieiieniecieeie e 183

5.3.3. Updates in knowledge definition............ceceeriieiiieniieiieniiciieee e 185

5.3.4. Final remarks on Windows Phone Case Ontology...........ccccceevevveerciieenreeennnenn. 187
5.4. Common ontology for methodological interoperability............ccccevvierieeiieennennen. 188

5.4.1. The domain and the scope of the ontologycccvuveeeiieeiiieniiieecie e 189

111

5.4.2. Merging the existing ONtOlOZIESc.vveeriiieiiieeiieeeie e 190

5.4.3. Updating the DaSIC teIMSeevuieriieiiieiieiiecie ettt cveeteeereereesaeebaesaee e 192
5.4.4. Final class and properties hierarchy.........ccccccoevoiieeiiieciiiecieece e 193
5.4.5. Evaluating and testing the ontologyccccuveeviieeiiieciieeieece e 200
5.4.6. Final remarks on proposed ontology for methodological interoperability....... 210

5.5. Relevance of the Chapter.........cccoociiiiiiiiciiee e 211

6. DiSCUSSION OF TESUILS ...ueiuiiiiiiiiiieieieteee et st 213
6.1. Methodologies for development of mobile applicationscccceeevverieereenenennnen. 213
6.1.1. Performing systematic literature review in SE..........cccccocivviniiniininnnicnene. 214
6.1.2. Mobile development methodologies and approaches: SLR...........cccceeevvennnns 216

6.2. Mobile-D implementationcceeeeuireriiireeiie et eereeesieeeereeeeree e e e e 218
6.3. Identification Of Qrtifactscccccuieeiiiiiiiiii e 219
6.4. Ontology for methodological interoperability............cccccveerveieriieniiieniienieeieeeie e 220
6.5. Summary of the TeSUILSc.ooiiiiiiii e 223
7. CONCIUSION .ttt ettt ettt et b et eat e bt et sae e st e et e estesbeetesneesneenseeneas 225
7.1. Research objectives reVISIEEd.c.eeviieiiierieeiierie ettt 225
7.2. Limitations of the r€S€archccceeviiiiiiiiiiicee e 227
7.3. Possible future reSearchccoceiiiiiiiiiiii e 228
TA. CONCIUSIONeiiiieiieiitt ettt ettt ettt e et e e bt e st e enteesbeeenbeesneeenneas 230
RETEIEIICES ...ttt st sbe e s ae e b eas 233
Appendix A — Papers selected for the SLR Phase 2 analysis.........cccceevveerciveencieenciieeeeeeee, 245
Appendix B — Papers selected for the SLR Phase 3 analysis........ccccccceeveenienienienennenieneene 260
Appendix C — Study quality assessment tableccccveeiiieeiiiieiiieeieeceeeee e 263
Appendix D — Filled data forms for the SLRc...cccooiiiiiiiiiiieceeee 265
Appendix E — Multi-platform Case Artifacts Ontology........cccevvveveevierieniinenieneiieeienene 291
EXtended abSIIactc..ooiiiiiiiiie e 369
Resumen eXtendidooouiiiiiiiiiiiieieee e e 389
ProSireni SAZELAKoc.eiiiiiieie et 409
CUTTICUIUM VITAC ...ttt ettt et sttt e bt et e s st e e beesaeeenbeeneee 429

v

LIST OF FIGURES

Figure 1 - Problem - The Big PICtUIEcccueieiiiieiiie ettt 3
Figure 2 - Architecture of some exiSting SOIUtIONScccueruieriiriierienieiieeieeee e 4
Figure 3 - MODIVINE OVEIVIEWueiuiiiiiiieiietieieeitesiee sttt ettt sttt et st sbe et st enbeeneesseenaeenee 6
Figure 4 - PhoneGap build PrOCESScvvieiiieeiiieeciie ettt ee e evee e e eeevee e 7
Figure 5 - Architecture of some possible SOIUtIONSccuivuieriiriieriinieieceeeeeee e 9
Figure 6 - POSSIDIE SCOPE (A) eveeutieriieiiieeiie ettt ettt et sttt ettt e e e eee 12
Figure 7 - Possible SCOPE (B) ..vioviiiiiiiieeiieieece ettt 12
Figure 8 - Systematic Review Protocol Template..........ccccecerieriiiiiniiiniiiinieiccieeeseeeeee 27
Figure 9 - Example of study selection Process (@)cccuerueerieriiienieniieniieeieesie e 31
Figure 10 - Example of study selection process ()cceeeveerieeiienieniiienieeieenie e 31
Figure 11 - Example of applying narrative Synthesis..........ccceoueeiienieniiienieeieenie e 39
Figure 12 - Agile Risk-based Methodologyccceeviiiiiiiiiiiiiiiiee e 53
Figure 13 - MODIlE-D PrOCESS ...cceevuieiieiiiiiieiieiesiceie ettt sttt 78
Figure 14 - Artifacts in MODbile-Dcoooiiiiiiiiii e 79
Figure 15 - Basic Project Plancc.eooviiiiiiii it 84
Figure 16 - Detailed project plan...........ceeeciieiiiieeiiieecieeeee ettt s 87
Figure 17 - Overall system archit@Ctureccoeevuerienieiiiniinecceteeee et 87
Figure 18 - Mobile application architecturecooueeiiiriiiiiiiiiiceee e 88
Figure 19 - User interface sketChescooeeviiiiiiiiiiiiiiiccceece e 92
Figure 20 - Entity users (trial day)c.cooueiieiiriinieieiiesecence et 96
Figure 21 - Class diagram (mobile app - trial day)ccceevvieeiieiniiieieeceeee e 98
Figure 22 - Class diagram (web service - trial day)cccceceriiriininiiineiienicniecieeeeneeieneene 99
Figure 23 - Test results (trial day)coccveeriiriiiieeiie e e 102
Figure 24 - Application screenshots (trial day)cccecevvieviiieniieniiiinieneeeeeeee 102
Figure 25 - Data model (Iteration 1).........ceecuieriiiiiieiieeiiecie et 108
Figure 26 - Mobile app class model (iteration 1)ccocceeviiiiiiiiiiiiinieiieecceeee e 110
Figure 27 - Web app class model (1teration 1)ccceeviiiiiiiienieeiierie e 111
Figure 28 - Test results (Tteration 1)c..ceccueieriiieiiie et e e e e 114
Figure 29 - Application screenshots (1teration 1).........coccceveiiiiiniiiiiiniiiieeiccceee e 115
Figure 30 - Final database modelcccooueiiiiiiiiniiiiieceee e 118
Figure 31 - Final class model (mobile application)...........ccceeeeuieeeiieeniieeniieecie e 121
Figure 32 - Application SCTEENSNOLSccuiiiiieriiieiieiie ettt 122
Figure 33 - System Test and FiX Phasecccceoerieriiiiiniiniieneeeeceeee e 123
Figure 34 - Translating user interface from Android to WPccccoeviiiiiiiiincieeeeeee 127

\Y%

file:///F:/Dropbox/Doktorat/Doktorat/The%20Document.docx%23_Toc368446430

Figure 35 - Automated WP Unit teStiNgccocueeeiiieeiiieecieeeieeee e 128

Figure 36 - Focusing semantic of artifacts and their originccccooeevenieninieneenenienene 134
Figure 37 - Guarino's types of ontologies according to generality level..........c.cccccvvenneennnee. 159
Figure 38 - De Nicola’s UPON frameworkcccceevuerieniiiieniinieiecieeeieseesieee e 165
Figure 39 - Android Case ontology top level artifactsccceeeeeeviercieeiieniecieecre e 172
Figure 40 - Android Case ontology asserted subclasses of Inferred classccccveeuveeneee. 173
Figure 41 - Part of inferred model for class Artifact..........occoveriiniiiiniiniiniieeceeeee 181
Figure 42 - ArtifactOrigin and Artifact in WP ontology.........cccceeeviieeiiiencieeeieecee e 184
Figure 43 - Used and Produced Documents asserted class modelccccecevieneiniinienncne 187
Figure 44 - Used and Produced Documents asserted class modelccccecevveneeniinienncne. 187
Figure 45 - Example of automatically merged ontology..........cccecveeiieniiiiiiniiniienieeieee 191
Figure 46 - Example of merged ontologycccveeevieriiiiiiiiiieiiieieeieesee e 192
Figure 47 - Top 1eVel artifactscooouieiiiiiieiieeeee et 194
Figure 48 - Asserted subclasses of Inferred class..........ocoovieiiieiiiiiiiniiieee e 195
Figure 49 - Comparing asserted and by reasoner inferred class hierarchyccccceevenneee 204
Figure 50 - OWL 2 Validation report reSUILSccceevuiriiriiiieniinieieeicneeieneerieee e 205
Figure 51 - Ontology Evaluation plug-inccccueriiiiiiinieeiiienieeieesee e 206
Figure 52 - Example of defined and executed DL query with reasoning results................... 207

VI

LIST OF TABLES

Table 1 - Procedures for documenting the search process..........ccoeevveriieviiencieeiienieeieeieeenn 29
Table 2 - Quality concept definItioNScceeevuiiiriiiieiiie et saee e 33
Table 3 - TYPES OF BIaS ..eccuiiiiiiieciieeee ettt et e st e e ae e e s v e e saeeenes 33
Table 4 - Data collection form template.............cccueeriiriiiiiiieiierie et 35
Table 5 - Structure and Contents of Reports of Systematic ReVIeWScccvveevirivciieeninenns 40
Table 6 - Mobile-D phases, activities and tasks..........ccceeriieviieriiiiiiniieierie e 51
Table 7 - MASAM methodology phases, activities and taskscccceecerveriininiiniicniniennne 53
Table 8 - The reVIEW PrOtOCOLcuuii ittt e e et e et e e sbee e beeesaaeeenes 58
Table 9 - Search keywords and SYNONYMScccueeriirciierieeiienie ettt see e seeereesene e 62
Table 10 - The list Of TeleVant SOUICESc.eeruiiriiiiieeiieie et 63
Table 11 - Applied procedures in SEleCtion PrOCESS........eevvvierrierieeiiienieeieerieereeseeereeneneeneeas 65
Table 12 - The list of relevant StUAIEScouerieriiiiiiieieeieeeee e 66
Table 13 - Propagation of relevant studies through phases...........cccceviiiiieiiiiiiiniiieeee, 68
Table 14 - The criteria for unbiased study identificationccceccvevieeiierieenienieeieeeee e 69
Table 15 - Quality assessment CheCKIistcoccovuiiiiiiiiiiiiinii e 70
Table 16 - Excerpt of filled quality assessment form...........ccocceveviiniineniiiniinenicnecnenicnene 70
Table 17 - Data collection fOImcoiiiiiiiiiiiii e 71
Table 18 - Developed methodologies and approaches..........c..ccevcverieieriicniininiinicnecienee 72
Table 19 - Used methodologies and approaches............ccccuveerieeeiiieeiieeeiee e 73
Table 20 - Methodologies not eligible for multiplatform development..............cceevevvrennenns 74
Table 21 — Methodologies/approaches targeting specific mobile applications.............ccc.c...... 74
Table 22 - Documents describing Mobile-D methodology..........ccceevveeviiiieiiiiniieiiiieeeieeens 75
Table 23 - Mobile-D inputs and OULPULScoeeviiriirieiiiieniceece e 80
Table 24 - Project plan checklist - EXPlOTe........ccccuiiiiiiiiiiiieiieeeeeeee e 85
Table 25 - Product BACKIOEoeeviiiiiiieeiieeee ettt e e eaee e eeseaee e 88
Table 26 - Selected feature for Trial Day........cccoecueeiiiiiiiiiiiiiiee e 92
Table 27 - Web service (users.php) SpecifiCationcccveeriieeriieeiiieeiee e 97
Table 28 - Project plan checklist — 0 Tterationcccceevieiiiiiiieniiieiieee e 103
Table 29 - Selected features for first It@ration........coeevueriireriieniiniiiieneeeeeeee e 104
Table 30 - Web service (groups.php) SpecifiCation..........cccueevveeeriieeiieeeiieeeiieesieeeevee e 109
Table 31 - Web service (enrolments.php) specification............ccceecueerienciienienieeiiienieeieene 109
Table 32 - Project plan checklist — 0 IteTationccceeeiieeiiieeiiie e 116
Table 33 - Iterations plan with features selectionccceevviieiiiiiciieceeee e 116
Table 34 - Performed tasks..........ooiiriiiiiiiniiiiceee e 117

Table 35 - Web services SPeCifiCatioN.......c..eeeveieeiiieiiieeciie et eee e 119

Table 36 - Recognized system [MItationscc.eevueeriieiiienieeniienieeieeeee e see e e eeve e 124
Table 37 - Duration of planned and real aCtiVItIEScccveeeieieeeiiiieciee e 130
Table 38 - Mobile-D artifacts by tasks........cccccvieeiiiiiiiiieiieecieceee e 135
Table 39 - Template for describing the identified artifacts..........ccccoevverciierienciienieeieeene, 137
Table 40 - Identified artifacts in development process for Androidccccvveeevveeecieeennenn. 138
Table 41 - Types of artifacts related to Android developmentccccecveevieniieiiienieeienne. 142
Table 42 - Identified artifacts in Windows Phone case.........cccecveveevenieniniinienenienceeee, 143
Table 43 - Common artifacts in Android in WP €asecccccoeveiniiiiiiniiiiieiceeeee 148
Table 44 - Android and WP specific artifactsccceevvieriieriieiiieniieiiecie e 150
Table 45 - Basic terms in Android Case Ontologyc.cccceevvirieniiiiinieneniiniereeeseeeeenen 171
Table 46 — Android Case ontology classes and class hierarchy..........c.ccceceevinieniniincnennne. 174
Table 47 - Android case ontology object properties desCriptioncccceeeeerveevieeneeenneene 176
Table 48 - DL Queries for inferred Classescooovuviiiieiiiiieiiiiiieeeeceee e 180
Table 49 - WP case artifacts defined in ontologycccoecuieeiieiiieniieiienieeieecie e 184
Table 50 - Final list of terms used in Multiplatform ontology...........cccceecvveviieriiiiieeniieienne. 193
Table 51 - Classes and class hierarchy..........coccooiiiiiiiiiiii e 196
Table 52 - Object properties deSCTIPIONcecviieriieeriieeriieeriee et ereeerreesaeeesaeeeeaaeees 198

VIII

LIST OF ACRONYMS

ACM
API
ARR
ASD
AUP
CMM
CMS
CRD
CRIS
CWA
DL
DSDM
DSL
ERA
EUP
IEEE
IFIP
INSPEC
IRI
JME
JSON
JSR
LSD
MASAM
MDD
ME
MVC
MVVM
NPD
ODI101
OR
OWL
PDM

Association for Computing Machinery

Application Programming Interface

Absolute Risk Reduction

Adaptive Software Development

Agile Unified Process

Capability Maturity Model

Centers for Medicare and Medical Services, Office of information Services
Centre for Reviews and Dissemination, University of York
Comparative Review of Information Systems Design Methodologies
Close-World Assumptions

Description Logic

Dynamic System Development Method

Domain Specific Language

Entity-Relationships-Attribute model

Enterprise Unified Process

Institute of Electrical and Electronics Engineers
International Federation for Information Processing
Information Services for the Physics and Engineering Communities
Internationalized Resource Identifiers

Java Micro Edition

JavaScript Object Notation

Java Specification Request

Lean Software Development

Mobile Application Software Development Method

Model Driven Development

Micro Edition

Model-View-Controller

Model-View-ViewModel

New Product Development

Ontology Development 101

Odds Ratio

Web Ontology Language

Platform Dependent Model

IX

PHP
PICOC
PICOS
RR
RAD
REST
RUP
SADD
SC
SCM
SDK
SDLC
SDM
SE
SLR
SMD
SOA
SPEM
SPI
SW
SWEBOK
TC
TDD
UML
Ul

UP
UPON
USDP
XAML
XML
XP
WAC
WMD
WP

Hypertext Preprocessor: Open source scripting language
Population, Intervention, Comparison, Outcomes, Context
Population, Interventions, Comparators, Outcomes, Study selection
Relative Risk

Rapid Application Development

Representational State Transfer

Rational Unified Process

Software Architecture and Design Description (document)
Story Card — An artifact in Mobile-D methodology.
Software Change Management

Software Development Kit

Systems Development Life Cycle

Software Development Methodology

Software Engineering

Systematic Literature Review

Standardized Mean Difference

Service Oriented Architecture

Software and Systems Process Engineering Meta-model framework
Software Process Improvement

Software

Software Engineering Body of Knowledge

Task Card

Test Driven Development

Unified Modeling Language

User Interface

Unified Process (same as USDP)

Unified Process for ONtology building

Unified Software Development Process

EXtensible Application Markup Language

EXtensible Markup Language

Extreme Programming

Wholesale Applications Community

Weighted Mean Difference

Windows Phone

1. INTRODUCTION

1.1. Outlining the problem

1.1.1. Development of mobile applications

The development of mobile applications differs from the development of traditional desktop
or web applications in several important aspects (Rahimian and Ramsin, 2008; Spataru,
2010). According to Rahimian and Ramsin (2008), among other challenges, the designer of a
software system for mobile environments has to cope with portability issues, various
standards, protocols and network technologies, limited capabilities of devices and strict time-
to-market requirements. Additionally, development of mobile systems is a challenging task
with a high level of uncertainty, and according to Hosbond (2005), it is a result of two main
sets of challenges that should be addressed in the domain of mobile systems development,
namely business related challenges (e.g. tough competition, conflicting customer interests,
establishment of revenue-share models etc.) and development specific challenges (e.g. rapidly

changing technology, lack of standardization, integration with existing systems etc.).

When discussing the development of mobile applications, the first issue that should be
addressed is the usage of methodology (Rahimian and Ramsin, 2008; Spataru, 2010; La and
Kim, 2009). Classic or agile software development methodologies should be adapted for the
development of mobile applications as the existing ones do not cover the specific mobile
targeted requirements (La and Kim, 2009). There are several attempts from different authors
to create new methodologies in order to cover the gaps in the domain of mobile applications.
Some of them are Agile Risk-based Methodology (Rahimian and Ramsin, 2008), MASAM
(Jeong et al., 2008), and Mobile-D (Abrahamsson et al., 2004).

Another issue is the use of platform specific and dependent development environments which
are not interoperable in a single way (Agarwal et al., 2009). Additionally, a number of
different (specific) devices which are based on the same platform (Agarwal et al., 2009;
Manjunatha et al., 2010; Ridene et al., 2010) is also an important issue. This includes various
hardware implementations and operating systems capabilities with support on different API
levels (Agarwal et al., 2009) and which are based on different programming languages

(Manjunatha et al., 2010). The problem is also known as fragmentation problem (Agarwal et

al., 2009; Manjunatha et al., 2010; Ridene et al., 2010), which states that a fragmentation of

APIs exists even within a single platform.

Subsequently, testing becomes a great problem as simulated or emulated devices usually do
not provide full functionality or are incapable of creating a real life test scenarios (Ridene et
al., 2010). Testing on physical devices is usually too expensive if used to cover up all
important devices and their capabilities. Several projects in this field, such as Device
Anywhere (DeviceAnywhere, 2011) or DSML (Ridene et al., 2010) also do not provide full
and needed functionality. Finally, the deployment and the maintenance phases should not be
forgotten as well as both of them bring a fresh set of specific requirements that are mainly

defined by mobile device producers and their stores.

On the other hand, the development of mobile applications also differs from the development
of web or desktop applications in the number of target platforms. According to Manjunatha et
al. (2010) the fragmentation problem forces the developers of mobile applications to focus on
only specific platforms and versions. As the development of mobile applications primarily
aims the wide range of users, development for only specific platforms and versions is not an
option and the development teams reach for different solutions to this problem. The ideal (i.e.
still nonexistent) solution would be to code once and to deploy (run) the same code to all
target platforms. The fragmentation problem is the result of mobile industry being
continuously highly technology-driven, which means that the focus is on innovation instead of

standardization. This problem was recognized several years ago by Hosbond (2005).

Finally, it is important to notice that the development of mobile applications has some
similarities with the traditional development. For example after performing an extensive
literature review, Hosbond and Nielsen (2005) concluded that the scope of mobile systems
development is an extension of the scope and the body of knowledge on traditional systems
development. However, they also noticed that in the existing literature knowledge about
traditional systems development is largely neglected. Generally, we can conclude that the
reported challenges in the development of mobile applications have strong relation with the
challenges that have accompanied the development in the past as some of the problems have
followed the software development from the very beginning, and some have been gone and

have now re-appeared again (e.g. limited capabilities of screens).

In order to define the problem in the domain of this thesis, several important concepts should
be taken into consideration. The overall picture of a development playground could be
presented as in Figure 1 with the following main parts:

e Teams

e Development environments

e Development methodologies

e Mediatory publishing services

e Target devices

The main characteristics of mobile applications development teams could be described in just
a few words. Whether the teams are working on open source or in-house projects concerning
mobile applications, they can be classified as small, flexible, and keen on learning a specific
technology and/or platform. Although the classic interoperability among the team members
and among different teams is not of a specific interest in this thesis, the methodological
interoperability and the existing artifact reuse among team members or teams working on a

same functionality but for a different target devices should be pointed out.

Development
Methodologies

mh

oy -l Tl . .
EQ & =----..I5=] Application ,
v fof e ST\’oqreiand * DE2 QH.' 9
arkets

Target Mobile
platforms

Figure 1 - Problem - The Big Picture

Let us imagine a real business scenario in which a development company wants to produce a
classic business or non-business application that should be runnable on a several different
mobile platforms and devices. The standard approach would be to create several different
teams, each team targeting one specific platform, to adopt several development methodologies
or at least different methods, each of them applicable for a specific platform and to produce
characteristic outputs which will satisfy the requirements specified by the mediatory
application stores or markets (see Figure 1). More experienced teams would probably try to
perform as many as possible unique activities that should be similar or same across all
platforms, or would even try to perform whole Model Driven Development approach through

all phases except in creation of Platform Dependent Model and its implementation.

But, the big question still remains. Is it possible to make this process easier in the sense of
development, interoperability and reusability? Is it possible to code once and run on different

target platforms?

Unfortunately, it is not possible to code once and run on any mobile device. This slogan,

according to Ridene et al. (2010), is not true even for Java, and moreover, the trends in the

3

mobile industry show us that this will not be possible in the short-term future, as mobile
platforms are still closed, locked-in (Manjunatha et al., 2010), and devices are dependent on
them. On the other hand, several different approaches aiming to propose some improvements
in the multi-platform mobile applications development exist. These approaches are

summarized into two main groups and shortly described in the following chapter.

1.1.2. Existing solutions

1.1.2.1. Mediatory transform engine

In the past year or two, the problem of mobile applications development for multiple target
platforms became important in the scientific as well as the professional community. The
results are visible in the form of several existing systems and projects that fairly enough
enable the development teams to use a mediatory language or just mediatory transform engine
and to code for several target platforms. Some of the most influential projects are MobiCloud
(Manjunatha et al., 2010; Services Research Lab and Metadata and Languages Lab, 2011)
from Kno.e.sis Research Group (Kno.e.sis Research Group, 2011), Rhodes (Rhomobile, Inc.,
2011) and Amanquah & Eporwei code generator (Amanquah and Eporwei, 2009). As Figure
2 shows, reaching for this solution will bring some improvements to development teams. First
of all, project team or project teams will be able to use a single proprietary or open-source
programming language and could try to implement the desired functionality. The mediatory
transform engine will then produce a platform specific code which can be tested and deployed

through specific application store or market.

Proprietary or open-source
development methodology

&y V-

Andorid “‘-,‘_‘h =TT - |
2 Q Yot~ Application Mediatory \
oS

We7 Q*‘- Stores and transform e
& Markets engine Savcens | '\‘q
iPhone o - ~—

—\/— = r Tearn 3
Target Mobile
platforms

Figure 2 - Architecture of some existing solutions

recipe (:helloworld) deo
metadata({:id => "helloworld-app'}}
model { :greeting, { :message => :string})

end

view :show greeting, {:models =>[:greeting],:controller => :=sayhello,:action =» :retrieve}

end

Code 1 - “Hello World” application written in proprietary DSL
(source: MobiCloud platform)

There are several examples of systems with described functionality. Some of them (e.g.
MobiCloud) use their own domain specific language (DSL) to transform into platform
specific source or, though rarely, even executable code. Other systems (Amanquah and
Eporwei, 2009) transform code written in well-known languages to specific source (or
executable) code. The code snippet (Code 1) shows an example written in proprietary DSL
which is based on implementation of Model-View-Controller (MVC). The output could be

simple “Hello World” application source code for four different platforms.

This approach, however, also has several significant drawbacks (Manjunatha et al., 2010).
The idea of having mediatory transform engine that transforms source code to specific
platforms depends on the efforts invested in the transform engine. The engine depends on
specific platforms and available APIs, and by definition, DSL caters only to a specific domain
(Manjunatha et al., 2010). Even if there is a possibility to enrich the engine with
transformation procedures to all existing APIs, there is an important problem of platform
incompatibilities. For example, it is not possible to use multithreading in Windows Phone 7
while, on the other hand, in other platforms it is not just possible but even desirable. Another

example is Android which does not provide thread sync mechanisms as Symbian does.

Some other drawbacks of this approach are the necessity to learn a specific DSL, the
boundaries defined by the use of any specific languages, the lack of control of generated
source code, the lack of control of user interface design (Manjunatha et al., 2010), the

problems with testing and many others.

1.1.2.2. The use of native application adapters

Another possible solution to the given problem could be the introduction of adapter
applications (adapters) as native applications for every target platform (Agarwal et al., 2009).
According to Agarwal et al. this is one of the two main techniques for handling fragmentation.

As standardization of APIs in mobile world is still not possible, the usage of programming

5

techniques whereby the interface calls are wrapped, i.e. abstracted, in distinct modules which
are then ported across the platforms, is left as the other solution. For example, the same
authors are proposing MobiVine as a solution to handle fragmentation of platform interfaces.
Specifically, the authors have identified that the fragmentation of mobile platform interfaces
results in different syntax and semantics, results in usage of platform specific data structures
and properties, results in throwing platform specific exceptions and is also characterized by
inconsistencies in implementation by different vendors. This has bearing on the portability of
mobile applications across multiple platforms. So, the proposed solution is composed on two
main components: M-Proxies and M-Plugins. M-Proxies component helps abstract
heterogeneities in interfaces across different platforms while binding to the underlying
middleware stack and is used to realize platform specific blocks. The other component, called
M-Plugins, helps integrate MobiVine with the existing tooling and deployment infrastructure

and is used to override the gap between M-Proxy and platform specific APIs.

Bhone ‘\ Binding “‘> M-Proxies
Toolkit A O 9§ ¥ ‘ ‘

: MobiVine Layer
@ Andro1'd .~
e Toolkit

Middleware

Integration

S60 e — Operation System

M-Plugin

Figure 3 - MobiVine overview
(Agarwal et al., 2009)

The authors of MobiVine evaluated the usage of MobiVine as middleware layer and they
discussed the achieved improvements in terms of enhancing platform and language
portability, reducing code complexity, making maintenance easier and performance by a
negligible fraction slower. But, they also concluded that MobiVine framework should be
extended to cover other platform interfaces (like working with contact list information), to
include other platforms, and to make the concept of proxy model broader by studying its

applicability to other forms of mobile fragmentation, e.g. screen size and resolution.

Another well-known wrapper is PhoneGap (PhoneGap, 2011). The applications written in
HTML, CSS and JavaScript are wrapped with PhoneGap and then deployed to multiple
platforms. The developers could use free, open-source framework to access some of the native
APIs.

After the Adobe Corporation acquired the original PhoneGap’s creator Nitobi company, they
also announced that they will offer developers the choice of using two powerful solutions for
cross-platform development of native mobile apps, one using HTMLS and JavaScript with
PhoneGap and the other using Adobe Flash® with Adobe AIR® (Adobe Corporation, 2011).
On the other hand, the original PhoneGap approach has not been changed and as the
application takes on extra complexity, more involved logic will require spending more time
on application behavior with specific devices. Even when the same code base is used when
developing for multiple platforms, the separate prepare & build and sometimes porting steps
should be performed to produce the version targeting multiple platforms. According to
(Lunny, 2011) more complicated applications are keen on “surprising” the developers during
the porting process and in these cases, PhoneGap documentation should be consulted. In the
end, there will not be a single code base Java Script file, but rather an application.iphone.js
file containing iPhone implementation along with equivalent application.android.js and
application.blackberry.js files (Lunny, 2011). Finally, there are many different guides and
recommendations that should be followed while developing this way (Lunny, 2011), and we
can generally conclude that taking all of them into consideration means learning a new
programming and development style which is as difficult as learning a new programming

language from scratch.

i ‘ |i| 22z
palm . i

Figure 4 - PhoneGap build process
(PhoneGap, 2011)

Additionally, there are other attempts and efforts that are undertaken to over-come mobile
platform and interface diversity and fragmentation. These efforts, for example, include the
creation of extensions to Java platform, through Java Specification Requests (JSRs) such as
JSR 248: Mobile Service Architecture (Bektesevic and Rysa, 2008) or JSR 256: Mobile
Sensor API (Niemela, 2009), or the development of Wholesale Applications Community
(WAC) APIs and applications (Apps).

JSRs are designed to provide the set of APIs for specifically targeted use (e.g. for mobile

service architectures or mobile sensors). But, according to Agarwal et al. (2009), along with

standard Java Micro Edition (Java ME), mobile platform developers in practice choose to

include different sets of JSRs which results in the diversity even among their own devices.

On the other hand, WAC is an open, global alliance of leading companies in the mobile
telecommunication industry with the goal of providing a different operator network APIs
through single cross-operator API platform. Specifically, this platform is built on the work of
the former Open Mobile Terminal Platform Ltd.'s BONDI project’, the Joint Innovation Lab
(JIL) device APIs* and the GSM Association's OneAPI program’, and currently WAC
platform offers WAC Apps framework (WAC Application Services Ltd, 2012a) and WAC
Payment API (WAC Application Services Ltd, 2012b). WAC Apps aims to help create the
mobile apps quicker by using existing, familiar web technologies and tools through direct
access to mobile device functionality. According to WAC Application Services Ltd (2012a),
the types of applications that could be published currently are widgets written to the WAC
specifications®, native Android applications and HTMLS5 applications. WAC Payment API
aims to enable developers to be able to access the operator billing capabilities through single
API by using a set of developed Software Development Kits (SDKs) for multiple platforms.
Although this API is useful in some cases, currently it covers only payment options and can
be used for Android, PhoneGap, PHP and JavaScript/HTMLS platforms (WAC Application
Services Ltd, 2012¢). WAC announced that they plan to launch additional network APIs over
time to provide the developers with further opportunities to create richer applications (WAC
Application Services Ltd, 2012b).

So generally, the adapter-based approach requests that the adapters should be pre-developed
and published in the specific application store, or as in the case of PhoneGap, deployed along
with the application (PhoneGap, 2011). The general idea of creating adapter is to create a
platform specific application that will bi-directionally convert the specific interfaces of the
target platforms (left-side) into one unique interface that could be used to communicate with
different applications (single, right-side). Every single adapter converts a different target

interface to unique (same) interface, which means that one application really could be

' BONDI project (http://bondi.omtp.org/default.aspx) aimed to create a standardized approach for letting web
applications access key local capabilities on the mobile device. [accessed: 18™ of May 2012]

* Joint Innovation Lab was an initiative of several mobile carriers on developing device APIs and related services
that build upon the W3C Widgets specification. Web page (http://www.jil.org/) is closed and redirected to
WAC's page (http://www.wacapps.net/). [accessed: 18" of May 2012]

? “The GSMA OneAPI initiative defines a commonly supported set of lightweight and Web friendly APIs to
allow mobile and other network operators to expose useful network information and capabilities to Web
application developers. It aims to reduce the effort and time needed to create applications and content that is
portable across mobile operators.” (http://oneapi.gsma.com/) [accessed: 18™ of May 2012]

* WAC Device API specification could be found here: http:/specs.wacapps.net/index.html. [accessed: 18" of
May 2012]

imported into one or more different adapters and run under one or more different platforms.

The mentioned application could be stored on any web server or even on a cloud as is shown

in Figure 5.

1. Download
specific adapter
application from

Stores and
Markets

Target Mobile
platforms

AD1

7

1 ap2

7

1 adz

2. Import
single app

Cloud services or
infrastructure

Proprietary or open-source
development methodology

.’f \
v \
- r PY &) v

-?«—1." @

S Team 2

Team 3

in adapters

Figure 5 - Architecture of some possible solutions

There are two possible scenarios that could be implemented by adapter developers. (1) The
adapters could be 100% aligned by means of common interface and this scenario would
reduce the number of teams — presented in the Figure 5 — to one. This would be a great
achievement, but on the other hand there is one big drawback too. The functionality of the
future applications would be reduced to the common features that all target platforms support
and to the common features that are implemented into the adapters for all target platforms.
This brings us to the problems presented in the existing solutions and this also makes this
scenario rather unlikely to be feasible. (2) The other scenario introduces some differences in
the adapters by means of common (right-side) interface. If the mentioned interface is not the
same for all platforms, the use of such adapters would provide a more specific functionality
on mobile applications, a scenario more feasible, but also a one that would bring the need to

develop more or less different applications for each target platform.

Almost all of the drawbacks stated for existing solutions that introduce transform engine are
also present in this possible solution. The mentioned PhoneGap (PhoneGap, 2011) platform
allows the development of native applications with web technologies (HTMLS, CSS

&JavaScript) enriched with a given set of APIs. According to PhoneGap Documentation® this

3 PhoneGap API Reference Documentation [accessed: 15™ of October 2011]: http://docs.phonegap.com/en/1.1.0/
phonegap events_events.md.html#backbutton

platform supports back button event only on the Android platform despite the fact that the
event exists in several other platforms as well. Although there is some space for research in
this area, especially in the field of interface transformation, the improvements that will bring
the process of development of demanding applications for multiple target platforms through

this approach are also hardly achievable and even feasible.

1.1.3. The final remarks on platforms and tools

As it can be seen, there are several rather different approaches that scientists and experts are
taking to solve the problem of developing for multiple platforms. Each one of them has its
own advantages and disadvantages. But still, one issue remains that is common to almost all
of these approaches. It is impossible to create a transform engine, or adapter application that
would keep all of the advantages of all target platforms and that would provide the range of
possibilities as native development environments do. Also, if we want to preserve the
capability of teams working on the open-source projects, it is necessary to give them the
possibility to work in a native development environment and to develop by using a

programming language they prefer most.

In order to provide such possibilities, this thesis will focus on proposing the solution to
enhance interoperability among teams working on the same application but on different (and
native) development environments. The work on the native development environments will
provide the teams with the full advantages of using the native APIs, the native test

environments and the native generators of the executable code.

1.2. Objectives and hypotheses

This doctoral research focuses on the analysis of this problem and on the proposal of a
solution in a domain of methodological interoperability. The idea is to allow developer teams
to use native development environments (that is, all their advantages for platform specific
mobile application development) by raising the re-usability and interoperability to a higher,
methodological level. Therefore, this dissertation will attempt to answer the following
questions: (1) what methodologies and development approaches can be used in multi-platform
mobile applications development; (2) what artifacts (required inputs and outputs of
methodologically and methodically defined development steps) emerge during mobile
applications development, (3) whether and to what extent there are similarities between these
artifacts, (4) whether it is possible to ontologically describe these artifacts, and create a basis

for developing a system that would support the methodological interoperability.

10

1.2.1. The main goal

The main goal is to ontologically describe artifacts that arise in the methodologically managed
process of mobile application development targeting two or more mobile platforms, and to
create the basis for more efficient and interoperable process of multi-platform mobile

applications development.

1.2.2. Hypotheses
This doctoral thesis focuses on researching and proving the following hypothesis:

H;: It is possible to create ontological description of elements of methodological
interoperability containing structural and semantic aspects of sets of artifacts created in

the development process of a mobile application for two or more target platforms.

1.3. Research scope and methodology

1.3.1. Scope definition

The development for mobile applications is as complex as are other fields in the domain of
software engineering. There are several different perspectives that could be taken to produce a
single mobile application. We can identify at least three dimensions in the space of the
possible approaches the development team can take. If we include other more or less
important elements the space will rapidly become multi-dimensional, and by multi we mean
more than three. So to keep the thesis focused, we will take into consideration the following
dimensions of space S as:

S={M,A,P} (1)

M - Development methodology

A - Development approach

P - Target platform

The three mentioned axes could have several different values:
M= {m;,mp, .. my} (2.)
A = {aj, ay, ... an} 3.
P ={pip2..po} (4)
For example, these values could be:
M = {Extreme programming (XP), SCRUM, Rational Unified process (RUP)}
A = {Model driven development (MDD), Test driven development (TDD), Model
View Controller (MVC) Implementation}

11

P = {Android, Windows Phone 7, Nokia Symbian}

While defining the scope of proposed solution it is wise to bring some logic assumptions that
are based on the real life scenario and the possible usage of results gained throughout this
work. Whether one team will develops multiple applications or several teams develop
different applications, we can assume that the team (teams) will use the same methodology as
they work together and as they want to take advantage of semantic interoperability while
developing same application for different target platforms. Similar, we can assume that the
development approach will be the same for development of a single application for all target
platforms. Of course, the teams will develop application for one or more target platforms, so

the cardinality of sets M, 4 and P can be described as:

| M| =1 (5.)
| Al =1 (6.)
| P|>1 (7.

Subsequently, the cardinality of final space S that is focused in this research can be presented
as in Figure 6 or in Figure 7, and can be defined as:
| ST=1{1,1,n):n>1} (8.

The development process DP presented in those two figures can be described as a set of sub
processes SP i.e. ordered triples.
DP = {SPy, SP,, ... SP, : SP; €S; SP; = (m, a, pi); | <n<|P|;
i={1,2,...,n};meM;acA;p€cEP}. 9.)

So for example, if we want to develop an application for Android, iPhone and Nokia, and we
choose Extreme Programming supported by Model Driven Development, the development
process would be described as DP = {(3, 1, 1), (3, 1, 2), (3, 1, 3)}. Similar, if we use SCRUM
supported by Test Driven Development, the development process could be described as DP =
(2,2, 1), (2 2,2), (2,2 3)}.

mA MA

o=

o=

cmow
camown

2 [0
e Ve L2 e
- A L
i TOD - A

R - - ™D
u . R -
P - MDD U PR

- P - MDD

- ‘ - -
> L4
Android iPhane Nokia P -
Android iPhone Nokia P
Figure 6 - Possible scope (A) Figure 7 - Possible scope (B)

12

Taking into consideration all that was said, we can conclude that all ordered triples (sub
processes) in one development process have the same first two elements, but different third
elements. This different element makes the sub-processes (i.e. development processes for

specific target platforms) rather different.

Within the presented scope, the teams will have the opportunity to work in the preferred
development environments, i.e. platforms (P), and have the chance to take the advantages of
the native development environment and the use of the native code: However, they will also
have to obey the rule of the use of only one methodology and one development approach for

the development for all the target platforms.

Note: If the teams develop an open source product, they might be interested in using specific,
preferred methodology, but this scenario is not covered by this research. Additionally, the
term target platform could be analyzed with greater granularity by defining manufacturer,

platform, device and API but this is also out of the scope of this research.

1.3.2. Research approach

The overall goal of this research is to create the semantic definition of the elements of
methodological interoperability containing structural and semantic aspects of the sets of
artifacts created in the development process of mobile application for at least two specific
target platforms. These semantic definitions can be used to create a general ontology that will
be the base for interoperability and future work on the development of the framework and the
supporting system. The research is divided into three main phases, each of them containing

several stages. These stages, along with the used methodologies are enumerated as follows:

First phase: Choosing development methodology
e Analyze the state-of-the-art of methodologies for mobile development and choose

methodology to use and describe
M = {m} (10.)

e Analyze the state-of-the-art of development approaches for mobile development and

choose the development approach to use and describe

A = {a} (11.)
Second phase: Identifying artifacts sets

e Choose two specific mobile platforms to develop for according to their artifacts and

development process

P={p,py (12))

13

Perform a development process DP by conducting m and a for p; and p, in order to

create a prototype application
DP = {SPb SP2} =>DP= {(ma a, pl): (ma a, p2)} (13)

Analyze the development process and identify all obligatory and optional tasks along

with the corresponding inputs and outputs:

IOpl = {Ipla Opl} => IOpl = {ilpla i2p1; il‘lpl) O1p1, O2p1, -.- Ompla} -n,m EN (14)

I0p2 = {Ip2, Op2} => 102 = {i1p2, i2p2, -+ Inp2, O1p2, O2p2, -+ Omp2,§ : N, M EN (15.)
Define set of artifacts R for each target platform

R = {Rp1, Rpa} => R = {(r1p1, I2p1, ... Tap1), (F1p2, T2p2, - Tmp2)

:Tipt € 10,1515 n; I € 10,; j <m} (16.)

If differences for p; and p; exist, find the differences in tasks, inputs or outputs on as
much higher level of abstraction as possible and define a subset of artifacts that will be

used for ontology definition.

R ={R,,Rpn: RucR,;RpcRyl (17)

Third phase: Creating an ontology

Analyze the state-of-the-art for ontology development and construction and choose
ontology development method and ontology development language to use.

Define all ontology elements for SP; and SP, with a special attention on the artifacts
set defined in R .

OE;=f(SP,R) (18))
OE,=f(SP,, R) (19))

Create specific ontologies for SP; and SP, and describe them with proper ontology
definition language, with a special attention on the ontology elements defined for
artifacts set defined in R .

O;=f(OE, R) (20.)
0:=f(0OE;, R) (21

Create a common ontology from specific ontologies by defining semantic equality and
diversity; this common ontology will be the base for future interoperability on

methodological level.

Look forward into a future work, framework and system development.

14

1.4. Dissertation disposition

After introducing the problem domain, giving an overview of existing solutions and stating
the objectives, hypotheses and research scope in this chapter, the rest of this document is

organized in additional six chapters as follows.

The second chapter presents the results of the Systematic Literature Review performed in
order to determine the existing body of knowledge of the methodologies for mobile
applications development. As the use of scientific method of SLR in the field of Software
Engineering is still emerging, with a relatively small number of performed reviews, we found
the existing guidelines presented in (Kitchenham and Charters, 2007) could be improved with
the recommendations and inputs from other influential authors in the field, and thus first we
give (in Chapter 2.1) an overview of the method along with discussion and recommendations
as mentioned. Following the enhanced guidelines, that give special focus to method execution
by PhD students, we continued to perform the SLR (Chapters 2.2 and 2.3) which resulted in
identification of 22 development methodologies and 6 development approaches (see Table 18
and Table 19 in Chapter 2.3.5). Finally we discuss and choose Mobile-D methodology
supported by Test Driven Development in Chapter 2.4 for the development of our prototype

application and further analysis.

The second research phase is covered by Chapter 3 and Chapter 4 of this document. The third
chapter gives an overview of Mobile-D methodology (in Chapter 3.1), and then presents the
results of the multi-platform development of prototype application by using the mentioned
methodology (Chapters 3.2 to 3.8). The application is developed for Android and Windows
Phone target platforms, and the focus in this chapter is put on executed phases, activities and
tasks along with created and used artifacts. In the fourth chapter we systemize and analyze the
obtained artifacts. Chapter 4.1 gives the discussion on analysis setting, while the identified
Android artifacts are presented in Chapter 4.2, the identified Windows Phone artifacts are
presented in Chapter 4.3, and the cross-platform analysis is performed and reported in Chapter
4.4. A total of 71 artifacts are identified, out of which more than 70% are common to both

development cases with high a reusability potential of 66% as presented in Table 43.

Chapter 5 is considered to be the most important chapter of this thesis, as it presents the taken
approach along with its results in the third and the final phase of our research process. The
chapter gives an overview of concepts related to ontologies and ontology development
(Chapter 5.1) and then presents the created ontologies. When reporting on the development of
Android Case Artifacts Ontology (chapter 5.2) we put focus on the usage of Ontology
Development 101 methodology and implementation of its seven steps. On the other hand,
when reporting on the development of the second specific ontology, namely WindowsPhone

Case Artifacts Ontology (Chapter 5.3), we put focus on the concepts of reusing and updating
15

the existing ontology. Finally, Chapter 5.4 presents the development of a common ontology
for both cases, and here we put focus on the concepts of merging, extending, evaluating and
testing the ontologies. The created ontology is verified and validated by several different

mechanisms and the results proved its semantic correctness and completeness.

The last two chapters of this document are used for extensive discussion on all research
activities by reflecting on motivation, results contributions, rigor and evaluation (Chapter 6)
and on summarization of contributions and conclusions which emphasize on achieved goals,
open issues and possible further research directions that could be taken continuing from the

results of this research (Chapter 7).

The annexes of the document bring more details on results obtained during each research
phase. Thus Appendix A brings the list of all the papers that are selected for the second phase
of the SLR analysis and similarly Appendix B gives the papers selected for SLR quality
assessment and further analysis, while Appendix C and Appendix D respectively bring the
final study quality assessment table and data extracted form for each selected study. Finally,
Appendix E brings the developed ontology presented in compact and human readable

Manchester syntax.

16

2. MOBILE APPLICATIONS DEVELOPMENT
METHODOLOGIES: A SYSTEMATIC REVIEW

To goal of this chapter is to identify and choose a proper development methodology which is
to be used in the rest of the research process. As, to our knowledge, there are no studies
performed to identify all development methodologies suitable to mobile applications
development, we performed an extensive systematic literature review of the methodologies
and development approaches that are reported in the literature as being created or used

specifically for mobile applications development.

As the method of systematic literature review is rather new in the field of software
engineering, first the best practice in performing such time consuming and comprehensive
method will be analyzed. The guidelines given by Kitchenham and Charters (2007) are
followed and discussed by adding the recommendations and findings from other influential
authors in the field. Special focus is given to the problem of performing the method by PhD
students. This part of the chapter results with structured and detail instructions that can help
researchers and PhD students to decrease the risks and biases and to increase the review

quality.

Following the findings presented in the first part of the chapter we continue to plan and
conduct a systematic literature review and answer two research questions: (1) what
development methodologies and approaches are reported in literature as defined in theory or
used in practice for mobile application development and (2) are the identified methodologies
and approaches applicable in multi-platform mobile applications development? After
analyzing more than 6700 initial sources we found 49 publications to be included in data
extraction process which in the end resulted in identification of 22 methodologies that are

used in development of mobile applications along with 7 development approaches.

Finally, we were able to establish the criteria for choosing one methodology and approach that
are to be used in the rest of the research process. The chosen methodology is Mobile-D
(Abrahamsson et al., 2005a) supported by Test Driven Development as Mobile-D’s suggested
approach.

17

2.1. Research method

In order to perform comprehensive and thorough analysis of existing methodologies for
development of mobile applications, the systematic approach should be undertaken and
existing methodologies should be reviewed in such a manner which will result in a solid basis
for the rest of the research in the domain of this thesis. Such analysis could be undertaken by
applying different methods and approaches, such as systematic literature review, systematic
mapping studies, tertiary reviews discussed by (Kitchenham and Charters, 2007), or narrative
review, conceptual review, rapid review and several other types presented by (Petticrew and
Roberts, 2005). The systematic mapping study should be used when a topic is either very little
or very broadly covered, and tertiary reviews are most suitable approach if several reviews in
the target domain already exist and should be summarized. The narrative reviews usually do
not set out the scientific methods that aim to limit systematic error. Additionally, the
conceptual review should be used when aiming to provide an overview of literature in the
given field and the rapid review is usually carried out within limited time or with restrictions
in the scope of the research. Subsequently, taking into consideration the undertaken initial
examination of the domain, we decided to use a systematic literature review (SLR) as this

method has been used widely for different analysis in the field of software engineering (SE).

“A systematic literature review is a means of evaluating and interpreting all available research
relevant to a particular research question, topic area, or phenomenon of interest. Systematic
reviews aim to present a fair evaluation of a research topic by using a trustworthy, rigorous,
and auditable methodology.” (Kitchenham and Charters, 2007) The origins of systematic
review can be traced back to the beginning of the 20™ century, but during the 1980’s,
systematic research synthesis and meta-analysis reach an especially distinctive
methodological status in the domain of health sciences (Williams and Carver, 2010). During
this period and as a result of performing similar methods in various other fields, different
synonyms of this method have been used in the literature. Some of them are research review,

research synthesis, research integration and systematic overview (Biolchini et al., 2005).

In the field of software engineering during the last years several primary studies have been
conducted and although these studies are accompanied by an increasing improvement in
methodology, this field is still an area of investigation that remains to be explored and that
could well bring many benefits in terms of mechanisms needed to assist practitioners to adopt
appropriate technologies and methodologies (Biolchini et al., 2005). The guideline for
systematic reviews that aimed to help software engineering researchers was proposed by
(Kitchenham, 2004) and was created as adaptation of several existing guidelines from other
disciplines, mainly medicine. Although the three proposed phases of systematic review,

namely planning the review, conducting the review and reporting the review, in general were

18

not criticized, some authors like Biolchini et al. (2005), Mian et al. (2005) and Staples and
Niazi, (2007) found that Kitchenham described them to a relatively high level which is
partially inappropriate to conduct for researchers in the field of software engineering. In favor
of this goes the fact that Kitchenham in 2007 published a new version of technology report
(Kitchenham and Charters, 2007) with the aim to propose more comprehensive guidelines of
performing a systematic literature review for researchers and PhD students in the field. The
basis for this guideline remained the same: the existing guidelines used by medical
researchers, but was reinforced by several books and discussions with researches from other
fields.

The next sections will cover in detail the systematic literature review methodology as it is
proposed in (Kitchenham and Charters, 2007). The sections will present a methodology and
give summary of all phases and activities that should be performed while conducting

systematic review in the field of software engineering.

2.1.1. Definition of systematic literature review (SLR)

Systematic literature review (SLR) is defined by Kitchenham and Charters (2007) as “a form
of secondary study that uses a well-defined methodology to identify, analyze and interpret all
available evidence related to a specific question in a way that is unbiased and (to a degree)
repeatable”. Dyba and Dingseyr (2008a) define SLR as “a concise summary of the best
available evidence that uses explicit and rigorous methods to identify, critically appraise, and
synthesize relevant studies on a particular topic”. According to Dyba, these methods should
be defined in advance and documented in a protocol so the others could critically appraise and

replicate the review.

There are different reasons for performing systematic literature review. In general, whenever
a literature review is performed it could be done by applying systematic (following stated
procedures and steps) or unsystematic (just reading and taking notes) approach. The usual
reason to use SLR is to summarize the existing evidence concerning a treatment or a
technology. This is to say that for example, as is the case in this thesis, systematic literature
review can be used to summarize the methodologies that could be used for development of
mobile applications. SLR could also be used to identify any gaps in current research in order
to suggest areas for further investigation or to provide a framework/background in order to
appropriately position new research activities. In addition, there are other general reasons to
use a systematic rather than unsystematic approach, such as the purpose of the research, the
scientific approach, the quality expectations or the existence of previous researches on the

selected topic.

19

According to Dybd and Dingseyr (2008a) the key feature that distinguishes SLR from
traditional narrative reviews is in its explicit attempt to minimize the chances of making
wrong conclusions which could be the results of biases either in primary studies or in the

review process itself.

2.1.2. Steps to be performed

Although the methodology of SLR is considerably upgraded if compared to the first version
from 2004, the main three phases remain the same. General steps to be performed are also

similar and are defined as follows:

Phase 1: Planning the review
e Identification of the need for a review
e Commissioning a review (optional)
e Specifying the research question(s)
e Developing a review protocol

¢ Evaluating the review protocol (recommended)

Phase 2: Conducting the review
e Identification of research
e Selection of primary studies
e Study quality assessment
e Data extraction and monitoring

e Data synthesis

Phase 3: Reporting the review
e Specifying dissemination mechanisms
e Formatting the main report

e Evaluating the report (recommended)

According to the author of the review process, Kitchenham, all mentioned activities (stages)
are mandatory except commissioning a review as it depends on the planned commercialization
of review results, as well as evaluating the review protocol and evaluating the report which
are optional as they depend on the quality assurance procedures decided by the author(s) of

the review. In any case, the mentioned activities are recommended.

As one can conclude from the above list, the mentioned stages and phases are sequential.
However, it is important to mention that some of the stages can be repeated more than once
and may involve iteration or reimplementation. For example, the negative evaluation of
review protocol or negative evaluation of the report might result in the need to repeat the part

or the whole review process. Or, the inclusion and exclusion criteria of the relevant studies

20

could be refined after quality criteria are defined. It is important to notice that even
experienced scientists often have to change or adapt the review protocol. To some authors this
provides a reason for criticism of the methodology of the already existing reviews for not
being completely objective or even conducting a fake rational design process. However, there
are authors such as Staples and Niazi (2007) who discuss the need of the protocol even if it is
a subject of constant changes through the whole systematic review process. All that has been
said brings us to a strong general conclusion that the protocol is needed and that it increases

the quality of the process.

In the following sections, each stage of the SLR process will be discussed in detail.

2.1.2.1. Planning the review

The most important activities during the phase of review planning are definition of the review
question(s) and creation of the review protocol. However, the rest of the activities should not
be neglected and also deserve a serious approach. The results of this phase should be a clearly

defined review protocol containing the purpose and the procedures of the review.

The summary of each stage is presented below and is based on guidelines presented in
(Kitchenham and Charters, 2007) and on additional discussions from other authors cited in the

text.

Identification of the need for a review is the first activity in the SLR process. It arises from
the preliminary research in the topic area. When the author(s) has a firsthand knowledge in
the area of interest, then it is possible to conclude whether more thorough and unbiased
research is needed. It is especially important to identify and review the existing systematic
reviews on the same topic. The review of existing SLRs is usually undertaken against
appropriate and previously created evaluation criteria. The most common practice is to create
a checklist or set of questions that should be examined for every existing SLR. There are
several checklists proposed by different authors and organizations, and depending on the level
of complexity, they usually operate with concepts of the quality of defined inclusion and
exclusion criteria or the level of literature and relevant studies coverage along with the
assessment of quality of included studies. For example Centre for Reviews and Dissemination
(2009) in the book Systematic Reviews defines the following set of questions to use while
critically appraising review articles:

e Was the review question clearly defined in terms of population, interventions,

comparators, outcomes and study designs (PICOS)?
e Was the search strategy adequate and appropriate? Were there any restrictions on

language, publication status or on publication date?

21

e Were preventative steps taken to minimize bias and errors in the study selection
process?

e Were appropriate criteria used to assess the quality of the primary studies, and were
preventative steps taken to minimize bias and errors in the quality assessment process?

e Were preventative steps taken to minimize bias and errors in the data extraction
process?

e Were adequate details presented for each of the primary studies?

e Were appropriate methods used for data synthesis? Were differences between studies
assessed? Were the studies pooled, and if so was it appropriate and meaningful to do
s0?

e Do the authors’ conclusions accurately reflect the evidence that was reviewed?

Commissioning a review is an optional task whose inclusion in the process depends on the
type and the stakeholders of the review process. If the review is commissioned by an
organization that has no time or expertise to perform a review by itself, then the organization
must provide a commissioning document that will contain all important information about the
required work such as project name, review questions, timetable, budget or dissemination

strategy.

Scientists and PhD students will not create a commissioning document while performing a
systematic literature review as a part of their own work. The only issue that should be
addressed in this case is that a dissemination strategy should be incorporated in the review

protocol.

Specifying the research question or questions is probably the most important part of the
systematic review process as it is the base for all other activities. The research question
defines which primary studies to include or exclude from the review, and the data that should
be extracted from the reviewed literature. The defined research question should be answered

in the final systematic literature review report.

As Kitchenham emphasizes, there are several types of research questions (adapted from
guidelines in the domain of health care) that can be stated in the domain of software
engineering. These questions may concern, for example, effect of SE technology, cost and
risk factors, the impact of technology on different concepts et cetera. The type of a question
can sometimes determine the guidelines and procedures to be used (as for example in domain
of health care). My opinion is that it is not necessary to create a finite set of types of research
questions, but rather to use a set of guidelines on how to create a research question that has
the appropriate structure. According to Kitchenham, it is important to create a right question,
i.e. a question that is meaningful and important to practitioners and researchers, that will

lead either to changes in current SE practice or to increased confidence in the value of

22

current practice, or that will identify discrepancies between commonly held beliefs and
reality. Finally, the right questions can be the questions that are primarily of interest to
researchers in order to identify and scope the future research activities. For example, such
question could be used in a systematic review performed by a PhD student in order to identify
existing basis and to identify if and where the research fits into the current body of

knowledge.

Usually, authors define more than one research question or they define one high-level
research question and then break it down to several more specific and concrete questions. For
example, in order to characterize software architecture changes by means of a systematic
review, Williams and Carver (2010) created the following high-level question: Can a broad
set of characteristics that encompass changes to software architectures be identified using the
current software engineering body of knowledge and be used to create a comprehensive
change assessment framework? Additionally, the authors created five more specific questions
along with accompanying motivation. The specific questions were:
e What are the attributes of the existing software change classification taxonomies?
e How are software architecture elements and relationships used when determining the
effects of a software change?
e How is the architecture affected by the functional and non-functional changes to the
system requirements?
e How is the impact of architecture changes qualitatively assessed?

e What types of architecture changes can be made to common architectural views?

Another approach is to create a single research question, and in order to clarify its boundaries,
several complementary research questions can be created. For example, in order to review the
reasons for undertaking CMM°-based SPI” initiatives in organizations, Staples and Niazi
(2008) defined the following research question: Why do organizations embark on CMM-based
SPI initiatives? And, in order to clarify the question they stated several complementary
questions that were not used during the investigation:

e What motivates individuals to support the adoption of CMM-based SPI in an

organization?

e Why should organizations embark on CMM-based SPI initiatives?

8 CMM is an acronym for Capability Maturity Model. The CMM was first introduced by Humphrey W. S., as a
model and practical guidance for improving the software development and maintenance process (Humphrey,
1989). CMM is applicable to other processes as well.

7'SPI is an acronym for Software Process Improvement and referes to an approaches that are intended to improve
the practice of software engineering. One of these approaches is also an CMM-based approach (Staples and
Niazi, 2008).

23

e What reasons for embarking on CMM-based SPI are the most important to
organizations?

e What benefits have organizations received from CMM-based SPI initiatives?

e How do organizations decide to embark on CMM-based SPI initiatives?

e What problems do organizations have at the time that they decide to adopt CMM-
based SPI?

The research questions also depend on the type of review which, according to Noblit and Hare
(1988), can be integrative or interpretative. According to Dyba and Dingseyr (2008a) the
difference between integrative and interpretative reviews is that integrative reviews are
concerned with combining or summarizing data for the purpose of creating generalizations,
and interpretative reviews achieve synthesis through combination of concepts identified in the
primary studies into a higher-order theoretical structure. This division could be aligned with

the principles of “right questions” mentioned earlier in this chapter.

According to Petticrew and Roberts (2005) it is a good way to start the question writing
process by breaking it down into sub-questions. If the review aims to answer a question about
the effectiveness, the authors suggest using a model called PICOC, defining a population,
intervention, comparison, outcomes and context. These criteria were accepted in
Kitchenham’s guidelines and discussed from the viewpoint of software engineering as
follows:

e Population in the terms of SE can assume wide range of roles or groups and even
areas, from novice testers, experienced software architects to, for example, control
systems. As the number of undertaken primary studies in the field of SE is relatively
small (comparing to other fields), it is wise to avoid any restriction on the population.

e [ntervention should define a software methodology/tool/technology/procedure that the
authors are interested in reviewing and that should address specific issue that is in the
focus of the research. Basically, intervention is the concept that is going to be
observed in the context of the planned systematic review.

o Comparison is the software engineering methodology/tool/technology/procedure with
which the intervention is being compared. If the comparison technology is the
conventional or commonly-used technology, it is often referred to as the ‘“control”
treatment and the control situation must be adequately described.

e Qutcomes should relate to factors of importance to practitioners. All relevant outcomes
should be specified, without using surrogate measures that may be misleading.

e (Context refers to the context in which the comparison takes place (e.g. academia or
industry), participants taking part (e.g. practitioners, consultants, students) and the

tasks being performed (e.g. small scale, large scale). There are many examples of

24

unrepresentative experiments, i.e. the experiments that are undertaken in academia
using students and small scale tasks, and these should be excluded from serious

systematic reviews.

Developing a review protocol is considered as the most important activity of the whole
planning phase as it determines the rest of the SLR process. The output of this activity should
be a detailed review protocol that specifies the methods that will be used to perform a planned
systematic review. Creating a protocol prior to systematic review is necessary to reduce the
possibility of researcher bias. Staples and Niazi (2007) claim that review protocol, as a
concrete and formal plan of the systematic review, usually insinuates and suggests the

structure of the final report.

Protocol should also describe the background context of the research, the specific research
questions, the planned search strategy, criteria for publication selection, the treatment of
publication quality assessment, the data extraction plan, the data synthesis plan and a project
plan. Although usually it is impossible to predict all the elements and obstacles in the whole
systematic review process, above mentioned parts define it in general. That is why some
authors, for example Staples and Niazi (2007), argue that a protocol is a subject of constant
changes through the whole systematic review process. In the guidelines, Kitchenham suggests
that aspects of the protocol should be piloted during its development. In particular, the search
terms, selection criteria, and data extraction procedures should be tried out before finalizing

the protocol.

Although some elements of the review protocol are already stated, the full list of elements of
the protocol, defined by (Kitchenham and Charters, 2007), is presented here without any
changes:

e Background. The rationale for the survey.

o The research questions that the review is intended to answer.

o The search strategy that will be used to search for primary studies including search
terms and resources to be searched. Resources include digital libraries, specific
journals, and conference proceedings. An initial mapping study can help determine an
appropriate strategy.

o Study selection criteria. Study selection criteria are used to determine which studies
are included in, or excluded from, a systematic review. It is usually helpful to pilot the
selection criteria on a subset of primary studies.

o Study selection procedures. The protocol should describe how the selection criteria
will be applied e. g. how many assessors will evaluate each prospective primary study,

and how disagreements among assessors will be resolved.

25

o Study quality assessment checklists and procedures. The researchers should develop
quality checklists to assess the individual studies. The purpose of the quality
assessment will guide the development of checklists.

e Data extraction strategy. This defines how the information required from each
primary study will be obtained. If the data require manipulation or assumptions and
inferences to be made, the protocol should specify an appropriate validation process.

o Synthesis of the extracted data. This defines the synthesis strategy. This should clarify
whether or not a formal meta-analysis is intended and if so what techniques will be
used.

e Dissemination strategy (if not already included in a commissioning document).

e Project timetable. This should define the review schedule.

Taking into considerations the discussion from other authors, several stated elements are
especially important. For example Dyba and Dingseyr (2008a) argue that explicit inclusion
and exclusion criteria (which should specify the types of study designs, interventions,
populations and outcomes that will be included in the review) and a systematic search strategy
(which should specify the keyword strings and bibliographic sources defined in a such way to
ensure good topic coverage) are of the most importance. They also state that sometimes it is
even necessary to perform a search of key journal and conference proceedings by hand to
identify relevant studies that are not fully indexed. On the other hand, some authors put focus
on quality assurance elements and on planning, considering them to be critical in order to
mitigate risks of researcher bias (Kitchenham and Charters, 2007) or in order to support the

practical conduct of systematic review (Staples and Niazi, 2007).

In order to make the process of development of review protocol easier, Kitchenham gave an
example of protocol for a tertiary study review. On the other hand, Biolchini et al. (2005)
created a Systematic Review Protocol Template which, even based on the first version of the
Kitchenham’s guidelines, covers majority of concepts and could be used as a starting point in
creating a review protocol. Except the mentioned guidelines, protocol was also based on the
systematic review protocols developed in the medical area and on the example found in
Protocol for Systematic Review by Mendes E. and Kitchenham B., 2004. (as cited by
Biolchini). Every concept in Biolchini’s template is described in detail and a pilot study was
conducted in order to evaluate the developed protocol template. The results of the study
showed that usage of template has significantly shortened the time spent on planning against

the review execution time®.

¥ More details on mean time spent on systematic review tasks along with simple formula to predict the needed
time are presented in (Petticrew and Roberts, 2005).

26

The Systematic Review Protocol Template created by (Biolchini et al., 2005) is composed of

five main parts. The original template is given in Figure 8 without any changes.

1. Question Formularization 4. Information Extraction
1.1. Question Focus 4.1. Information Inclusion and Exclusion Criteria Definition
1.2. Question Quality and Amplitude 4.2. Data Extraction Forms
- Proble_m 4.3. Extraction Execution
- Question - Objective Results Extraction
- Keywords and Synonyms i) Study Identification
- Intervention ii) Study Methodology
- Control iii) Study Results
- Effect iv) Study Problems
- Outcom_e Measure - Subjective Results Extraction
- Popu!atlgn i) Information through authors
- APPh‘fa“O“) ii) General Impressions and Abstractions
- Exp.enmentaI Design 4.4. Resolution of divergences among reviewers
2. Sources Selection 5. Results Summarization
2.1. Sources Selection Criteria Definition 5.1. Results Statistical Calculus
2.2. Studies Languages 5.2. Results Presentation in Tables
2.3. Sources Identification 5.3. Sensitivity Analysis
- Sources Search Methods 5.4. Plotting
- Search String 5.5. Final Comments
- Sources List - Number of Studies
2.4. Sources Selection after Evaluation - Search, Selection and Extraction Bias
2.5. References Checking - Public;tion Bias

3. Studies Se.lection - - Inter-Reviewers Variation
3.1. Studies Definition - Results Application

- Studies Inclusion and Exclusion Criteria Definition
- Studies Types Definition
- Procedures for Studies Selection
3.2. Selection Execution
- Initial Studies Selection
- Studies Quality Evaluation
- Selection Review

- Recommendations

Figure 8 - Systematic Review Protocol Template
(Biolchini et al., 2005)

Evaluating the review protocol is not compulsory, but is a recommended step in the SLR
process in order to improve its quality as the protocol is a critical element of any systematic
review. The researchers must take into consideration several aspects in order to agree on a
procedure for evaluating the protocol. Important aspects are purpose of the research, desired
quality, time, financial construction etc. With regards to these, there are several methods of
evaluating a review protocol which can be used:

e author’s review (not recommended)

e peer review

e review by supervisor (appropriate for PhD students)

e review by external experts (the best option)

e test of protocol execution

Review by external experts is probably the best option, but it usually depends on the financial
construction of the review project. In this case, the group of external experts should be asked

to review the protocol, and the same group can be asked to review the final report.

Test of protocol execution is a good and widely used alternative method. In this case, the

review of protocol is executed by performing a full cycle of systematic review (following the

27

protocol) but on a reduced set of selected sources. If the gained results are not suitable, or if
any phase of the review reveals unexpected problems, the new version of the protocol must be

created.

2.1.2.2. Conducting the review

According to Kitchenham’s guidelines, conducting the review phase consists of five
obligatory stages. This phase takes most of the researcher’s time, and although all five stages
are important, identification of research and selection of primary studies will determine the
rest of reviewing process. In this phase the predefined protocol should be followed and the

phase should result in data extracted, summarized and ready for dissemination.

The summary of each stage is presented below and is based on guidelines presented in
(Kitchenham and Charters, 2007) and on additional discussions from other authors which are

cited in the text.

Identification of research, as a first step in conducting a review, it results in a list of entire
population of publications relevant to the research questions and obtained by performing a

search strategy.

The search strategy should be the same as stated in the review protocol, and it should be
stated in such a manner that it allows the study to be replicable and open to external review. If
a researcher is not experienced in a creating a search strategy, then he or she should ask for
help (for example from librarian). It is also good to break down the research question and to
identify initial search strings according to population, intervention, comparison, outcomes,
context and study design. On top of that, it is important to create a list of synonyms,
abbreviations and alternative spellings. Apart from results gained from digital libraries, other
sources such as reference lists from relevant primary studies, journals, grey literature (e.g.
technical reports), research registers and the Internet should also be searched (sometimes

manually).

The process of definition of search strategy is usually iterative and should benefit from

preliminary searches, trial searches and consultations with experts in the field.

In order to address publication bias (the problem that positive results are more likely to be
published than negative) and not to allow it to become a systematic bias, Kitchenham suggests
that it is important to take appropriate steps. For example scanning grey literature, conference
proceedings and contacting domain experts could result in addition of studies with “negative”

results.

As the number of identified primary studies may be extensive (some authors, for example

Unterkalmsteiner et al. (2012) have identified more than 10.800 publications), the appropriate

28

reference manager software should be used to keep a record on all of them along with the

links to the potentially useful full papers.

Process of performing a SLR must be transparent and replicable. This means that the whole
process should be properly documented: the review and search must be documented, and
unfiltered search results should be saved and retained for possible reanalysis. Many of these
documents will not be presented in the final report but can also be published and a reference
to them can be given in the final report. Kitchenham proposed the procedures for

documenting the search process according to data source as presented in Table 1.

Table 1 - Procedures for documenting the search process

Data source Documentation
Digital Library Name of database
Search strategy for the database
Date of Search
Years covered by search
Journal hand Searches Name of journal

Years searched
Any issues not searched

Conference proceedings | Title of proceedings

Name of conference (if different)

Title translation (if necessary)

Journal name (if published as part of a journal)

Efforts to identify Research groups and researches contacted (names and contact details)
unpublished studies Research web sites searched (date and URL)
Other sources Date of search

URL

Any specific conditions pertaining to the search.

Source: (Kitchenham and Charters, 2007)

In an attempt to perform an exhaustive search Brereton et al. (2007) identified seven
electronic sources as most relevant sources to Software Engineers, and they also discuss about

considering the use of additional sources (*) from publishers or bibliographical databases:

e [EEExplore e ScienceDirect

e ACM Digital library e EI Compendex

e Google scholar e *SpringerLink

e Citeseer library e *Web of Science
e [INSPEC e *Scopus

Unfortunately, the search of many relevant journals can only be performed manually, but is
also an important part of the search process. The usual way to identify relevant journals is to
read papers reference lists or by searching the Internet. Several authors also tried to identify a

list of relevant journals and conferences in the field of software engineering. For example,

29

combining the recommendations from (Hannay et al., 2007; Kitchenham and Charters, 2007),
the list of relevant journals and conferences (ordered alphabetically) could be:

e ACM Transactions on Software Engineering Methodology (TOSEM)

e ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement (ESEM) °

e Empirical Software Engineering (EMSE)

e Evaluation and Assessment in Software Engineering (EASE)

e [EEE Computer

e [EEE Software

e [EEE Transaction on Software Engineering (TSE)

e Information and Software Technology (IST)

e International Conference on Software Engineering (ICSE)

e Journal of Software: Evolution and Process (JSEP)

e Journal of Software: Practice and Experience (SP&E)

e Journal of Systems and Software (JSS)

Selection of primary studies is performed on all identified (potentially relevant) studies by
applying an inclusion and exclusion criteria in order to assess their actual relevance. The
selection criteria are also decided during the protocol definition but if necessary, they can be
refined during this process. The identification of research will usually end up with a great
number of articles that do not answer to the research question (because the keywords may
have different meanings or may be used in the studies that are not in the focus of SLR
research topic). The inclusion criteria will define which of these studies to include in the set
of relevant ones, and the exclusion criteria can be applied on the already selected studies in
order to identify those that do not meet additional conditions, or on the initial list of studies in
order to remove irrelevant ones. Inclusion and exclusion criteria should be based on the
research question, but could be defined based on study types. For example, only quantitative

studies will be taken into consideration.

Study selection is a multistage and iterative process. If the number of initially obtained studies
is large, the authors usually start with simple criteria and, for example, in the first iteration

include/exclude studies only by reading the title. In the second iteration the abstract is read

* ESEM symposium was first held in 2007 as a merge of IEEE International Symposium on Empirical Software
Engineering (ISESE) and IEEE International Symposium on Software Metrics (METRICS), so if searching for
papers prior to 2007 it is wise to check issues of ISESE and METRICS.

' JSEP journal was born from two parent journals, Journal of Software Maintenance and Evolution: Research
and Practice and Software Process: Improvement and Practice, and the second one should be searched
separatelly as it was issued until 2009. Issues of the first journal are available on the current JSEP home page.

30

and finally, full papers are read. Two study selection processes are shown in Figure 9
(Unterkalmsteiner et al., 2012) and Figure 10 (Dyb4 and Dingseyr, 2008a).

However, some authors advocate a more strict approach. For example, Brereton et al. (2007)
advise the researchers to exclude studies by means of reading the title and the abstract only if
there are no doubts that study can be excluded. Otherwise, they point out that they have learnt
from their own experience that “the standard of IT and software engineering abstract is too
poor to rely on when selecting primary studies”, and they advise reviewing the conclusions as

well. Of course, final set of selected papers should be reviewed in detail.

- } _

S = - - ¢
ACM Digital IEEE Explore SCOPUS Compendex Inspee
(127)

L

Library (826) (3406) (2360) (4098)

Identify relevant studies —
Stage 1 search databases and > n=1996
conference proceedings

|

Exclude studies on the basis
of titles

Retrieved

[(10817)

- P
Duplicates [T ———— Non-English
GE93) S | e
. v -

Prian
Primary study

selection
6917

Stage 2 L n=821

Excluded based on)

study selection criteria/ € e »‘ Non full-text ‘ l
oenn) v L (234))
(Primary studies for) I i i
;'::“fgx(;.ea.d‘l’;r Stage 3 Exclude studies on the basis . n =270
L (362)) of abstracts
Full-text reading " . . Duplicate data source
L 206)) I SR » Dup! I('x;ll L l
v L J " A
Primary studies Obtain primary papers and . _
(148) Stage 4 critically appraise studies n=36
Figure 9 - Example of study selection process (a) Figure 10 - Example of study selection process (b)

Kitchenham is familiar with general instructions on keeping the list of excluded papers, but
she suggests that totally irrelevant papers should be excluded first (for example, papers that
have nothing to do with Software Engineering) and then, while analyzing other papers, the list

of exclusions should be kept updated along with the reasons of exclusion.

In order to increase the reliability of inclusion decisions it is possible to perform the same
process by two or more researches. The Cohen Kappa coefficient (Cohen, 1968) can be used
to measure the level of agreement between the researches''. If there is a disagreement then it
should be discussed and resolved, but the initial value of Kappa statistics should be preserved
in the final report and used for discussion and conclusions. Alternatively, using test-retest

approach latter researches can evaluate a random sample of the primary studies.

" The Cohen Kappa coefficient (Cohen, 1968) is statistical measure of agreement between two observers rating
qualitative items. The simple Kappa coefficient (from 1960) is calculated for nominal scales and it treats all
disagreements between raters equally. But, the Weightet kappa, x,, provides the means of taking into
consideration the ratio-scaled degrees of disagreement between raters. Theoretical Kappa maximum of 1.0
means perfect agreement between raters.

31

On the other hand, a PhD student can use one of the following methods to increase the
reliability of inclusion decisions:

e consultation with advisor

e consultation with expert panel or other researcher

e re-evaluation of a random sample of the primary studies by the test-retest approach

e re-evaluation of a random sample by other researcher while publishing a paper on the

subject

Advisors usually help students to choose an appropriate method and if decided so, the advisor
can review the inclusion decisions or help the student find external experts or perform other
stated methods.

Study quality assessment is the second most important stage in this phase. The idea of this
process is to analyze and assess the quality of each primarily selected study to be finally
included in data extraction and reporting process. In general, the aim of assessing the quality
is to make sure that the study findings are relevant and unbiased. However, this is not a simple
process as, according to Kitchenham, there is no agreed definition of study “quality”. Some
authors, for example Centre for Reviews and Dissemination (2009), discuss that the study
quality assessment procedures mainly depend on the type of the study. For example, in health
sciences, the quality assessment of a study that was conducted by using a randomized
controlled trials method cannot be the same as the assessment of quasi-experimental studies
or observational studies. The mentioned guidelines also state that the following elements
should be assessed regardless of the study type:

e appropriateness of study design to the research objective

e risk of bias

e choice of outcome measure

e statistical issues

e quality of reporting and intervention

e generalizability

Mentioned elements do not have the same importance in every case, but the authors usually
agree that the risk of bias (also known as internal validity) is pernicious as it can easily
obscure intervention effects. Generalizability (also known as applicability or external validity)
considers the extent to which a study is generalizable and how closely a study reflects a
practice (Centre for Reviews and Dissemination, University of York, 2009). Additionally,
Kitchenham states that quality assessment should be used to:

e provide more detailed inclusion/exclusion criteria

e provide explanation for differences in study results

e weigh the importance of individual studies for overall synthesis

32

e guide the interpretation and further research

In this process, Kitchenham also finds that three concepts are important and most closely

related to the study quality. She defines them as follows:

Table 2 - Quality concept definitions

Term Synonyms Definition

Bias Systematic error | A tendency to produce results that depart systematically

from the ‘true’ results. Unbiased results are internally valid.

Internal validity | Validity The extent to which the design and conduct of the study are
likely to prevent systematic error. Internal validity is a
prerequisite for external validity.

External validity | Generalizability, | The extent to which the effects observed in the study are

Applicability applicable outside of the study.

Source: (Kitchenham and Charters, 2007)

The most common tool (quality instrument) used to assess the quality of studies is checklist.
Usage of checklists ensures that all assessed studies are evaluated critically and in a
standardized way. According to Centre for Reviews and Dissemination (2009) there are many
different checklists and scales already available, and they can be used or adapted to meet the
requirements of the review or to cover the bias and validity in the focus of specific research.
In literature several types of biases are recognized that should be addressed in a checklist.
Kitchenham adopted the division and adapted the definitions and protection mechanisms in
order to address software engineering rather than medicine. The identified types of biases

along with definition and protection mechanisms are as follows:

Table 3 - Types of Bias

Type Synonyms | Definition Protection mechanism
Selection bias | Allocation | Systematic differences between Randomization of a large number
bias comparison groups with respect to | of subjects with concealment of
treatment. the allocation method (e.g.
allocation by computer program
not experimenter choice).
Performance Systematic difference is the Replication of the studies using
bias conduct of comparison groups different experimenters.
apart from the treatment being Use of experimenters with no
evaluated. personal interest in either
treatment.
Measurement | Detection | Systematic difference between the | Blinding outcome assessors to the
bias bias groups in how outcomes are treatments is sometimes possible.
ascertained.
Attrition bias | Exclusion | Systematic differences between Reporting of the reasons for all
bias comparison groups in terms of withdrawals. Sensitivity analysis
withdrawals or exclusions of including all excluded
participants from the study sample. | participants.

Source: (Kitchenham and Charters, 2007)

33

In addition to these, Higgins and Green (2011) emphasize reporting bias and also recognize
other biases. By reporting bias they discuss systematic differences between reported and
unreported findings, and by other biases they presume other sources of bias that are relevant

in certain circumstances (for example language etc.).

According to Kitchenham, checklist should also include consideration of biases and validity
problems that can occur at the different stages of the study (design, conduct, analysis and
conclusions). Reviewing available papers on the subject of checklists creation for quantitative
studies, and noticing that authors focus on different set of questions, Kitchenham and Charters
(2007) created an accumulated list of 59 questions and organized them with respect to study
stage and study type. These questions cover four mentioned stages and can be used for
quantitative empirical studies, correlation (observational) studies, surveys and experiments.
The same process was conducted in qualitative studies, and resulted in 18 questions that could
be used. These example checklists, which we highly recommend, should not be used literally,
but rather as a pool of questions. The appropriate questions could be taken from the pool for

each specific study.

The review protocol should define quality instruments as well as specify how the quality data
are to be used. In general, there are two rather different but not mutually exclusive ways: (1)

to assist primary study selection and (2) to assist data analysis and synthesis.

There are several limitations the authors should be aware of when attempting to perform a
quality analysis of different studies. First primary studies could be poorly reported, but the
lack of report does not necessarily mean a leak in the procedure. According to Petticrew and
Roberts (2005) the quality checklists should address methodological quality and not reporting
quality. If reporting quality is poor, the researchers should attempt to obtain more information
from the authors of the study. Additionally, Kitchenham argues that a limitation could be a
limited evidence of the relationships between factors that are thought to affect validity and the
actual study outcomes, and that sometimes it is not possible to correct the statistical analysis

as there is usually no access to the original data.

Finally, authors usually point out all undertaken quality assessment procedures and measures,
but only to the level of detail that is suitable for the target publication. For further reading, we
recommend some simple examples of quality assessment of SE studies presented in (Dybéa
and Dingseyr, 2008a), (B Kitchenham et al., 2009), (Barbara Kitchenham et al., 2009) or
(Kitchenham et al., 2010) and especially (Unterkalmsteiner et al., 2012).

Data extraction and monitoring, as a next step in SLR process, aims to accurately and
without bias record the appropriate information from selected papers. Researchers usually,

during the protocol definition phase, define extraction forms which are used in this activity.

34

The design of data extraction forms is not a trivial task while forms should be designed to
collect all information needed to address the review questions and the study quality criteria.
As the quality criteria can be used to identify inclusion/exclusion criteria or/and as a part of
the data analysis, in the first case, the data extraction forms should be separated, and in the
second case, a single form can be used (Kitchenham and Charters, 2007). In any case, the
same authors recommend that the forms should be piloted during the protocol definition
phase, and all researchers who will use the forms should take part in the pilot study in order to

assess completeness of the forms along with possible technical issues.

Basically, as mentioned before, data extraction forms should contain questions needed to
answer the review questions and quality evaluation criteria. There is no firm guidance on how
to define these questions as they are different for every specific SLR process. On the other
hand, there are several elements that are considered to be common to all forms in order to
provide standard information. According to Kitchenham these elements are:

e name of the reviewer

e date of data extraction

e title, authors, journal, publications details

e space for additional notes

Combining the examples presented in (Kitchenham and Charters, 2007) and (Jergensen,
2007) we can conclude that in general, data extraction form could include parts (sections) as

presented in Table 4.

Table 4 - Data collection form template

Data item | Value | Additional notes

Extraction information

Data extractor

Data checker

Date of extraction

General study information

Study identifier

Title

Publication details Including authors, journal etc.

Questions to answer review questions

Question 1 These questions could aim to obtain
Question 2 numerical or descriptive data. Each
Question n review question could be covered by

more questions in data extraction form.

Questions to assess study quality

Question 1 These questions should be related ONLY
Question 2 to data analysis. Questions related to
Question m inclusion/exclusion criteria should be

35

stated on separate form.

Data summary

Question 1 These questions could aim to collect
Question 2 summary information from the observed
Question p study.

It is important to notice that the column Additional notes was used to present additional info
on template elements, but it should also be used in extraction forms to present additional info

on the extracted data.

Similarly as in the process of applying inclusion and exclusion criteria, there are different
methods that could be performed to extract the data and to fill the extraction forms. In
guidelines Kitchenham recommends that data extraction should be performed by two or more
researchers, but as stated in (B Kitchenham et al., 2009), in practice she finds that it is useful
that one researcher extracts the data and the other one checks the extraction. If several
researchers are performing a data extraction, the results should be compared, aligned and if
necessary discussed. However, if researchers are performing extraction on different sets of
primary studies, it is important to ensure that it is done in a consistent manner by employing
some cross-checking activities. Additionally, Staples and Niazi (2007) recommend that the
whole process should be done in an iterative manner. PhD students will usually need some
help from advisor or other experts to randomly check their extracted data or they will perform

a re-test of a part of the primary studies.

Incidentally, it is important not to include multiple studies with the same data in a systematic
review in order to avoid results with bias. This could be a serious threat if different sets of
publications are analyzed by different researchers. Conversely, it is also important to contact

the authors if it is identified that some data are missing or were poorly reported.

Finally, the authors should consider using electronic forms as they proved themselves useful
in subsequent data analysis, especially if the extracted data is a set of numerical values and if

statistical or meta-analysis has been performed.

An interesting example of data extraction process can be found in (Unterkalmsteiner et al.,
2012), an example of filled extraction forms can be found in (Jergensen, 2007) and (Dyba and
Dingseyr, 2008b) and an example of data extraction forms with a short review on process can

be found in almost all papers mentioned in this chapter.

Data synthesis is the final step in the review conduction phase. During this activity extracted
data are collected and summarized. In general, there are two types of data synthesis:

descriptive (narrative) synthesis and quantitative synthesis (Centre for Reviews and

36

Dissemination, University of York, 2009). In order to draw reliable conclusions, synthesis

should consider the strength of evidence, explore consistency and discuss inconsistencies.

The synthesis approach should be defined by the protocol and is determined by the type of
research questions, but also by the type of available studies and by the quality of data. For
example, it is not wise to perform a statistical analysis on the numerical data if the
publications used are not randomized or do not cover the whole population, or if there are
studies with poor quality and with biased results. In addition, according to CRD’s guidance
(2009), narrative and quantitative approaches are not mutually exclusive, and according to
(Brereton et al. (2007) “software engineering systematic reviews are likely to be qualitative in

nature”.

Regardless of the synthesis type, the synthesis should begin with a creation of a summary of
included studies. The studies included in the review are usually presented in a table which
covers all their important details (such as type, interventions, number and characteristics of
participants, outcomes etc.). In the same (or in another) table, the elements of study quality
and risk of bias could also be presented. Additionally, this descriptive process should be
explicit, rigorous and should help to conclude if the studies are similar and reliable to
synthesize (Centre for Reviews and Dissemination, University of York, 2009). Kitchenham
and Charters (2007) also add that the extracted data should be tabulated in a manner that is
consistent with the review questions and structured to highlight similarities and differences

between study outcomes.

Synthetizing results of qualitative studies means an integration of materials written in natural
language, with significant possibility of having to understand different meanings of the same
concepts as they were used by different researchers (Kitchenham and Charters, 2007). In
(Noblit and Hare, 1988) the authors propose three approaches to synthesis of qualitative
studies:
e Reciprocal transaction — translation of cases of studies with similar objective into each
of other cases in order to create an additive summary.
e Refutational synthesis — translation of studies along with corresponding refutational
studies in order to analyze the refutations in detail.
o Line of argument synthesis — first, the individual studies which focus the part of some
problem are analyzed and then the set is analyzed as a whole in order to get broader

conclusion on the addressed problem.

According to Petticrew and Roberts (2005) the narrative synthesis can be performed in
several ways, but the most common one is to separate it into three distinct steps: (1)
organizing the description into logical categories, (2) analyzing the findings within each of

the categories and (3) synthesizing the findings across all included studies. The mentioned

37

authors argue that there is no firm guidance on how to organize the categories and that this
could be done according to: intervention, population, design, outcomes etc. The second step
involves a narrative description of the findings for each study. This description may vary in
length and in the level of detail. Finally, the authors discuss the cross-study synthesis and state
that it usually starts with a simple description of the uncovered information, then the summary
information on the effect of mediating variables (if any) can be presented, and at the end the
results of the individual studies are described. The main goal of cross-study synthesis is to
produce an overall summary of study findings taking into considerations the quality and other

variations.

Additionally, same authors describe several other synthesis methods which could be used:

e Best evidence synthesis — ‘“combines the meta-analytic approach of extracting
quantitative information in a common standard format from each study with a
systematic approach to the assessment of study quality and study relevance”.

e Jote counting — the easiest approach which simply compares the number of positive
and negative results on specific issue. This approach is usually inappropriate to use as
it has many disadvantages.

e Cross-design synthesis — in theory combines the complementary strengths of
experimental and non-experimental research — for example by adjusting the results of
random controlled trials (RCTs) by standardizing RCT results to the distributions

obtained from database analyses.

An example of applying a narrative synthesis is presented in (Centre for Reviews and

Dissemination, University of York, 2009) and can be seen in Figure 11.

Quantitative data (as well as qualitative) should be presented in tabular form. The data must
be presented in a comparable way, and according to Kitchenham, it should include:
e sample size for each intervention,
e estimated effect size for intervention with standard error for each effect,
e (difference between the mean values for each intervention and the confidence interval
for the difference,

¢ units used for measuring the effect.

Different effect measures for different types of outcome are proposed in literature.
Kitchenham refers to medical literature and she presents binary outcomes (which can be
measured by effect measures like odds, risk, odds ratio (OR), relative risk (RR), absolute risk
reduction (ARR)) and continuous data (which can be measured by mean difference, weighted
mean difference (WMD) or standardized mean difference (SMD)).

38

Apart from narrative description of results, qualitative results are usually presented and
summarized in a table. Even though “tabulating the data is a useful means of aggregation, it is
necessary to explain how the aggregated data actually answers the research questions”
(Brereton et al., 2007). On the other hand, quantitative results are usually presented by forest
plot (which presents the means and variance of the difference for each study) (Kitchenham
and Charters, 2007) and, of course, additionally narratively discussed and related to the

research questions.

END OF
BEGINNING OF Movement between stages s
YNTHESIS
SYNTHESIS
premmmanan e emmseeemeeseessesemneeanae e emseeeeesemesemseeeenannann e eemenemmeeeseeammeenan \
Y Y T J Y
i W w
1l 3 — E 5
| & o 2 o g8 2 £88 o z| & @
gl gl 2% s | £/ & 8,25 £ | g2 2
2 & Tt = c | B m*g_gu - o E o
£ = == = 2|3 ESES =] = =5 =1
[y o 2 s 2 = Bl R —S3E w 2 g
i A @
5 iy = re & =4 5l B S5&8c8 @ Rl Ew
w o = - -
S| |E| 8| 28 § 8s | §|® &3SE o | 8|2 EZ
] [=} W o = W @ oy [=] =
m | = m = = =4} o =N = = [
o o E > %ﬂ&’m o 27 o = ETES s 22 - = o TC
= -—E L gam L 05 el ERBU - '—E L - L h;._
= o = ! > o =
e a === w2 5 oEbS T = = Cw
=2 me v £ = > =1 £in = ™
x = cwnsEE vE L BYLHE =] £
> o E r= = .EI:D_U'.\ o o l-l"lu_
[T] EE‘LEE o EEE‘:EE c € s~
= & BEREY £ Caz3_8y @ 848 B
= 22CEY =] Lt w D =2
z SEESE g SEZSHED a T o c
) ok o= z Zaeo=od < = =
= L - - L - U

Figure 11 - Example of applying narrative synthesis
(Centre for Reviews and Dissemination, University of York, 2009)

When systematic literature review includes quantitative and qualitative studies, Kitchenham
suggests that researchers should “synthetize the quantitative and qualitative studies separately,
and then attempt to integrate the results by investigating whether the qualitative results can
help explain the quantitative results”. When there is a considerable difference in the quality of
studies, Kitchenham suggests the sensitivity analysis to be performed in order to determine if
the low quality publications have significant impact on synthesis results. Sensitivity analysis
could also be performed on different subsets of primary studies to determine the robustness of

the results.

Examples of different methods and approaches of presentation of systematized data can be

found in Chapter 1.3.5. of (Centre for Reviews and Dissemination, University of York, 2009).

39

2.1.2.3. Reporting the review

The aim of the final phase of the systematic literature review process is to write the results of
the review in a form suitable to dissemination channel and the target audience or parties. The
results are usually written in a form of a systematic review report. The summary of possible
activities is presented below and is based on the guidelines presented in (Kitchenham and

Charters, 2007) and on additional discussions from other authors which are cited in the text.

Specifying dissemination strategy and mechanisms is usually performed during the project
commissioning activities, or if there is no commissioning phase, then dissemination strategy
and mechanisms should be defined in the review protocol. Kitchenham argues that apart from
disseminating the results in academic journals and conferences, scientists should consider
performing other dissemination activities that might include direct communication with
affected bodies, publishing the results on web pages, posters or practitioner-oriented

magazines etc.

If the results are to be published in a conference or journal, or any other publication with
restricted number of pages, then the reference to a document (technical report, PhD thesis or

similar) that contains all information should be provided.

Formatting the main report is the most important activity of this phase. Kitchenham adopted
the suggested structure of systematic review report given in CRD’s guidelines from 2001.
Although the original guidelines (from 2001) are updated in (Centre for Reviews and
Dissemination, University of York, 2009), the version presented by Kitchenham is sufficient
in the field of software engineering. She also distinguishes reports which are to be published
in technical reports and journals from the reports which are to be published in a PhD
dissertation. The report structure proposed by Kitchenham is presented in Table 5 and

elements marked with the (*) are usually used only in publications and not in PhD

dissertations.
Table 5 - Structure and Contents of Reports of Systematic Reviews
Section Subsection Scope Comments
Title* The title should be short but

informative. It should be based on the
question being asked. In journal papers,
it should indicate that the study is a
systematic review.

Authorship* When research is done collaboratively,
criteria for determining both who
should be credited as an author, and the
order of author’s names should be
defined in advance. The contribution of
workers not credited as authors should
be noted in the Acknowledgements
section.

Executive Context The importance of the A structured summary or abstract

40

summary or research questions addressed allows readers to assess quickly the
Structured by the review. relevance, quality and generality of a
abstract* Objectives The questions addressed by systematic review.
the systematic review.
Methods Data Sources, Study selection,
Quality Assessment and Data
extraction.
Results Main finding including any
meta-analysis results and
sensitivity analyses.
Conclusions Implications for practice and
future research.
Background Justification of the need for Description of the software engineering
the review. technique being investigated and its
Summary of previous reviews. | potential importance.
Review Each review question should Identify primary and secondary review
questions be specified. questions. Note this section may be
included in the background section.
Review Data sources This should be based on the research
methods and search protocol. Any changes to the original
strategy protocol should be reported.
Study selection
Study quality
assessment
Data extraction
Data synthesis
Included and Inclusion and exclusion Study inclusion and exclusion criteria
excluded criteria. can sometimes best be represented as a
studies List of excluded studies with flow diagram because studies will be
rationale for exclusion. excluded at different stages in the
review for different reasons.
Results Findings Description of primary Non-quantitative summaries should be
studies. provided to summarize each of the
Results of any quantitative studies and presented in tabular form.
summaries. Quantitative summary results should be
Details of any meta-analysis. presented in tables and graphs.
Sensitivity
analysis
Discussion Principal These must correspond to the findings
findings discussed in the results section.
Strengths and Strengths and weaknesses of A discussion of the validity of the
Weaknesses the evidence included in the evidence considering bias in the
review. systematic review allows a reader to
Relation to other reviews, assess the reliance that may be placed
particularly considering any on the collected evidence.
differences in quality and
results.
Meaning of Direction and magnitude of Make clear to what extent the results
findings effect observed in summarized | imply causality by discussing the level
studies. of evidence.
Applicability Discuss all benefits, adverse effects
(generalizability) of the and risks.
findings. Discuss variations in effects and their
reasons (for example are the treatment
effects larger on larger projects).
Conclusions Recommend- Practical implications for What are the implications of the results
actions software development. for practitioners?

Unanswered questions and
implications for future

41

research.
Acknowledge- All persons who contributed
ments* to the research but did not
fulfill authorship criteria.
Conflict of Any secondary interest on the part of
interest the research (e.g. a financial interest in
the technology being evaluated) should
be declared.
References and Appendices can be used to list studies
Appendices included and excluded from the study,
to document search strategy details,
and to list raw data from the included
studies.

Source: (Kitchenham and Charters, 2007)

Evaluating the report is the final step in the systematic literature review process. This activity
depends mainly on the type of the publication. Papers submitted to a scientific conference or
scientific journal are reviewed by independent peer reviewers. Doctoral dissertations are
reviewed by supervisors and by the committee during the examination process. Finally, if the
publication is a technical review, it is also advisable to subject the materials to an independent
evaluation. In this case, this final review could be done by the same expert panel that was
created to review the research protocol. The results of the review, if negative, can require

repetition of one or more phases in the systematic literature review process.

2.1.3. Advantages and disadvantages of SLR

As every other method and approach, SLR also has several advantages and disadvantages.
Kitchenham identified three main groups of advantages of using systematic literature review.
(1) The methodology is well-defined; (2) it enables researchers to provide the information
available in the wide range of sources; (3) and in the case of quantitative data, it is possible to
perform some meta-analysis and to extract information that single study cannot provide
(Kitchenham and Charters, 2007). Additionally, if compared to unstructured methods, like
simple literature review, the SLR has many advantages (described in the SLR process) that

make the results of such analysis more reliable and more likely to be unbiased.

On the other hand, a major disadvantage of this approach is that it requires much more effort
and time in comparison to simple literature review and this is exacerbated by a large number
of review points: search term pilot reviews, protocol reviews, initial selection reviews, final
selection reviews, data extraction reviews, and data analysis reviews (Staples and Niazi,
2007). Kitchenham also adds that the usage of meta-analysis could be a disadvantage as it can
detect small and unimportant biases. Biolchini discusses that authors are supposed to perform
complex activities and understand (sometimes unknown) specific concepts and terms. This is
why he states that a conduction of SLR in SE is much harder than in other disciplines, for

example medicine (Biolchini et al., 2005). Same authors point out that the overall process is

42

difficult to conduct (in order to help other researchers they prepared a systematic review
conduction process and protocol template), especially the activities of protocol development,

searching and evaluating studies.

Additionally, execution of this method depends on solid literature coverage of the focused
phenomenon, and subsequently it cannot be used to explore new, revolutionary, phenomena

which are not well covered in literature.

Finally, even experienced authors are likely to change the review protocol during the

implementation phase, and that brings the problem of documenting the whole process.

2.1.4. Light SLR

The text in this chapter (Chapter 2.1) is based on the guidelines presented in (Kitchenham and
Charters, 2007) and expanded with the reported feedback of the researchers, mainly from the
field of software engineering. As the guidelines’ authors themselves also point out, both, the
guidelines and therefore this text too, are mainly created to cover the whole process of
systematic literature review which is supposed to be undertaken by a large group of
researchers. Although the notes for single researchers (like PhD students) throughout the text
have been presented, it is important to point out that not all mentioned activities are
compulsory. Kitchenham suggests that the most important steps (as /ight SLR) for PhD
students to undertake are:

e Developing a protocol

e Defining the research question(s).

e Specifying what will be done to address the problem of a single researcher applying

inclusion/exclusion criteria and undertaking all the data extraction.

e Defining the search strategy.

¢ Defining the data to be extracted from each primary study including quality data.

e Maintaining lists of included and excluded studies.

e Using the data synthesis guidelines.

e Using the reporting guidelines.

Specific recommendations are given to PhD students throughout the whole chapter while
discussing specific activities. The most important for PhD students is to understand that the
process should be performed with the restrictions that are normal while performing a PhD
research, but research validity and rigor should not be neglected and should be achieved by
employing available methods and techniques in order to get unbiased results. These include
the adjustment of dissemination strategy, proper review questions that are from interest to the
student, employment of supervisor to review the protocol, consultations with supervisors or

other researcher to increase the reliability of inclusion decisions, implementation of test-retest

43

approach or asking the advisor or other researcher to randomly check the extracted data and

structure the report according remarks given in the guidelines.

2.1.5. Conclusions on SLR

The process of systematic literature review is not easy to perform, but the general opinion of
the authors is that this method is useful and could be used to decrease the biases and to
increase the review quality. Authors also note that the usage of this method has significant
obstacles in the field of software engineering in comparison to other fields, for example, the
field of health sciences. The main differences are the mainly qualitative studies to be reviewed
in SE, the lack of centralized index of existing systematic reviews and the overall literature
searching problem raised by many different sources, with different and questionable quality.
In order to overcome the mentioned obstacles, the authors who performed SLR in the field of
SE suggest that the scope of the review should be limited by choosing clear and narrow
research questions and that the whole process should be in advance well defined by putting a

considerable effort in creation of feasible review protocol.

As SLR method still emerges in the field of software engineering, the SLR authors in the field
of SE welcome the idea of publishing the replications of existing systematic reviews, along

with the idea of creation of a centralized index of the existing literature reviews.

2.2. Planning the review

The previous chapter defining the research method (chapter 2.1) covers the whole SLR
process as defined by Kitchenham and Charters (2007), including the phases of planning the
review, conducting the review and reporting the review along with summarized and
aggregated findings, observations and recommendations from other influential authors in the
SE field.

The following chapters will report the whole process of performing the Systematic Literature
Review in the scope of this research. Firstly, following the mentioned guidelines, the phase of
planning the review will be presented in this chapter (chapter 2.2), while the chapter 2.3 will
give the information on the phase of performing the review and finding the suitable
methodology and chapter 2.4 brings the conclusion of this process and justifies the decision

on the methodology that was used in this research.

44

2.2.1. Defining the basic concepts

Systems development methodologies (SDM) are of an academic interest since the early 1980s
when the IFIP WG8.1'2 organized three conferences named Comparative Review of
Information Systems Design Methodologies (CRIS). The first conference (Olle et al., 1982)
aimed to present and compare spectrum of methodologies. The second conference (Olle et al.,
1983) had a goal to analyze the features of the methodologies and the third conference (Olle
et al., 1986) put the focus on the evaluation of the methodologies. These conferences also
resulted in the definition and distinction of basic concepts and terms like methodology,
method, tool, approach, and development cycle. However, the used concept of “methodology”

was limited only to the design stage of the system development life-cycle (Gasson, 1995).

Since these origins, different definitions for the term “software development methodology”
which cover full development life-cycle are created. For example, software development
methodologies could be defined as (a) “reference model for the development of software
describing the various statuses of the corresponding software projects” (Dyck and
Majchrzak, 2012), as (b) “framework for applying software engineering practices with the
specific aim of providing the necessary means for timely and orderly execution of the various
finer-grained techniques and methods for developing software-intensive systems” (Ramsin
and Paige, 2008), as (c) “recommended collection of phases, procedures, rules, techniques,
tools, documentation, management, and training used to develop a system” (Avison and
Fitzgerald, 2003) or (d) “software development process by which user needs are translated
into a software product by translating user needs into software requirements, transforming
the software requirements into design, implementing the design in code, testing the code, and
sometimes, installing and checking out the software for operational use” (IEEE Computer
Society, 1991) or as (e) an organized and systematic approach to developing software for a
target computer (SWEBOK V3 - Chapter 10, 2012).

Consequently, SDM could be observed as a noun and as a verb. As a noun, “software
development methodology is a framework that is used to structure, plan, and control the
process of developing an information system” — this includes the pre-definition of specific
deliverables and artifacts that are created and completed by a project team to develop or
maintain an application (Centers for Medicare and Medicaid Services (CMS), Office of
information Services, 2008). As a verb, the software development methodology could be

considered as an approach used by organizations and project teams to apply the software

12 IFIP WG8.1 — Working group of the International Federation for Information Processing on Design and
Evaluation of Information Systems. The group is part of IFIP's Technical Committee on Information Systems
(TCB8). More information is available on the group’s website: http://research.idi.ntnu.no/ifip-wg81/.

45

http://research.idi.ntnu.no/ifip-wg81/

development methodology framework. Every software development methodology approach
acts as a basis for applying specific frameworks to develop and maintain software. The terms
Systems Development Life Cycle (SDLC) and Software Development Process are used to
represent the meaning of SDM as a verb. According to Elliott (2004) the SDLC can be
considered to be the oldest formalized methodology framework'® for building information
systems with the idea of “pursuing the development of information systems in a very
deliberate, structured and methodical way, requiring each stage of the life cycle from
inception of the idea to delivery of the final system, to be carried out rigidly and

sequentially”.

2.2.1.1. Development approaches

Although SDLC is defined as framework, with time and to manage the complexity, a number
of SDLC models or methodologies as approaches have been created. The CMS (2008)
enumerates several software development approaches which have been used since the origin
of information technology. Arguably, this division could be considered as division which
takes into consideration the development cycle, the phases and their order and according to
this viewpoint, all approaches could be stated in one of the three main groups:

e Phase oriented approach — developed at the end of 1960s and the beginning of 1970s
— states that each development phase is performed only once during the whole
development project. In each phase, all required output results are finished and
checked. The verification (in accordance with specification) and validation (by the
user) on the results are performed.

e Partially incremental approach - defines approach in which only several phases are
repeated incrementally, but initial set of phases is performed only once. In this model,
initial phases including requirements specification are usually not repeated, and the
design and subsequent phases are repeated. Other variants of the model exist (e.g.
Incremental implementation only etc.).

o [ncremental approach — states that the overall software functionality should be
produced and delivered in small increments. Attention is focused only on essential
features and additional functionality is added only if and when needed. The output

models evolve and they are improved in every increment (iteration).

In comparison, by taking into consideration the basic model to be used to define the product,

the development approaches could be:

" Initially it was a framework, but during the time the term changed meaning to specify approach!

46

Process oriented approach (functional approach) — defines that the specification of
system/software functionality is most important. Using process modeling techniques,
it is possible to formally define process hierarchy, process inner logic, inter processes
relationships, occurring events, and relationships between the process and the
surroundings. The basic concepts that are used in this approach are functional
components (such as functions, processes, sub processes, activities, operations etc.),
data flows and their content, data sources and destinations, data storages and events
that initiate or terminate processes.

Data oriented approach — assumes that the basic model developed through the overall
process of information / software system development is data model. The data model
is considered to be more stable than process model and that it changes more rarely. In
addition, it is considered that the data manipulation is the only important activity that
is performed by some information systems processes. The basic concepts of this
approach are: data structure definition concepts, data integrity preservation concepts,
operators that can be used to change the state of the data.

Process and data oriented approach — defines that the data models are equally
important as process models and that these two models cannot be separated. This
approach, which appeared in the beginning of the 1980s, also defines that every data
model belongs to a specific process model, and that these two should be developed in
parallel.

Object oriented approach — defines the latest approach which semantically unites the
data model and process model into new object models. These models represent
objects, methods serving the objects and messages exchanged between the objects.
They can be used to model the static and dynamic system / software properties. The
basic concepts of these models are: object types, classification and built-in object
structures, attributes with relationships and constraints, events and states, operations
performed on objects (methods), inheritance, encapsulation, polymorphism,

reusability, state pre-conditions and post-conditions, state transitions, messages...

2.2.1.2. Development methodologies

Emerging from 1960s, many different methodologies have been created and developed in
theory and practice and they basically reflect the mentioned approaches. The number of these
methodologies makes the categorization of SDMs not an easy task. Different authors use
different viewpoints while defining categories of SDMs. Avison and Fitzgerald (2003) divide
methodologies into seven broad groups: Structured, Data-oriented, Prototyping, Object-
oriented (0O0), Participative, Strategic and Systems. These groups are not mutually excluded.
On the other side, Ramsin and Paige (2008) while focusing only on object oriented

methodologies divide them into three sub-groups: Seminal, Integrated and Agile. In their

47

opinion, seminal'* methodologies pioneered the unexplored field of OO analysis and design
and set the basis for further evolution. Many of the concepts introduced by these
methodologies are still widely used today. While the first and the second generation of OO
methodologies is referred to as seminal, the third generation is referred to as integrated" .
These methodologies are heavyweight and very complex, offering detailed process
components, patterns, and management and measurement instructions. Furthermore, some of
them propose ideas on seamless development, complexity management and modeling
approaches. Finally, in contrast to heavyweight integrated methodologies, agile'
methodologies are aiming to be lightweight, based on practices of program design, coding and

testing in order to enhance software development flexibility and productivity.

Similarly, software engineering body of knowledge (SWEBOK, 2004) defines three basic
software engineering methods topic areas, while the new version of the Report, that is now
being in process of review and is soon to be published (SWEBOK V3 - Chapter 10, 2012),
defines four topic areas as follows:

e Heuristic methods — those experience-based software engineering methods that have
been and are fairly widely practiced in the software industry. This topic area contains
three broad discussion categories: structured analysis and design methods, data
modeling methods, and object-oriented analysis and design methods.

e Formal methods — are software engineering methods used to specify, develop, and
verify the software through application of a rigorous mathematically based notation
and language. Through the use of the specification language, the software model can
be checked for consistency (in other words, lack of ambiguity), completeness, and
correctness in a systematic and automated or semi-automated fashion.

e Prototyping methods — Software prototyping is an activity that generally creates
incomplete or minimally functional versions of a software application, usually for
trying out specific new features, soliciting feedback on requirements or user interfaces,
further exploring requirements, design, or implementation options, and/or gaining
some other useful insight into the software. The software engineer selects a
prototyping method to understand the least understood aspects or components of the
software first; this approach is in contrast with other development methods which
usually begin development with the most understood portions first. Typically, the
prototyped product does not become the final software product without extensive

development rework or refactoring.

14 -
i.e. influential, had a greate influence on other methodologies.

5. combined, unified.

' i.e. nimble, responsive.

48

o Agile methods — Agile methods were born in the 1990s out of the need to reduce the
apparent large overhead associated with heavyweight, plan-based development
methods used in large-scale software-development projects. Agile methods are
considered lightweight methods in that they are characterized by short, iterative
development cycles, self-organizing teams, simpler designs, code refactoring, test-
driven development, frequent customer involvement, and an emphasis on creating a

demonstrative working product with each development cycle.

The criterion used to create this classification could be argued. Heuristic methods (a kind of
approach to development based on modeling rather than on heuristics!) have models as
primary artifacts, prototyping methods result in a throw-away prototype and formal methods
result in a formal specification of the system (which should preferably be animated by using
some engine). In this point of view, the main artifact of agile methods is not obvious. In
eXtreme programming these are small releases that have passed unit, integration and
acceptance tests while in Scrum these could be features described through product and sprint
backlogs. Thus, we can conclude that common artifact denominator for agile methods could

be functionality increment which is generated at the end of iteration.

Furthermore, according to (SWEBOK, 2004) at least the first three topics (but we can add and
the forth one, too) are not disjoint but rather they represent distinct concerns. For example, an
OO method may incorporate formal techniques and rely on prototyping for verification and
validation. As methodologies continuously evolve, the SWEBOK 2004 tried as hard as
possible to avoid naming particular methodologies, but new version is likely to make an
exception when it comes to the agile methods, as the new version shortly describes Pair
programming, Rapid application development, eXtreme programming, Scrum and Feature-
driven development. Of course these are not the only agile methodologies, but according to
(SWEBOK V3 - Chapter 10, 2012) they are the most popular ones. Finally, in the body of
knowledge it is stated that the choice of the appropriate method could have a dramatic effect

on the success of the software project.

Every methodological framework is based on some approaches or paradigms (basic model,
the development cycle, the relationship of existing and future systems...) and it describes or
prescribes a pattern of the development cycle, development activities and artifacts. Thus, the
line between methodologies and approaches is a thin one and is often crossed by many
authors, teams and organizations. That is the reason why there is no clear division between
methodologies and approaches. Even Olle et al. back in (1988) pointed out that the term
‘methodology’ is not correctly used. Original meaning of ‘a study of method’ was replaced in
common practice with ‘method’ and such practice remained till today and is followed in this

dissertation as well. In general, adopting the definition from (Avison and Fitzgerald, 1988) in

49

this thesis, methodology will be considered as “a collection of procedures, techniques, tools
and documentation aids which will help the systems developers in their efforts to implement a
new information system.” Approach will simply be used to define the basic artifacts while

conducting the chosen methodology.

2.2.2. Overview of methodologies targeting development of mobile applications

In accordance with the current state-of-the-art stream, the development of mobile applications
and systems differs from traditional software development in many aspects, as it should
satisfy special requirements and constraints (as elaborated in chapter 1.1.1). As already stated
in previous chapters some of these requirements concern portability, standards, capabilities,
privacy and time-to-market requirements and therefore, the design of mobile software systems
is much more complicated and is forcing developers to reconsider the use of traditional
software development methodologies. Despite the mentioned problems that could be
interesting for the scientific community, a relatively few researches aimed to enhance the
methodologies for mobile application development, and most of the work performed in this
field has been focused on the implementation-oriented aspects of the mobile software
development, while methodology-oriented issues still remain to be properly addressed
(Rahimian and Ramsin, 2008). Additionally, development of mobile systems is a challenging
task with a high level of uncertainty, and according to Hosbond (2005), some of the important
problems are rapid technology development, lack of standardization and short time-to-market.
Hosbond identified that there are two important sets of challenges that should be addressed in
the domain of mobile systems development, and these are business related challenges (e.g.
tough competition, conflicting customer interests, establishment of revenue-share models etc.)
and development specific challenges (e.g. rapidly changing technology, lack of

standardization, integration with existing systems etc.).

Reviewing the existing solutions for mobile application development, we should mention the
Abrahamsson et al. (2004) and their Mobile-D methodology as an agile approach to mobile
application development which is based on combination of eXtreme programming in terms of
practices, Crystal family of methodologies in terms of scalability and Rational Unified
Process in terms of life-cycle coverage (Supan et al., 2013). Initially, as introduced in
(Abrahamsson et al., 2004), the methodology is composed of five iterations i.e. phases: set-up,
core, core2, stabilize and wrap-up. According to technical documents available on the
authors’ web site, for example (Salo and Koskela, 2004), the methodology included 34
principal inputs and outputs (like action point list, architecture line plan, base process
description, daily status report etc.) and 9 different roles (like customer group, exploration

team, project team, steering group, etc.).

50

The method evolved and according to presently available documents such as web application
presenting the methodology (VTT Technical Research Centre of Finland, 2006a) and set of
documents and templates describing the methodology in detail (VIT Technical Research

Centre of Finland, 2006b) the main phases, activities and tasks are presented in Table 6.

Table 6 - Mobile-D phases, activities and tasks

Mobile-D Phases

Development days / Activities

Tasks

Explore

Stakeholder establishment

Customer establishment

Stakeholder group establishment

Scope definition

Initial requirements collection

Initial project planning

Project establishment

Environment selection

Personnel allocation

Architecture line definition

Process establishment

Initialize

Project set-up

Environment setup

Training

Customer communication establishment

Planning day in 0 iteration

Architecture line planning

Initial requirements analysis

Working day in 0 iteration

Release day in 0 iteration

Productionize

Planning day

Post-iteration workshop

Requirements analysis

Iteration planning

Acceptance test generation

Acceptance test review

Working day

Wrap-up

Test-driven development

Pair programming

Continuous integration

Refactoring

Inform customer

Release day

System integration

Pre-release testing

Acceptance testing

Release ceremonies

Stabilize

Planning day

Post-iteration workshop

Requirements analysis

Iteration planning

Acceptance test generation

Acceptance test review

Working day

Wrap-up

Test-driven development

Pair programming

Continuous integration

Refactoring

Inform Customer

Documentation wrap-up

Release day

System integration

Pre-release testing

Acceptance testing

Release ceremonies

51

System test & fix System test System test

Planning day Post-iteration workshop

Requirements analysis

Iteration planning

Acceptance test generation

Acceptance test review

Working day Wrap-up

Test-driven development

Pair programming

Continuous integration

Refactoring

Inform customer

Release day System integration

Pre-release testing

Acceptance testing

Release ceremonies

Source: (VTT Technical Research Centre of Finland, 2006a)

The practices included in execution of tasks during different phases and activities comprise

nine principal elements which are mainly well-known agile practices specialized for mobile

software development (Abrahamsson et al., 2004; VTT Technical Research Centre of Finland,

2004):

Phasing and pacing — The projects are performed in iterations of which each begins
with a Planning Day

Architecture Line — Architecture line approach is utilized together with architectural
patterns and Agile Modeling

Mobile Test Driven Development — Test-first approach is utilized together with
automated test cases

Continuous Integration — Effective Software Change Management (SCM) practices
are applied through multiple means

Pair Programming — Coding, testing and refactoring are carried out in pairs

Metrics — Few essential metrics are collected rigorously and utilized for feedback and
process improvement purposes

Agile Software Process Improvement — Post-Iteration workshops are used to
continuously improve the development process

Off-Site Customer — Customer participates in Planning and Release Days
User-Centered Focus — Emphasis is placed on identifying and fulfilling end-user

needs

Additionally, a Hybrid Method Engineering Approach was used by Rahimian and Ramsin

(2008) to develop “the ideal software development methodology” named Agile Risk-based

Methodology. The authors utilized general agile practices through New Product Development

(NPD) approach and incorporated the ideas from Adaptive Software Development (ASD).

52

Although the part of methodology development process was based on artifact-oriented

approach, this methodology is defined at the level of activity and additional research should

be performed to specify the finer-grained tasks of the process (Supan et al., 2013).

Adaptive Cycle
Planning

Project Initiation

Development Engine

Idea Preliminary Business
Generation Analysis Analysis

Detailed Y Architectural g::“’:::‘l Coiality Roxtow Market
Analysis Design DO oo Testing
Engineering

Create
Functional
Prototypes

Update
Component
Library

Figure 12 - Agile Risk-based Methodology
(Rahimian and Ramsin, 2008)

Commercialization

Another methodology developed for mobile software development is MASAM (Mobile

Application Software Development Method). MASAM methodology is created by Jeong et al.

(2008) and it represents the proprietary methodology that was built in on the top of Software

and Systems Process Engineering Meta-model (SPEM) framework.

Being based on SPEM, the MASAM is defined on three different kinds of process assets:

roles, tasks and work products. A role defines a set of related skills, competencies or

responsibilities (e.g. planner, manager, Ul designer, developer etc.), a task is an assignable

unit of work (e.g. initial planning, initial analysis, UI design etc.) and work product stands for

task inputs and outputs (e.g. product summary, Ul sample, task card etc.).

This agile methodology is comprised of Development preparation phase, Embodiment phase,

Product development phase and Commercialization phase. The methodology

activities and tasks for each of the four mentioned phases, as shown in Table 7.

Table 7 - MASAM methodology phases, activities and tasks

defines

MASAM Phase

Activity

Task

Development preparation

Grasping product

Defining product summary

Pre-planning

Product concept sharing

User definition

Initial product analysis

Project Set-up

Development process coordination

Project resource coordination

Pre study

Embodiment

User needs understanding

Story-card workshop

UI design

Architecting

Non-functional requirements analysis

Architecture definition

Pattern management

Product development

Implementation preparation

Environment setup

Development planning

Release Cycle

Release planning

53

Iteration cycle
Iteration planning
Implementation cycle
Face-to-face meeting
Incremental design
Test Driven Development
(TDD)
Refactoring
Pair programming
Continuous integration
Feedback

Release
Acceptance test
Feedback

Commercialization System Test Acceptance test

User test

Product Selling Launching test

Product launching

Source: (Jeong et al., 2008)

To conclude, except (a) applying newly developed methods there are two other options. The
company can (b) adopt and use an existing development methodology or (c) can adapt an
existing development methodology to fit the specific organizational culture, company’s goals
and specific requirements of mobile application development. In any case, it is important to
notice that implementation of the new methodological framework is a serious challenge from
organizational, technical, educational and every other point of view. In fact, it is about the
implementation of a new development system. Although the analysis that would cover all
these concerns is out of scope of this work, the adoption or adaption of a methodology for the
development of mobile applications should not be considered as an easy task and if
performed, should be backed up with serious preliminary research and carefully made

decisions.

This short review does not cover all methodologies, but based on this preliminary review we
can conclude that the authors do agree on several facts that are important for this dissertation.
(1) The development for mobile devices differs from standard development, (2) the agile
approach is widely used in methodologies for mobile devices and (3) neither one of the
presented methodologies is applicable without additional efforts to make the process more
fine-grained or more suitable to specific development environment and mobile application

requirements.

2.2.3. Identification of the need for a review

Preliminary research on the software development methodologies, presented in the previous
chapters can lead us to several important conclusions. Firstly, the field of software

development, during its 50-year-old history, has been interwoven with many different

54

software development methodologies and approaches. This also resulted in the terminology
confusion as many authors mix different concepts such as methodology, approach, framework
and process. Secondly, there are some attempts to create specific software development
methodology that would be suitable for development of mobile applications. Surprisingly,
these attempts are relatively rare, they are not aligned with the current mobile development
demands which have slightly but seriously changed, especially after the introduction of the
mobile application stores back in 2009, and finally some of these methodologies are still not
usable in practice as being defined at relatively high level of abstraction. Thirdly, many
companies have chosen to use the existing and familiar development methodologies while
developing mobile applications. The trends show that agile approach is most suitable and
widely used when developing mobile applications (Abrahamsson et al., 2003; Holler, 2006),
but still, some companies have considerable heritage in using non-agile approaches which

they still find as the most suitable.

The number and complexity of different possibilities indicate that a thorough and unbiased
research method such is systematic literature review is needed in order to get the overall
overview of possible methodologies that could be taken while developing applications for

mobile devices.

Additionally, the preliminary research is performed to identify the existing systematic
literature reviews on software development methodologies for development of mobile
applications. The IEEExplore, ACM Digital library, INSPEC, CiteSeerX and GoogleScholar
databases were searched by the following search query: (“literature review” OR

SLR) AND (mobile development)”.

Almost all obtained papers'® were excluded as not being literature reviews or not being
literature reviews in mobile applications development. Only one paper (Hosbond and Nielsen,
2005) passed the inclusion criteria, but the focus of the SLR performed in this paper was to
review the literature in the domain of four mobile systems development perspectives
(requirements, technology, application, business) but unfortunately did not include

methodologies or approaches to be used when developing mobile applications.

"7 This query implicitly includes ,,systematic literature review phrase. Additionally, more rigorous search
querries, like (“literature review” OR SLR) AND (mobile development methodologies) or similar have been
discarded as returning only a few or no results.

'® The search returned following number of papers: IEEEExplore (61), ACM Digital library (624), INSPEC (62),
CiteSeerX (22) and GoogleScholar (128). Additionally, the original query on GoogleScholar returned more than
22.300 results, so there was used a narrower concept serching for ,,mobile development™ as a phrase instead of
searching for both words independently as in other databases.

55

To conclude, according to information available in the mentioned databases, there are no
existing systematic literature reviews covering the subject of software development
methodologies for mobile applications development, which makes the need for such review
even bigger. As an additional proof of this claim, the results of SLRs on Systematic Literature
Reviews in Software Engineering presented in (B Kitchenham et al., 2009) and in
(Kitchenham et al., 2010) show that no literature reviews were conducted in the domain of
software development methodologies or software development methodologies for mobile

devices.

2.2.4. Specifying the research questions

In the previous chapter we discussed the results of preliminary researches performed in order
to identify possible mobile application development methodologies and on existing SLRs
identified the need for the systematic literature review. In order to address the issues
determined in this analysis, this systematic review is aligned to answer the following research
questions:

RQ1 — What development methodologies and approaches are reported in literature as

defined in theory or used in practice for mobile application development?
RQ2 — Are the identified methodologies and approaches applicable for multi-platform

mobile applications development?

Motivation for RQI is to identify all existing methodologies and approaches for development
of mobile applications and motivation for RQ2 is to define a set of methodologies and

approaches that could be used for multi-platform mobile applications development.

With respect to RQ1, several important decisions were made. Firstly, as preliminary research
showed, and thus assuming that there are not so many publications in this field, it is decided
not to apply any time filters on the source publications. The fields of software development
methodologies and especially methodologies for development of mobile applications are
considered to be young disciplines and additional time constraints are not necessary.
Secondly, it is important to clearly distinguish methodologies and approaches according to
definitions presented in chapter 2.2.1. Finally, only methodologies and approaches reported to
be used for development of mobile applications and mobile systems should be taken as

relevant and potentially selected for review.

With respect to RQ2, as methodologies or approaches by definition are not platform
dependent, it is important to notice that simple decision parameters will be taken into
consideration in order to determine if identified development methodologies and approaches
are applicable for multi-platform mobile applications development. Actually, we assume that

there might be some methodologies and approaches reported to be developed for specific

56

mobile target platform/s and only these methodologies or approaches (at least unchanged) will
be considered as not applicable for multi-platform mobile applications development.
Secondly, RQ2 is important for the other research activities in this thesis, as only the

applicable methodologies could be used in the following research phases.

Although there are multiple motivations for performing this literature review, both research
questions are defined with the purpose of identifying the existing body-of-knowledge basis
for choosing one mobile application development methodology and one development
approach that will be used in the subsequent research phases performed in this dissertation
project. In order to clarify these research questions the following complementary questions
are defined:
e Is the paper reporting on a software development methodology or a development
approach?
e Is the reported methodology/approach properly defined with clear phases, activities,
tasks, roles, inputs and outputs?
e Are there any specific instructions on how to apply the methodology/approach?
e Are there any specific techniques reported to be used while applying the methodology
or approach?
e Are there any specific instructions on any organizational aspects of teams applying the
methodology/approach?
e [s the methodology/approach developed for any specific mobile target platform?

Only the last complementary question targets RQ2, while all other stated complementary

questions target RQI1.

2.2.5. Developing a review protocol

The review protocol defining this research is created according to instruction presented in the
previous chapters. Additionally, the template used for protocol creation is proposed by
(Biolchini et al., 2005) and further explained by (Mian et al., 2005).

The protocol is firstly defined during the phase of review planning, but due to the
characteristic of some protocol elements to present final or intermediate results, the
information on these elements is inserted in subsequent phases of the systematic literature

review.

Additionally, it is important to mention, that some protocol elements like keywords and
synonyms and search strings are piloted either by using English dictionary and reading the
literature (in case of synonyms definition) or by performing a pilot database search (in case of

search strings definition). Final version of the protocol is presented in Table 8.

57

Table 8 - The review protocol

1. Question formularization

1.1. Question focus

To identify software development methodologies and approaches that could be

used for multi-platform mobile applications development.

1.2. Question
quality and

amplitude

Problem: Development of mobile applications differs from development of
traditional desktop or web applications. Not all software development
methodologies are used for development of mobile applications. Special
problem is fragmentation of mobile platforms and devices, and thus the
development process should be performed more than once. None of the
existing approaches to solve this problem is good enough. This research has
the idea to approach the problem differently and to define methodological
interoperability, i.e. interoperability on highest, methodology level. In order to
do that, it is necessary to identify applicable software development
methodologies and approaches that could be used in multi-platform mobile

applications development.

Research questions: RQ1: What development methodologies and approaches
are reported in literature as defined in theory or used in practice for mobile
application development? RQ2: Are the identified methodologies and

approaches applicable for multi-platform mobile applications development?

Keywords and synonyms:
e mobile
o software development: system development, application development,
program development
e methodology: method, approach, framework, process, procedure,

model

Intervention: Software development methodologies and approaches for

mobile applications development.

Effect: Identification of methodologies and approaches for multi-platform

mobile applications development.
Control: Methodologies defined in previous chapters.
Outcome measure: Cardinality of identified set of methodologies.

Population: Publications reporting on intervention and containing defined

keywords.

Application: Subsequent research in this thesis, mobile applications

development companies, researchers.

Experimental design: Statistical method will not be applied.

58

2. Sources selection

2.1. Sources

Sources recommended by field experts (i.e. Brereton et al. (2007), Hannay et

selection al. (2007), Kitchenham and Charters (2007)) and enumerated in previous
criteria chapters will be included in the search process. The criteria for sources
definition selection used by field experts are based on source quality and overall
recognition in the software engineering community.
2.2. Studies English
languages

2.3. Sources

1dentification

Sources search methods: Research through web search engines and manual

search.

Search string: (mobile AND ("software development” OR 'system
development" OR "application development”" OR '"program development")
AND (methodology OR method OR approach OR framework OR process OR
procedure OR model))

Sources list: Relevant electronic sources in the field of Software Engineering
identified by Brereton et al. (2007):

1. IEEExplore 5. INSPEC

2. ACM Digital library 6. ScienceDirect

3. Google Scholar 7. EI Compendex (not available)

4. CiteSeerX library

Special focus will be put on following combined list of relevant journals and
proceedings in the field of software engineering which is based on lists given
by Hannay et al. (2007) and by Kitchenham and Charters (2007). Hannay et.
al. explicitly state that journals and conferences chosen by them were chosen
because they were considered to be leaders in software engineering in general
and empirical software engineering in particular:
e ACM Transactions on Software Engineering Methodology (TOSEM)
e ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM)
e Empirical Software Engineering (EMSE) in SpringerLink (manual
search)
e Evaluation and Assessment in Software Engineering (EASE) in
ScienceDirect
e [EEE Computer
e |EEE Software
e [EEE Transaction on Software Engineering (TSE)

59

e Information and Software Technology (IST) in ScienceDirect

e International Conference on Software Engineering (ICSE)
in ACM Digital Library and IEEExplore

e Journal of Software: Evolution and Process (JSEP) in Wiley (manual
search)

e Journal of Software: Practice and Experience (SP&E) in Wiley
(manual search)

e Journal of Systems and Software (JSS) in ScienceDirect

If some of the mentioned journals and conference proceedings are not included
in the databases of the enumerated search engines, they will be searched

manually.

2.4. Sources
selection after

evaluation

All sources listed in 2.3 satisfied quality criteria.

2.5. References

checking

Sources are defined on basis of recommendations of field experts. The final

list of selected sources is also approved by two supervisors.

3. Studies selection

3.1. Studies

definition

Studies inclusion and exclusion criteria: The primary studies describing
software development methodology or approach in theory or reporting their
usage in practice will be included in review process. The studies that do not
provide sufficient information on the phases, activities, tasks, roles, inputs and
outputs (i.e. document templates, expected results, task prerequisites etc.) will

be excluded from the review.

Studies type definition: No filter on type of studies will be applied. All kinds

of studies related to the research topic will be selected.

Procedures for studies selection: After performing an automated search
based on defined keywords and search string, initial set of potential studies for
inclusion will be obtained. The studies will be firstly filtered by applying
inclusion criteria on the study title. The studies that meet inclusion criteria
along with those with unclear or indistinct title will be included in second
phase. Second phase will apply inclusion criteria on the abstract. If abstract
will be unclear or fuzzy, the introduction and conclusion will also be taken in
consideration. Studies that will finally be included will be reviewed in detail
by reading the full text. At last, if necessary, exclusion criteria will be applied

based on information obtained from full text review.

3.2. Selection

execution

Initial studies selection: The complete list of selected studies can be found in
chapter 2.3.2 (Table 12 on page 66 of this document).

60

Studies quality evaluation: The list of studies that passed inclusion and

exclusion criteria can be found in chapter 2.3.3 on page 68 of this document.

Selection review: Study selection process was reviewed and approved by two

supervisors and one of them is field expert.

4. Information extra

ction

4.1.

Information
inclusion and
exclusion
criteria

definition

The extracted information from studies must contain theoretical or practical
description of phases that should be performed during the development process

according to focused methodology.

If studies are reporting new software development approach, then the main
characteristics, values and rules which define focused approach should be

contained in extracted information.

4.2. Data extraction | The template form for data extraction that is defined for this review can be
forms found in chapter 2.3.4 on page 70, and complete list of filled data extraction
forms on all selected primary studies can be found in Appendix D on page
265.
4.3. Extraction The results of objective (study identification, study methodology, study results
execution and study problems) and subjective (information through the authors and
general impressions and abstractions) data extraction are presented in chapter
2.3.4 on page 70.
4.4. Resolution of There were no divergences, as the extraction was performed only by one

divergences
among

reviewers

author, i.e. author of this thesis.

5. Result summarization

5.1. Results Statistical calculi were not used.
statistical
calculus
5.2. Results The final results are presented in tables with the following information.

presentation in

tables

e Studies reporting the creation of new methodology or approach
e Studies reporting the methodology or approach usage
e Methodologies/approaches not eligible for multiplatform development

e Methodologies/approaches targeting specific mobile applications

The stated tables with final reported results could be found in chapter 2.3.5 on
page 71.

5.3.

Sensitivity

There was no need for sensitivity analysis.

61

analysis

5.4. Plotting There was no need for plotting.

5.5. Final comments | Number of studies obtained: 6761
Number of relevant studies: 49

Results application: Mobile-D methodology supported by Test Driven

Development is selected for application in this research.

Recommendations: Identified methodologies could be separately analyzed in

order to determine their quality and applicability. This was not the focus of this

study.

2.2.6. Evaluating the review protocol

The review protocol is evaluated by two supervisors of this thesis project. Also, it is important
to mention that one of the supervisors (prof. Strahonja) is an expert with scientific and
empirical background in the field of software development methodologies. Some minor
requests stated by both supervisors, regarding sources identification and final reporting were

taken in consideration and implemented in the final version of the review protocol.

2.3. Conducting the review

2.3.1. Identification of research

The research is focused on the identification of software development methodologies and
approaches that could be used for multi-platform mobile applications development. In order to
identify primary studies relevant to the stated research questions, the following keywords with

the list of relevant synonyms are used:

Table 9 - Search keywords and synonyms

Keyword Synonyms
mobile -
software development system development

application development
program development

methodology method
approach
framework
process
procedure
model

62

The stated list of synonyms is created according to the results of preliminary literature review

and is based on the empirical knowledge of terms used in the software engineering literature.

The target population consists of the publications reporting the software development
methodologies and approaches for mobile applications development containing the defined
keywords. In order to identify the initial list of publications, the search engines and manual

search have been used. The following query is defined for automatic database search:

(mobile AND ("software development” OR "system development" OR "application
development” OR "program development”) AND (methodology OR method OR approach OR
framework OR process OR procedure OR model))

The presented query has been executed on the databases and the relevant journals and
proceedings in the field of software engineering which are recommended by the filed experts
Brereton et al. (2007), Hannay et al. (2007), Kitchenham and Charters (2007) and as

elaborated in chapter 2.1.2.2. The final list of relevant sources is given in the Table 10.

Table 10 - The list of relevant sources

Relevant databases

IEEExplore INSPEC

ACM Digital Library ScienceDirect

Google Scholar EI Compendex (excluded)

CiteSeerX library

Relevant journals and proceedings

ACM Transactions on Software Engineering ACM/IEEE International Symposium on Empirical

Methodology (TOSEM) Software Engineering and Measurement (ESEM)

Empirical Software Engineering (EMSE) Evaluation and Assessment in Software Engineering

in SpringerLink (EASE) in ScienceDirect

IEEE Computer IEEE Software

IEEE Transaction on Software Engineering (TSE) Information and Software Technology (IST) in
ScienceDirect

International Conference on Software Engineering Journal of Software: Evolution and Process (JSEP) in

(ICSE) in ACM Digital Library and IEEExplore Wiley

Journal of Software: Practice and Experience (SP&E) | Journal of Systems and Software (JSS) in

in Wiley ScienceDirect

The preliminary research showed that majority of mentioned journals and proceedings is
indexed in the stated electronic databases, and manual search has been performed only on the

following databases:
e Empirical Software Engineering (EMSE) in SpringerLink
e Journal of Software: Evolution and Process (JSEP) in Wiley

e Journal of Software: Practice and Experience (SP&E) in Wiley

Additionally, despite the best efforts, the access to the electronic database EI Compendex is

available neither at the University of Alcald nor at the University of Zagreb, and thus, this

63

database had to be excluded from the list. So the final list of the excluded databases includes
only:
e EI Compendex

As it can be seen from the final set of relevant sources, the focus of this research is only on
the scientific research community. This is mainly due to the time and “personnel” constraints.
The past showed that the industry, as a source of development methodologies should not be
neglected and we strongly recommend that white papers, technical reports and other

unpublished materials should also be included in the future similar literature reviews.

2.3.2. Selection of primary studies

The primary studies describing software development methodology or approach in theory or
reporting their usage in practice have been included in the review process. The studies that do
not provide sufficient information on the phases, activities, tasks, roles, inputs and outputs
(i.e. document templates, expected results, task prerequisites etc.) have been excluded from
the review. The type of studies has not been filtered and all kinds of studies related to the

research topic that have been found by the search have been considered for possible inclusion.

2.3.2.1. Applied procedures in selection process

After the automated search based on defined keywords and search string is performed, the
initial set of the potential studies for inclusion is obtained (see Table 11). The studies are
firstly filtered by applying inclusion criteria on the study title. The studies that met the
inclusion criteria along with those with unclear or indistinct title are included in the second
phase where the inclusion criteria were applied on the abstract. Some of the abstracts were
unclear and fuzzy, and in those cases the introduction and conclusion were also taken into
consideration. The final phase conducted on the included studies was performed by a detailed
analysis and full text reading. During this phase, the exclusion criteria were applied based on

the information obtained from full text review.

As it can be seen in Table 11, in total 6761 initial studies were obtained by automatically
performed database searches. The search of Google Scholar database had to be performed
with specific time constraints, as it was impossible to reach all results given by the original
search query. This was not the only problem faced during the research process, but the faced
problems will be discussed in later chapter. Apart from Google, some other database engines
also had to be parameterized, and the used parameters, date ranges, filters and search

execution date are all reported in Table 11.

64

Table 11 - Applied procedures in selection process

Database Search quer Date range / Date of No. of
query other filters search results
IEEE Xplore ® - 05.06.2012. 68
Searched journals,
ACM Digital Library proceedings and 06.06.2012. 335
transactions
CiteSeerX Citations included 07.06.2012. 55
INSPEC - 07.06.2012. 85
Searched fields:
ScienceDirect Computer Science, | 7 o6 71, 399
. S Engineering, Social
("mobile application" OR Sci
. ciences
"mobile development") Full toxt search
Google Scholar AND ("software 08.06.2012. 867
19xx — 2004
development" OR "system Full text search:
Google Scholar development" OR ’ 08.06.2012. 661
Mo Tiat " 2005 — 2006
application development Full toxt o
Google Scholar OR "program development") u' loxt scarch, 08.06.2012. 925
2007 — 2008
AND (methodology OR Full toxt o
Google Scholar method OR approach OR ui toxt searchl, 09.06.2012. 694
2009
framework OR process OR ol ”
Google Scholar procedure OR model) ST | 09062012, 868
Full text search;
Google Scholar Filter: “+phone” 11.06.2012. 923
2011
Full text search;
Google Scholar Filter: “-phone” 11.06.2012. 352
2011
Google Scholar Full text search; 11, 6 912, 529
2012
Performed by readin -
?/Ianuall search of - M g 2007-2012 s 0163.2012 0
ournals paper titles and abstracts V0.2012.
Total 6761

The full list of all obtained papers is kept only in the reference management software, but the

lists of the identified studies after applying inclusion criteria on the study title and after

applying inclusion criteria on the abstract are documented in the annexes of this document

(see Appendix A and Appendix B). The full text documents are obtained for almost all studies

included in the second identification phase and are also stored in the reference management

software. Additionally, the reference management software contains the exclusion reasons for

all studies excluded in the second and the third iteration. Finally, the list of all studies

considered to be relevant and included in the literature review process results is given in Table

12.

65

Table 12 - The list of relevant studies

Study identifier

Study

(Abrahamsson et al.,
2005b)

Abrahamsson, P., Hanhineva, A., Jailinoja, J., 2005. Improving business agility through technical
solutions: A case study on test-driven development in mobile software development, in: Business
Agility and Information Technology Diffusion. Presented at the IFIP TC8 WG 8.6 International
Working Conference.

(Abrahamsson et al.,
2009)

Abrahamsson, P., Thme, T., Kolehmainen, K., Kyllénen, P., Salo, O., 2009. Mobile-D for Mobile
Software: How to Use Agile Approaches for the Efficient Development of Mobile Applications.

(Abrahamsson et al.,
2004)

Abrahamsson, P., Hanhineva, A., Hulkko, H., Thme, T., Jddlinoja, J., Korkala, M., Koskela, J.,
Kyllonen, P., Salo, O., 2004. Mobile-D: an agile approach for mobile application development, in:
Companion to the 19th Annual ACM SIGPLAN Conference on Object-oriented Programming
Systems, Languages, and Applications, OOPSLA ’04. ACM, New York, NY, USA, pp. 174-175.

(Alyani and Shirzad,
2011)

Alyani, N., Shirzad, S., 2011. Learning to innovate in distributed mobile application development:
Learning episodes from Tehran and London, in: 2011 Federated Conference on Computer Science
and Information Systems (FedCSIS). Presented at the 2011 Federated Conference on Computer
Science and Information Systems (FedCSIS). IEEE., Piscataway, NJ, USA, pp. 497-504.

(Barnawi et al., 2012)

Barnawi, A., Qureshi, M., Khan, A.I., 2012. A Framework for Next Generation Mobile and
Wireless Networks Application Development using Hybrid Component Based Development
Model. Arxiv preprint arXiv:1202.2515.

(Bergstrom and
Engvall, 2011)

Bergstrom, F., Engvall, G., 2011. Development of handheld mobile applications for the public
sector in Android and iOS using agile Kanban process tool.

(Binsaleh and Hassan,
2011)

Binsaleh, M., Hassan, S., 2011. Systems Development Methodology for Mobile Commerce
Applications: Agile vs. Traditional. International Journal of Online Marketing (IJOM) 1, 33-47.

(Biswas et al., 2006)

Biswas, A., Donaldson, T., Singh, J., Diamond, S., Gauthier, D., Longford, M., 2006. Assessment
of mobile experience engine, the development toolkit for context aware mobile applications, in:
Proceedings of the 2006 ACM SIGCHI International Conference on Advances in Computer
Entertainment Technology, ACE *06. ACM, New York, NY, USA.

(Charaf, 2011)

Charaf, H., 2011. Developing Mobile Applications for Multiple Platforms, in: Engineering of
Computer Based Systems (ECBS-EERC), 2011 2nd Eastern European Regional Conference on
The. p. 2.

(Chen, 2004)

Chen, M., 2004. A methodology for building mobile computing applications. International journal
of electronic business 2, 229-243.

(Cuccurullo et al.,
2011)

Cuccurullo, S., Francese, R., Risi, M., Tortora, G., 2011. A Visual Approach supporting the
Development of MicroApps on Mobile Phones, in: Proc. of 3rd International Symposium on End-
User Development. Presented at the 3rd International Symposium on End-User Development,
Brindisi, Italy, pp. 289-294.

(Ejlersen et al., 2008)

Ejlersen, A., Knudsen, M.S., Lovgaard, J., Serensen, M.B., 2008. Using Design Science to
Develop a Mobile Application.

(Forstner et al., 2005)

Forstner, B., Lengyel, L., Kelenyi, 1., Levendovszky, T., Charaf, H., 2005. Supporting Rapid
Application Development on Symbian Platform, in: Computer as a Tool, 2005. EUROCON
2005.The International Conference On. pp. 72 —75.

(Forstner et al., 2006)

Forstner, B., Lengyel, L., Levendovszky, T., Mezei, G., Kelenyi, ., Charaf, H., 2006. Model-
based system development for embedded mobile platforms, in: Model-Based Development of
Computer-Based Systems and Model-Based Methodologies for Pervasive and Embedded
Software, 2006. MBD/MOMPES 2006. Fourth and Third International Workshop On. p. 10—pp.

(Gal and Topol, 2005)

Gal, V., Topol, A., 2005. Experimentation of a Game Design Methodology for Mobile Phones
Games.

(Hedberg and lisakka, Hedberg, H., lisakka, J., 2006. Technical Reviews in Agile Development: Case Mobile-D, in:
2006) Quality Software, 2006. QSIC 2006. Sixth International Conference On. pp. 347-353.
(Ihme and Ihme, T., Abrahamsson, P., 2005. The Use of Architectural Patterns in the Agile Software

Abrahamsson, 2005)

Development of Mobile Applications.

(Jeong et al., 2008)

Jeong, Y.J., Lee, J.H., Shin, G.S., 2008. Development Process of Mobile Application SW Based
on Agile Methodology, in: Advanced Communication Technology, 2008. ICACT 2008. 10th
International Conference On. pp. 362-366.

(Kaariainen et al.,
2004)

Kaariainen, J., Koskela, J., Abrahamsson, P., Takalo, J., 2004. Improving requirements
management in extreme programming with tool support - an improvement attempt that failed, in:
Euromicro Conference, 2004. Proceedings. 30th. pp. 342 — 351.

(Khambati et al., 2008)

Khambati, A., Grundy, J., Warren, J., Hosking, J., 2008. Model-Driven Development of Mobile
Personal Health Care Applications, in: Proceedings of the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering, ASE *08. IEEE Computer Society, Washington,
DC, USA, pp. 467—470.

(Kim, 2008)

Kim, H.K., 2008. Frameworks of Process Improvement for Mobile Applications. Engineering
Letters 16.

(Kim et al., 2009)

Kim, H., Choi, B., Yoon, S., 2009. Performance testing based on test-driven development for
mobile applications, in: Proceedings of the 3rd International Conference on Ubiquitous

66

Information Management and Communication, ICUIMC ’09. ACM, New York, NY, USA, pp.
612-617.

(Korkala and Korkala, M., Abrahamsson, P., 2004. Extreme programming: Reassessing the requirements
Abrahamsson, 2004) management process for an offsite customer. Software Process Improvement 12-22.
(Maharmeh and Maharmeh, M., Unhelkar, B., 2009. A Composite Software Framework Approach for Mobile

Unhelkar, 2009)

Application Development. Handbook of research in mobile business: technical, methodological,
and social perspectives 194.

(Maia et al., 2010)

Maia, M.E.F., Celes, C., Castro, R., Andrade, R.M.C., 2010. Considerations on developing mobile
applications based on the Capuchin project, in: Proceedings of the 2010 ACM Symposium on
Applied Computing, SAC *10. ACM, New York, NY, USA, pp. 575-579.

(Manjunatha et al.,
2010)

Manjunatha, A., Ranabahu, A., Sheth, A., Thirunarayan, K., 2010. Power of clouds in your
pocket: An efficient approach for cloud mobile hybrid application development, in: Cloud
Computing Technology and Science (CloudCom), 2010 IEEE Second International Conference
On. pp. 496-503.

(Marinho et al., 2012)

Marinho, F.G., Andrade, R.M.C., Werner, C., Viana, W., Maia, M.E.F., Rocha, L.S., Teixeira, E.,
Filho, J.B.F., Dantas, V.L.L., Lima, F., Aguiar, S., 2012. MobiLine: A Nested Software Product
Line for the domain of mobile and context-aware applications. Science of Computer Programming

(Nystrom, 2011)

Nystrom, A., 2011. Agile Solo - Defining and Evaluating an Agile Software Development Process
for a Single Software Developer.

(Ortiz and Prado, 2010)

Ortiz, G., Prado, A.G.D., 2010. Improving device-aware Web services and their mobile clients
through an aspect-oriented, model-driven approach. Information and Software Technology 52,
1080 — 1093.

(Pauca and Guy, 2012)

Pauca, V.P., Guy, R.T., 2012. Mobile apps for the greater good: a socially relevant approach to
software engineering, in: Proceedings of the 43rd ACM Technical Symposium on Computer
Science Education, SIGCSE ’12. ACM, New York, NY, USA, pp. 535-540.

(Rahimian and Ramsin,
2008)

Rahimian, V., Ramsin, R., 2008. Designing an agile methodology for mobile software
development: A hybrid method engineering approach, in: Research Challenges in Information
Science, 2008. RCIS 2008. Second International Conference On. pp. 337-342.

(Rosa and Lucena,lJr.,
2011)

Rosa, R.E.V.S., LucenaJr., V.F., 2011. Smart composition of reusable software components in
mobile application product lines, in: Proceedings of the 2nd International Workshop on Product
Line Approaches in Software Engineering, PLEASE ’11. ACM, New York, NY, USA, pp. 45-49.

(Rupnik, 2009)

Rupnik, R., 2009. Mobile Applications Development Methodology, in: Unhelkar, B. (Ed.),
Handbook of Research in Mobile Business: Technical, Methodological, and Social Perspectives.
IGI Global Snippet.

(Saifudin et al., 2011)

Saifudin, A.W.S.N., Salam, B.S., Abdullah, CM.H.L., 2011. MMCD Framework and
Methodology for Developing m-Learning Applications. Presented at the International conference
on Teaching & Learning in Higher Education (ICTLHE 2011).

(Salo, 2004)

Salo, O., 2004. Improving software process in agile software development projects: results from
two XP case studies, in: Euromicro Conference, 2004. Proceedings. 30th. pp. 310-317.

(Scharft, 2010)

Scharff, C., 2010. The Software Engineering of Mobile Application Development.

(Scharff, 2011)

Scharff, C., 2011. Guiding global software development projects using Scrum and Agile with
quality assurance, in: Software Engineering Education and Training (CSEE&T), 2011 24th IEEE-
CS Conference On. pp. 274-283.

(Scharff and Verma,
2010)

Scharff, C., Verma, R., 2010. Scrum to support mobile application development projects in a just-
in-time learning context, in: Proceedings of the 2010 ICSE Workshop on Cooperative and Human
Aspects of Software Engineering, CHASE °10. ACM, New York, NY, USA, pp. 25-31.

(Schwieren and
Vossen, 2009)

Schwieren, J., Vossen, G., 2009. A design and development methodology for mobile RFID
applications based on the ID-Services middleware architecture, in: Mobile Data Management:
Systems, Services and Middleware, 2009. MDM’09. Tenth International Conference On. pp. 260—
266.

(Shiratuddin and Sarif,
2008)

Shiratuddin, N., Sarif, S.M., 2008. m d-Matrix: Mobile Application Development Tool.
Proceedings of the International MultiConference of Engineers and Computer Scientists 1.

(Shiratuddin and Sarif,
2009)

Shiratuddin, N., Sarif, S.M., 2009. Construction of Matrix and eMatrix for Mobile Development
Methodologies, in: Handbook of Research in Mobile Business: Technical, Methodological, and
Social Perspectives. IGI Global, pp. 113—126.

(Su and Scharff, 2010)

Su, S.H., Scharft, C., 2010. Know Yourself and Beyond: A Global Software Development Project
Experience with Agile Methodology, in: Proceedings of Student-Faculty Research Day, CSIS.
Pace University.

(Thompson et al., 2010)

Thompson, C., White, J., Dougherty, B., Turner, H., Campbell, S., Zienkiewicz, K., Schmidt,
D.C., 2010. Model-Driven Architectures for Optimizing Mobile Application Performance.

(Um et al., 2005)

Um, J., Hong, S., Kim, Y.T., Chung, E., Choi, K.M., Kong, J.T., Eo, S.K., 2005. ViP: A Practical
Approach to Platform-based System Modeling Methodology. Journal of Semiconductor
Technology and Science 5, 89.

(Walkerdine et al.,
2009)

Walkerdine, J., Phillips, P., Lock, S., 2009. A Tool Supported Methodology For Developing
Secure Mobile P2P Systems, in: Mobile Peer-to-peer Computing for Next Generation Distributed
Environments: Advancing Conceptual and Algorithmic Applications. pp. 283-301.

67

(Wolkerstorfer et al.,
2008)

Wolkerstorfer, P., Tscheligi, M., Sefelin, R., Milchrahm, H., Hussain, Z., Lechner, M., Shahzad,
S., 2008. Probing an agile usability process, in: CHI ’08 Extended Abstracts on Human Factors in
Computing Systems, CHI EA *08. ACM, New York, NY, USA, pp. 2151-2158.

(Xiong and Wang,
2010)

Xiong, Y., Wang, A., 2010. A new combined method for UCD and software development and
case study, in: Information Science and Engineering (ICISE), 2010 2nd International Conference
On. pp. 1-4.

(Zakal et al., 2011)

Zakal, D., Lengyel, L., Charaf, H., 2011. Software Product Lines-based development, in: Applied

79-81.

Machine Intelligence and Informatics (SAMI), 2011 IEEE 9th International Symposium On. pp.

(Zeidler et al., 2008)
software. International Journal of Mobile Communications 6, 345-356.

Zeidler, C., Kittl, C., Petrovic, O., 2008. An integrated product development process for mobile

The propagation of relevant studies through the research process is described in Table 13.

Table 13 - Propagation of relevant studies through phases

Database Identified Identified Identified Relevant studies
studies — P1 studies — P2 studies — P3 (after QA)

n n n n %>’ Y%
IEEE Xplore ® 68 25 3 3 441 6.12
ACM Digital Library 335 79 13 9 2.69 18.37
CiteSeerX 55 12 0 0 0.00 0.00
INSPEC 85 39 3 1 1.18 2.04
ScienceDirect 399 26 4 2 0.50 4.08
Google Scholar 19xx - 2004 867 40 5 3 - -
Google Scholar 2005 - 2006 661 37 8 6 - -
Google Scholar 2006 - 2008 925 41 7 6 - -
Google Scholar 2009 694 31 6 6 - -
Google Scholar 2010 868 45 6 5 - -
Google Scholar 2011a 923 29 5 4 - -
Google Scholar 2011b 352 21 4 3 - -
Google Scholar 2012 529 14 3 1 - -
Google Scholar Subtotal 5819 258 44 34 0.58 69.39
Subtotal 6761 439 - -
Redundant studies NA 75% - -
Total 6761 364 67 49 0.73 100

* Google Scholar database returned some results that were previously identified in other databases.
%’ Percentage in respect to initial studies pool from the same database
% Percentage in respect to final pool of all relevant studies

As it can be seen from the presented table, 49 studies are identified as relevant which makes it
only a 0.73% of initial 6761 studies. Additionally, Science Direct and Google Scholar are the

databases with the biggest waste factor as more than 99.4% of all initial studies were

discarded as irrelevant. Nevertheless, Google Scholar proved to give 69.39% of all relevant

studies. However, one could discuss the quality of Google Scholar studies in relation to the

studies obtained from other databases, but such analysis is out of the focus of this work.

2.3.3. Study quality assessment

The activities of the study quality assessment were performed carefully through the whole

process of the studies’ identification. As it was impossible to apply the usage of checklists on

68

all initially identified studies, during the first phase, the focus was put on an unbiased study
selection process, while the later phases additionally included the quality assessment of the

identified studies.

During the first identification phase, considerable efforts were made in order to clearly divide
studies that do not have any connection with software engineering and software development
from those that do. Additionally, in order to assess the quality of each primarily selected study
and to make sure that the study findings are relevant and unbiased, firm criteria were
established in the second and third phase. The complete overview of these criteria is given in
the Table 14.

Table 14 - The criteria for unbiased study identification

Identification of studies - P1

Inclusion Exclusion

Software engineering Other studies undoubtedly not from research domain

Software development

Mobile development

Other studies connected with the topic of interest

Identification of studies — P2

Inclusion

Exclusion

Reporting the methodology or approach used in
development or mobile applications development

Defining frameworks for specific purposes (i.e.
security, engine development etc.)

Defining framework or approach for development of
mobile applications

Defining building blocks with or without specific
purpose (i.e. for user interface, tracking, reporting etc.)

Defining framework or approach for specific
development phases

Defining testing frameworks, toolkits or middleware...

Defining framework or approach for development of
applications in specific application area

Defining frameworks for development of part of
application (e.g. adding context awareness, content
awareness etc.)

Defining or reporting the usage of platforms for
mobile apps development with no concerns on
development process

Other papers not connected with inclusion criteria.

Identification of studies — P3

Inclusion

Exclusion

Checklist result positive

Checklist result negative

As the studies observed in this systematic review process are oriented on software
development and development methodologies and approaches, they are usually not based on
the usage of experimental design and statistical methods. This means that the specific quality
assessment checklist applicable for studies in the domain of software engineering and
particularly for this research had to be built. This checklist was created according to approach
given by (Dybéa and Dingseyr, 2008b) who defined three main issues pertaining to quality that
need to be considered when appraising the qualitative studies identified in the review: rigour,

credibility and relevance. In addition to these, the advice to include the screening criteria is

69

accepted in order to assess study rationale, aims and context. The created checklist is

presented in Table 15.

Table 15 - Quality assessment checklist

ID | Quality assessment question Possible results

Q1 | Study reports existing methodology or approach used in mobile application Yes/No
development?

Q2 | Study defines new methodology or approach for mobile applications development? | Yes/No

Q3 | Research design is appropriate to address the study context? Yes/Partially/No

Q4 | Researches have experience in software development and mobile applications Yes/Partially/No
development?

Q5 | The reported or created process is clearly defined to the applicable level? Yes/Partially/No

Q6 | The study provided value for research and practice? Yes/Partially/No

The first two questions which define the screening criteria are used as the basis for including
or excluding the studies. The studies that were answered with No on both questions were
excluded, and of the 67 papers assessed for the quality, the number of included papers for the
final data extraction and synthesis was 49 (73.13%).

Subsequently, the questions labeled Q3 to Q6 aimed to assess the quality of the study and thus
included the assessment of research design, the assessment of created or reported
development process, the assessment of applicability of the results and finally assessment of
researchers’ experience. The possible answers for these questions included mark “Partially”
which was given in cases when the assessed criterion was not focused in the study, but jet
could not be discarded as negative. The exception is question Q4 as the experience of
researchers was assessed out of the context as only few papers included written evidence on

experience.

Table 16 contains an excerpt of quality assessment form as the table containing all data on

performed quality assessment is given in the Appendix C.

Table 16 - Excerpt of filled quality assessment form

Study / Question Q1 Q2 Q3 Q4 Q5 Q6 s(c)()?e
(Charaf, 2011) Yes No Yes Yes Partially | Partially 3.0
(Alyani and Shirzad, 2011) Yes Yes | Partially Yes Partially | Partially 2.5
(Maharmeh and Unhelkar, 2009) No Yes | Partially Yes Partially Yes 3.0
(Schwieren and Vossen, 2009) No Yes No Partially No No 0.5
(Ranabahu et al., 2011) No No

(Barnawi et al., 2012) No Yes Yes Yes Yes Yes 4.0

2.3.4. Data extraction and monitoring

The data extraction forms used in this research are created by combining the examples and

following the instruction given by Kitchenham and Charters (2007) and Jorgensen (2007). As

70

discussed in chapter 2.1.2.2, the aim of data extraction process is to accurately and without
bias record the appropriate information from the selected papers. Based on the data collection
form template presented in Table 4, the final developed data collection form is adapted for
this particular research. Full list of all filled data extraction forms can be found in Appendix D
on page 265. The example of filled data collection form with extracted data from (Xiong and
Wang, 2010) is presented in Table 17.

Table 17 - Data collection form

Data item Value Notes
Study identifier (Xiong and Wang, 2010)

. A new combined method for UCD and software development and case
Title study

Y. Xiong and A. Wang, “A new combined method for UCD and
software development and case study,” in Information Science and

Publication details Engineering (ICISE), 2010 2nd International Conference on, 2010, pp.

1-4.
Study type New methodology
Name of methodology / Inter-combined Model
approach
Application in multi- Yes Platform
platform development independent

Inter-combined Model aims to shorten the knowledge transfer from
designers to developers. The model has four parts:

- Requirement analysis and user study

- Model establishment and function map specification

- Design and background engine implementation

- System integration and coding

Details on defined /
reported methodology /
approach

Additional resources on Each phase was described in additional details, but not to the level of

methodology / oy activities, tasks, inputs and outputs.

approach description

Report on methodology

/ approach example Mobile Karaoke project.

implementation

Organizational aspects | Researchers stated that Inter-combined Model has positive effect on
on implementation human resource arrangement and cost reduction.

Project management

aspects on Some implications on human resource arrangements.
implementation

The presented data extraction form consists of three parts. The first part aims to extract
general data on each study, the second part directly responds to research questions, and the
third part gives more details on the study quality but only related to data analysis and not

inclusion and exclusion criteria.

2.3.5. Data synthesis

As the research questions in this systematic literature review are straightforward and easy to
answer from of extracted data, the activities of the data synthesis are performed according to

instructions given by Petticrew and Roberts (2005).

71

The data are synthesized into the following groups
e Studies reporting the creation of new methodology or approach
e Studies reporting the methodology or approach usage
e Methodologies/approaches not eligible for multiplatform development

e Methodologies/approaches targeting specific mobile applications

Lists of potential methodologies and approaches that could be used in the subsequent phases
of this research process are given in Table 18 and Table 19. The total of 14 methodologies
and 2 approaches are identified as new while 9 methodologies and 4 approaches are identified
as being used in development of mobile applications. Methodologies are marked as type M

and approaches as type A in the following tables.

Table 18 - Developed methodologies and approaches

QA

Name Type | Study score
Agile Methodology for Mobile Software Development M (Rahimian and Ramsin, 2008) 3.0
Agile Solo M (Nystrom, 2011) 2.0
Agile usability process M (Wolkerstorfer et al., 2008) 2.0
DEAL M (Alyani and Shirzad, 2011) 2.5
Integrated Product Development Process for Mobile Software M (Zeidler et al., 2008) 2.0
Inter-combined Model M (Xiong and Wang, 2010) 3.0
MASAM methodology M (Jeong et al., 2008) 2.5
Methodology for Building Enterprise-Wide Mobile Applications M (Chen, 2004) 4.0
MicroApp visual approach M (Cuccurullo et al., 2011) 2.5
Mobile Application Development Methodology M (Rupnik, 2009) 1.5
. (Abrahamsson et al., 2004) 2.5
Mobile-D M (Abrahamsson et al., 2009) 1.0
New media application prototyping M (Biswas et al., 2006) 3.0
Systems Development Methodology M (Binsaleh and Hassan, 2011) 4.0
ViP (Virtual Platform) M (Um et al., 2005) 4.0
Composite Application Software Development Process Framework A (Maharmeh and Unhelkar, 2009) 3.0
MobilLine A (Marinho et al., 2012) 4.0

Type: M - Methodology, A - Approach

There are several facts that should be pointed out and are related to the identified new
methodologies and approaches. First of all, only one methodology was covered by more than
one study, while all other methodologies are presented in a single identified study. Secondly,
as expected, the methodologies and approaches in the mobile development field are rather
new. Only 4 studies are more than 5 years old, while all the other studies date in the last five
years. The overall study quality assessment score (calculated as explained in chapter 2.3.3),
has the mean value of 2.735 (68.38%) with the standard deviation of 0.903. This can be
interpreted as relatively low study quality with high deviation in quality. But, as the quality
assessment was performed on the studies and not on the reported methodologies, without

additional research it is not possible to order the methodologies according to their quality.

72

On the other hand, as expected, more authors reported the usage of methodology or approach.
Total of 9 methodologies and 4 approaches have been reported as used. The important fact is
that only one methodology (Mobile-D) identified as new was reported to have been used. The
usage of this methodology was reported in five different studies, while all other new

methodologies and approaches were not reported to have been used.

Table 19 - Used methodologies and approaches

QA

Name Type | Study score
Design Science M (Ejlersen et al., 2008) 3.0
. (Shiratuddin and Sarif, 2008) 2.5
Dynamic Channel Model M 1™ Shiratuddin and Sarif, 2009) 2.0
(Korkala and Abrahamsson, 2004) 3.0
Extreme Programming M (Kaariainen et al., 2004) 2.0
(Salo, 2004) 3.0
Kanban A (Bergstrom and Engvall, 2011) 1.5
(Shiratuddin and Sarif, 2008) 2.5
(Shiratuddin and Sarif, 2009) 2.0
Mobile-D M (Korkala and Abrahamsson, 2004) 3.0
(Hedberg and lisakka, 2006) 4.0
(Ihme and Abrahamsson, 2005) 3.5
. . . (Shiratuddin and Sarif, 2008) 2.5
Mobile Engineering (MobE) M ™ Shiratuddin and Sarif, 2009) 2.0
. Shiratuddin and Sarif, 2008 2.5
Mobile RAD M EShiratuddin and Sarif, 2009% 2.0
Rapid Application Development M (Forstner et al., 2005) 2.0
(Su and Scharff, 2010) 2.0
(Pauca and Guy, 2012) 1.0
(Scharff and Verma, 2010) 2.5
Serum M I Scharft, 2010) 25
(Alyani and Shirzad, 2011) 2.5
(Scharft, 2011) 2.0
(Charaf, 2011) 3.0
(Kim, 2008) 2.5
Model Driven Development A E(F)(ilszt;enrdef:?foz’oz()%l)()) ;(5)
(Thompson et al., 2010) 1.0
(Khambati et al., 2008) 2.5
Model Driven Product Lines A (Zakal et al., 2011) 2.0
Software Product Lines A (Rosa and Lucena,Jr., 2011) 2.0
(Nystrom, 2011) 2.0
Test Driven Development A Eﬁli:)r;aztagll.s’sggoegt)al., 2005b) 4]12
(Hedberg and lisakka, 2006) 4.0

Type: M - Methodology, A - Approach

It was hard to predict the number of methodologies that would target specific mobile
platforms, and it turned out that only one methodology (see Table 20) cannot be used in multi-
platform mobile application development as it targets only those platforms which support
Flash technology. Actually, the paper presents a development process for interactive mobile

applications based on Sony Ericssons’s Capuchin project which aimed to bring together the

73

advantages of Java Micro Edition (JME) and Flash Lite. The methodology in particular deals
with specific issues raised by this approach and this marks the stated methodology as not

eligible to be used in this research process.

Table 20 - Methodologies not eligible for multiplatform development

Name Type | Study s?o?e

Development process of Caputchin applications

Targeting platforms supporting Flash only M (Maia et al., 2010) 1.0

Type: M - Methodology, A - Approach

The stated groups are defined in accordance with the research process that has been
performed in this thesis and that is the reason why some methodologies and approaches had to
be separately reported as targeting only specific or specialized mobile applications (Table 21).
These methodologies were also not applicable to be used in this research process, but are

worth mentioning as being developed for mobile applications.

Table 21 — Methodologies/approaches targeting specific mobile applications

Name Type | Study s?o?e
Component Based Model for I[P Multimedia Subsystem M (Barnawi et al., 2012) 40
Targeting IP multimedia subsystems only ” ’
Design and Development Methodology for mobile RFID applications .

Targeting only RFID applications M (Schwieren and Vossen, 2009) 0.5
MMCD Methodology o M | (Saifudin etal., 2011) 1.5
Targeting only m-Learning applications

PEPERS Development Methodology (PDM) M | (Walkerdine et al., 2009) 3.0
Targeting only P2P applications

2TUP - 2 Tracks Unified Process

Targeting only mobile games development M (Gal and Topol, 2005) 3.0
MobiCloud .

Targeting generation of a cloud mobile hybrid applications A (Manjunatha et al., 2010) 23

Type: M - Methodology, A - Approach

2.4. Choosing development methodology

As stated before, the total of 22 development methodologies and 7 development approaches

were identified as eligible to be used in the development process.

As the starting-point assumption of this research is to provide the teams with a possibility of
using native development environments and preferred development methodology, the
research should not be dependent on any special characteristics that a chosen methodology

consists of. In the other words, any identified methodology could be used.

However, the established criterion used to choose development methodology was reported

applicability. Cross-analysis of the results presented in Table 18 and Table 19 shows that

74

Mobile-D was the only methodology specifically created for mobile applications development
that was reported to be used in practice. In addition, we performed a small research to identify
other sources published by the methodology creators and found that this methodology is
thoroughly and in detail defined. The documents that are officially available and that describe
the Mobile-D development methodology are presented in the following table (Table 22).

Table 22 - Documents describing Mobile-D methodology

Year Document

(2005a) P. Abrahamsson, A. Hanhineva, H. Hulkko, J. Jdilinoja, K. Komulainen, M. Korkala, J.
Koskela, P. Kyllonen, and O. Salo, “Agile Development of Embedded Systems: Mobile-D,”
ITEA, Agile Deliverable D.2.3, 2005.

(2006) T. Kynkédnniemi and K. Komulainen, “Agile Documentation in Mobile-D Projects,” 2006.

(2004) O. Salo and J. Koskela, “Mobile-D Glossary, VIT Technical Research Centre of Finland,
Available at: http://agile.vtt.fi/mobile-d.zip.” VTT Technical Research Centre of Finland,
2004.

(2006a) VTT Technical Research Centre of Finland, “Mobile-D Online Presentation (Web

Application),” AGILE Software Technologies Research Programme, 2008. [Online].
Available: http://agile.vtt.fi/mobiled.html. [Accessed: 16-May-2012].

(2004) P. Abrahamsson, A. Hanhineva, H. Hulkko, T. IThme, J. J4élinoja, M. Korkala, J. Koskela, P.
Kyllénen, and O. Salo, “Mobile-D: an agile approach for mobile application development,” in
Companion to the 19th annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, New York, NY, USA, 2004, pp. 174-175.

The obtained papers and other documents that include detailed guidelines are sufficient to
make this methodology fully applicable and usable throughout this research. Additionally, as
the Mobile-D is leaning on, and is strongly connected with, Test Driven Development

approach, this approach will be used in the following phases as well.

To conclude, systematic literature review resulted in the lists of different methodologies
reported to be used, or created specifically for mobile applications development. But, the
analysis on reported applicability showed that Mobile-D with Test Driven Development is the
only newly created methodology already used in practice and that is the reason for choosing

this methodology and approach in the research phases that follow.

2.5. Relevance of the chapter

To recapitulate, first we explored the state of the art in performing a systematic literature
review in the field of software engineering. The three-phase guidelines given by Kitchenham
and Charters (2007) are followed and discussed by adding the recommendations and findings
from other influential authors in the field. The results of the discussion are a contribution to
the knowledge and could be used either by researchers or by PhD students in order to employ

suitable methods and techniques and to lower the biases and increase the quality of review.

75

Following these recommendations, second part of the chapter presented the conduction of
SLR which in the end brings the identification of 22 development methodologies and 7
development approaches that could be used for multi-platform mobile applications
development. Among identified methodologies, our analysis showed that Mobile-D is the
most suitable methodology and it will be used along with Test Driven Development in the rest

of this research process.

Having the methodology and approach chosen, we have finished the first phase of our
research process. Now we move to the second phase with the goal of identifying the artifacts

arising in the methodologically driven development processes for two target platforms.

76

3. METHODOLOGY IMPLEMENTATION

After performing systematic literature review, identifying and choosing the development
methodology to be used in this research, in this chapter we will report in detail the
development process and Mobile-D methodology implementation. As the report of such
process is not a trivial task, first we will introduce the basics of Mobile-D methodology and
accompanying approach called Test Driven Development in order to give an overview of the
performed phases. Additionally, we will define the term ‘artifact’ to clearly denote the point

of view to be taken while reading this chapter.

The mobile application that is developed is named KnowLedge. 1t is a simple social network
application designed to share knowledge among participants grouped in groups of interest.
The application is designed to cover the main functional development requirements and thus
to represent the vast majority of mobile applications. Such requirements in general cover
distinct development concerns, including UI features, local database, device API-s,

connection to web services and 3™ party features.

The report of the development process presented in this chapter focuses on the created
artifacts and their connection to each other along with their connections to the performed
activities. In the Android case we bring a detailed description of the whole process along with
the examples of the artifacts created. Even so, in the Windows Phone case, we decided not to
report the whole process in detail again, but rather to discuss the possibility of reusing the

existing artifacts. We found that many artifacts can be completely or partially reused.

3.1. Mobile-D overview

3.1.1. Introducing Mobile-D

The methodology was first presented by Abrahamsson at al. (2004) and after that it slightly
evolved to the final version which is in detail presented in technical specification which
includes the complete glossary, the description of all phases, stages, tasks and practices along
with templates (Abrahamsson et al., 2005a). Additionally, the VIT Technical Research

Centre of Finland created and published a web application which can be used to easily

77

navigate through methodology phases and to obtain the relevant specification documents
(VTT Technical Research Centre of Finland, 2006a).

3.1.2. Mobile-D process

The short overview of this methodology is already given in the chapter 2.2.2 while describing
methodologies for development of mobile application. A more detailed overview of the

process will be given here in order to create a basis for the implementation that follows.

Mobile-D process (see Figure 13) includes five phases that are executed in partially
incremental order. The aim of the first phase, called Explore, is to prepare the foundation for
future development. The [nitialize phase should describe and prepare all components of the
application as well as to predict possible critical issues of the project. Initialize phase is
usually called a zero iteration (0-iteration) phase as it in addition to project set-up includes the
stages of planning day, working day and release day which are also used in Productionize
phase. The idea of the O-iteration phase is to assure the functionality of the technical
development environment through the implementation of some representative features.
Additionally, in this phase some prototyping can be done in order to decide which

technological solution would be the most appropriate for the rest of the development process.

Explore Initialize E Productionize Stabilize : System Test
' ! and Fix

N iterations

Figure 13 - Mobile-D process

The Productionize and Stabilize phases are executed iteratively in order to develop all other
features of the mobile product. Iterations start with planning day in Productionize phase. The
first activity is post-iteration workshop which aims to enhance the development process to
better fit the needs of the current software development team. The requirements analysis,
iteration planning and acceptance test generation tasks follow and are executed during the
planning day. The working day is based on implementation through test driven development,
pair programming, continuous integration and refactoring. This day ends with the task of
informing the customer on new functionality. Finally, the release day includes the activities of
integration and testing. The Stabilize phase has the goal to finalize the implementation,
including integrating subsystems if needed. As this phase can contain additional programming

and development, the activities are very similar to the activities in the Productionize phase.

78

Only additional activity concerns documentation wrap-up. Iterations should result in a

working piece of functionality at the user level.

Finally, System Test and Fix phase aims to detect if the produced system correctly implements
the customer defined functionality. It also provides the project team feedback on the systems
functionality and the defect information for last fixing iteration of the Mobile-D process. This
last iteration is not obligatory, but when fixing is needed it consists of the same activities as

other implementation iterations already explained.

While observing the whole Mobile-D process we can conclude that it is an agile approach to
mobile application development which is based on combination of eXtreme programming in
terms of practices, Crystal family of methodologies in terms of scalability and Rational
Unified Process in the terms of life-cycle coverage. In paper (Supan et al., 2013) we have
discussed the challenges and issues that accompany the use of this methodology that

companies or small teams should be aware of before introducing it in everyday practice.

3.1.3. Mobile-D artifacts

An artifact may be defined as “an object that has been intentionally made or produced for a
certain purpose” (Hilpinen, 2011) or it may refer to “one of many kinds of tangible byproduct
produced during the development of sofiware” (Parker, 2011). The artifacts that arise in the
process of mobile application development are from special interest in this research and thus
we have adopted the definition of an artifact as “amy piece of software (i.e.

models/descriptions) developed and used during software development and maintenance.”

(Conradi, 2004)

Conceptual model (Figure 14) comprises the Mobile-D process, its activities and tasks that are
performed by utilizing some methods and practices and using some tools resulting in artifacts
as final outputs. Thus, artifacts are results of performed activities, but they are also used as

inputs to perform other activities and tasks.

Performed by
utilizing

! Inputs !

]

[}

Mobile-D Consists of Activities | __ Outputs :
Process and Tasks i
]

]

[}

[}

[}

A

Methods and | Using some

Practices

Figure 14 - Artifacts in Mobile-D

To give an overall picture, Table 23 shows all inputs and outputs that are defined by the

methodology and are connected with the five mentioned phases.

79

Table 23 - Mobile-D inputs and outputs

Explore Initialize Productionize Stabilize System test & fix
Inputs Outputs Inputs Outputs Inputs Outputs Inputs Outputs Inputs Outputs
o . . The The implemented -
The initial Initial . Updated project plan : : : " A tested and fixed
Product : = Updated project plan and L - Implemented implemented | functionality of the | The implemented .
proposal rec?ulrementts rec?ulrementts architecture line plan and archltlecture line functionality functionality of whole project functionality Syster? (the final
ocumen ocumen plan the product -t release)
- : The first version of SIS
. The first version of Software - Related The finalized .
Mobllele_—bD Project plan Project plan | Architecture and Design Sé:%wa(e Alr:;:hlte:_:ttl_re ,i‘:jcceptanrt:et@est development |documentation of the f-‘écceptam;etiest Dcf:cumderéta}mT of
process library Description Hocument. |2" eg;gcnumzﬁtcnp ion ocumentation artifacts product ocumentation ound defects
Organizational | Base process | Base process - - e _— User-defined
process library description description Implemented functionality critical it;:E:ISOpment Developer notes functionality System Test report
- - User interface
Contract Measurement plan Measurement |First version of the product Implemented

Ul —illustrations description is used to Test log

plan backlog functionality create test cases

Product backlog

Initial - .
; - - The updated Initial containing all the - -
regggsrr:::tts L g e requirements document | identified requirements s el
of the project
.) .) Developer notes and Ul —
Project plan A"gy‘;ﬁ”{%g”e Argzgiﬁt”ﬁiﬂ”e illustrations of each Metrics data Updat;t:gkl;;roduct
P P discussed requirement 9
Relevant Product Acceptance tests for each Experience of the :
standards backlog requirement project team Updated project plan

Acceptance test

e Story and task cards

Experience data of the

Story and task cards project team tests

Knowledge of the

SoLEiEpE system requirements

resources and acceptance
Manuals, API
specifications and other| Defect list

support material

Unit tests Release audit checklist

Initial requirements
document

Daily status report

Source: (Supan et al., 2013)
80

The artifacts that we are interested in this research do not concern only the direct results of
performing the activities, but also the specific outputs that are connected with the

development for a specific target platform.

3.1.4. Test driven development

Mobile-D strongly suggests the usage of Test Driven Development which is connected to all
Mobile-D phases. The basics and the state of the art on TDD can be found in (Hammond and
Umphress, 2012). To make the understanding of the following chapters easier, we bring a

quick overview of this development approach.

The practice of test driven development requests the developer to write a failing automated
test case and then to write the production code that will pass the test. In general TDD process

can be summed up into five main steps (Beck, 2002):

Write a new test case.
Run all the test cases and see the new one fail.

Write just enough code to make the test pass.

AW O~

Re-run the test cases and see them all pass.

5. Refactor code to remove duplication.
In Mobile-D, the purpose of TDD is to give the developers confidence that the code they
produce works as well as to guide the design of the code to an easily testable structure.
Additionally, the refactoring practice is also based on TDD to ensure that changes made to the
code did not break any functionality (Abrahamsson et al., 2005a). Finally, being the main
practice of any working day, test driven development is used in all phases except the first

(Explore) phase.

3.1.5. Mobile-D reference

The most important source of information on how to perform Mobile-D methodology for this
research is the already mentioned technical report presented in (Abrahamsson et al., 2005a).
As the document contains detailed information on Mobile-D phases, stages, activities, tasks,
practices, patterns and other relevant concepts, we recommend having a glance at it before
reading the following sections and having it at disposal while reading. All other documents
mentioned in Table 22 are also a relevant source of information and can be used to gain more

comprehensive knowledge on Mobile-D.

The following sections report on the conduction of Mobile-D methodology in creation of a

prototype application for two target platforms.

81

3.2. Explore phase

3.2.1. Targeted users and stakeholders

The application KnowLedge does not have any specific target groups. It is aimed to be
distributed freely through online stores to all interested parties. Additionally, as the nature of
the application was to serve as an experiment in a research process, there are no classical
stakeholders recognized. The only participating individuals in the process were two thesis
supervisors included as process specialists, and the researcher himself who conducted all of

the activities.

3.2.2. Initial requirements

The application is intended to enable users to learn and/or share knowledge in an interactive
and social manner. The basic usage should include the following functional requirements:

e Browsing through the categories to find existing knowledge on a topic

e Placing the request for new explanation/instructions/tutorial

e Creation of new knowledge (either answering unsolved requests or creating a new

topic)

e Sharing the knowledge in groups

e Sharing location data among group members

e Android and Windows Phone native look and feel

e Different user privacy levels

The presented list does not include nonfunctional requirements as nonfunctional requirements

analysis was not performed for this prototype application.

3.2.3. Architecture line description

The goal for internal product quality: an evolutionary prototype.

System context: the application is intended to be a standalone mobile application dependent

on internet connection and on supporting web services. The optional dependency (not being a
part of the core features) is fine or coarse GPS location. Only one interface to the external
entities should be developed in order to join the mobile application with web services. There
is no need for any other interfaces as the system does not include other enterprise,

infrastructure or legacy subsystems.

Technological domain includes the nonfunctional requirements of application being runnable

on any Android 2.2 or newer device. According to currently available data (Android

82

Developers, 2013), more than 95% of all Android devices are covered by this inclusion

criterion.

Architectural risks: variety of android devices and supporting API-s. Different device

capabilities and significant differences in device screen size could become problem in testing

and implementation of user interface.

Using a somewhat old version of API-a (version 8) could result in constraints in application of

suitable user interface and other features.

Architectural skills: sufficient, as the main researcher has been involved in mobile

applications development for Android during the last several years.

Architectural training needs: not necessary.

Software architecture: multilayered software architecture with separated business logic, user

interface and database connectivity layers. The idea was to capture the core architectural
abstractions for the whole system as soon as possible, on the basis of the experience of the
project team, and to do a constant architectural refactoring by using pattern-based core

abstractions.

Software architecture documentation: described software architecture documentation process

supported by developer-level models, sketches and short documents used in the development

process.

Templates for SW architecture and Design Description document: Several specific templates

aligned with UML modeling language were created. The architecture and design were
described at least with UML Class diagrams and ERA models. As the chosen methodology
specifies, some other typical agile tools were also used in order to describe the features and
planned tasks. These tools include UI sketches, product backlog, story and task cards et

cetera. Typical software architecture that was used is multi-layered software architecture.

3.2.4. Project plan

Due to the project’s specific requirements and its background, it did not include any financial
or resources constraints. The basic project plan was defined as a set of phases and stages and
the overall project duration was set to 20 weeks. The team responsible for the conduction of
the project was composed of a researcher and supervisors, although the supervisors’ roles
were very limited and included few activities during the project establishment, mainly quality

checking and final validation.

The initial project plan is given in the following picture including the identified iterations and

graphical representation on Gantt chart.

&3

-
~ 7
T T T T | T | T T T T T T | T T T T T T T

project
: T
Wesk 2T Week 28 Wesk29 WeekD Week 3! Week32 Weekdd Week34 Week33 Week36 Weekd7 Veek3h Week3d VieskdD Weekd! Weskdd Weekds Weekdd WeskdS WeekdS Week 47 Weekdd lee

Name Begndate | ENGORR| by pmp ime gmvo e e BN MG G0N0 O GRAL QUM GDYD GADAD DD DA DU DR MAM WAGD (UG0S 0
¢ © KnowlLedgesDraid TRI2 M2 |4 | N KnoLe dgesDroid

o o Explore T2 N2 P Eqloe
0 [niialze T2 THOH2 PN niaize
9 @ Productionize 012 1013012 F N\ Productionize

< 0 [teration 1- Group management 72042 713112 = Heration 1 - Group management

o 0 Itgrafion 2- Enrolment 8112 8012 P Heration 2 Envolment

o 0 [teration 3- Question manage.. 81312 9112 pr————— Heration 3 - Dueion management

o 0 [terafion 4 - News feed w22 10mn2 oo\ et 4 Newsteed

< o |teration 5- Setiings andHelp 1012142 1030112 Jr— leration § - Settings and Help

Jr—V bl
PN tysem Testée i

10 I
o 0 Siabilize 08112 11
o 0 System Test & Fix ez - A1

Figure 15 - Basic project plan

In this phase it was impossible to determine the iterations that will be necessary in the Fix
phase as those are dependent on the overall quality of the development process, and on some

unpredictable technological issues.

3.2.5. Documentation

The documentation includes two distinct sets of documents. First set considers the documents
related to the project implementation and project management. Aligned with the agile
practices, this set contains the documents that are considered to be the necessary minimum in
every project development process. This group contains:

e [Initial requirements document

e Project plan document

e Software architecture and design description document

e System test plan

e Product backlog

e System test report

The second group of documents includes documents related to the research that is conducted.

This set includes the following documents:
e Identified artifacts and description
e Historical data on every document

e Notes on the development process

The iterative updating approach of producing the documents with preservation of versions

was used. This approach is aligned with the agile practices and is suitable for a project of this

type.

84

3.2.6. Monitoring and measurement

As our project did not deal with resource (human, time, money) management, the monitoring

activities were not in our focus. Thus, the monitoring of the development process was

conducted only by identifying the level of agreement between planed and conducted

activities. Additionally, the duration of the activities was measured and noted for future

comparison with subsequent development processes. The overall goal for this process was not

to exceed the planned duration of the project, but this was not a crucial requirement and it did

not affect the research goals.

Additionally, the quality assurance was conducted by acceptance tests, validation, usage of

coding standards, process validation by supervisors and finally product verification on the

market.

3.2.7. Project plan checklist

Taken from the Mobile-D process library (VIT Technical Research Centre of Finland,

2006b), the following table represents the project plan checklist for the Explore phase.

Table 24 - Project plan checklist - Explore

Project Plan Checklist
Explore
Initial requirements Yes | No | NA
All the initial functional requirements have been included in the project plan X
All the initial non-functional requirements have been included in the project plan X
Schedule & Rhythm
The overall schedule has been included in the project plan X
The planned rhythm (phases and its iterations) have been defined in the project plan X
Resources
Project plan has been updated with the identified interest groups and their members X
Project plan has been updated of the information concerning the selected software X
development tools, terminals, etc.
Project plan has been updated with the identified project team members X
Training
Training needs of project team have been included in the project plan X
Schedule of training has been included in the project plan X
Documentation
The documents to be produced in the project have been included in the project plan X
The life span of each document has been included in the project plan X

Quality Assurance

&5

The quality assurance procedures have been defined in the project plan for each work
product (documentation, code and product) including the actors and schedule

The checklists showed that during the Explore phase, three aspects of Mobile-D methodology
were not applicable (NA) in the context of this mobile project (as explained in previous
chapters). All other elements are marked positively which makes this phase successfully

completed.

3.3. Initialize phase

3.3.1. Environment setup

The software development environment was prepared for development of Android
applications. Although the installation of base tools on the machine (including browser, PDF
viewer, picture viewer etc.) and the installation of specific tools for project management
(GantProject) and reporting tools (Microsoft Office) was performed during the project
preparation and explore phase, the implementation tools (Case Studio, Sprintometer, Visual
Paradigm for UML, SQLite Professional...) and development (Java Development Kit, Eclipse
IDE, Android Development Tools, Android SDK...) had to be installed in this phase.
Additionally, the drivers for testing devices were also downloaded and installed and the
devices were connected to the development environments. The development environment was
tested and simple Android application was produced and deployed on a mobile device.

Finally, the subscription to servers for hosting database and services was obtained and tested.

All mentioned tools were free or obtained through relevant institutional subscription of the

University of Zagreb and/or the University of Alcala.

There was no need for environment setup for the purpose of training or customer

communication.

3.3.2. Project plan and architecture plan

The basics for overall project execution plan remained the same at the end of this phase, but
taking into consideration a more detailed requirements analysis it was possible to define a
more fine grained iterations including the planning, working and release days. The updated
project plan can be seen in Figure 16. As there was no need for personal resources or financial
planning, these tasks were skipped. Additionally, extensive risk planning which usually takes

place in organizational environment was not necessary.

86

> S 7 (B
P,

project

CiWesk27 Week23 Wesk20 Week30 Week1 Weck32 Week33 Week3d Week35 iWeek35 Week37 Week33 Week3 Weck 4D Week 41 Weok 2 Week43 Week 44 Wook45 Week 4B Week47 Week43 Wk
Name Begindate | Enddate| "l)1)" gz zismz gpomz Tmemr akdz skaM2 8MOM2 SPEN2 O£AZ S OMBM2 OMBH2 _DROA2 ADTMZ M0A4M2 ADDM2 M0MSM2 NAMD_AMAAMZ MMM AMDSHD 12
? © KnowLedgesDroid 712112 111912 Knowl edgesD oid
o © Explore 12012 76112 = gl
o o Initialize 7012 71912 P initialize
9 © Productionize 712012 1053012 r N Froductionize
9 © lteration 1- Group management 7120112 w12 [« N iteration 1 - G 10up management
© Planing day 712012 712312 [y Planing day
© Working day 712412 713012 [, wotking day
© Release day 312 3112 L Release day
9 @ leration 2 - Enrolment 812 81012 [+ N teration 2 - Enalment
o Planing day sz 8212 B, Pioning dar
© Working day 813012 8/9/12 [y, wotking day
© Release day 8012 81012 Iease day
9 © Hteration 3 - Question manage... 813(12 91112
© Planing day 81312 81712 aning day
© Working day 812012 a2
© Release day SHOH2 a2
9 © Heration 4 - News feed an2n12 101112 N faration 4 News feed
© Planing day 91212 911812 [, Praning day
© Working day a9z 10912 [— L, Uioding day
© Release day 01012 10112 L) Release day
9 © lerations - Settings and Help 101212 10/30/12 [+ N iteration & - Setiings and Help
© Planing day 101212 1011512 =, Planing 42y
© Working day 10M6M2 10128112 [
© Release day 108012 103012
7 e Stabilze w0812 111512
© Planing day 10312 103142
© Working day 11112 1112
© Documentation wrap-up 11812 111412 ocumentation wrap-u
© Release day MASAZ 111512 L} Relesse day
o © System Test &Fix B2 411942 N system Testa Fix

Figure 16 - Detailed project plan

The planned system architecture is defined on two abstraction levels. First (upper) abstraction
level, as shown in Figure 17, presents the overall system architecture which includes the main
system participants and components. The identified components are mobile application, and
web and database servers, while the infrastructure is based on connectivity (Internet) and GPS
data. Although, the main system functionality is not visible from this diagram, the important

requirement of enabling the users to form the groups is presented here.

KnowLedge Q: &
Architecutre :
)\
GPS

‘Web and
database —3
server %‘3 4.3)
Internet “ u ’

-
User User
< LD
. ’ User
User

Figure 17 - Overall system architecture

The second architectural diagram shows the mobile application detailed architecture as it is
presented in Figure 18. The idea was that the mobile application should, accordingly,
communicate with web service and lean on native (i.e. Android) and 3™ party API-s in order

to deliver the required functionality. It should be based on multi-layered architecture with

87

three distinct and connected layers. The internal cohesion (see (Miller, 2008)) of the presented

modules should be high, and at the same time the external coupling should be kept low.

User Interface

Local Database

AN
Android APIs [
: V
Program Logic Web
3rd party API I N e
e | service < Web
interface service

Mobile Application

Figure 18 - Mobile application architecture

3.3.3. [Initial requirements analysis

The initial requirements analysis task was performed, and the results include product backlog,

the user interface sketches and the generated acceptance tests for each requirement presented

in next chapter.

3.3.4. Product backlog

Product backlog describes application features presented through user stories. Every feature

has an assigned importance level. They are scaled from 1 being not important to 5 being very

important.

Table 25 - Product backlog

Features / stories Importance
When the application is started the news should be displayed. News should include any

F1.1 |unread answers to the user’s questions; news on activities in user’s groups and other 3
information important for current user.

F12 The news presented on the first application screen should be “links” to corresponding 3

"~ |application functionality.

Current user should be able to check all his questions, including those that have been

F2.1 |answered already. Questions should be presented by title and short description. Other 5
details about every question should be presented in new window after user clicks on it.
User should be capable to add a new question. New questions should be defined in

F2.2 |separate windows which should include all important information about the question (title, 5
text and images). The images should be taken by the phone camera.

23 User should be capable to delete his/her own question. The deletion should not be 3

performed without user’s explicit confirmation on deletion action.

88

F2.4

User should be capable to change his/her own question. The process of question changing
should be similar to process of question adding.

F2.5 |User should be capable to add answers to his/her own and others’ questions.
F2.6 |The owner of the question should be able to mark a question as answered.
F2.7 User should be able to apply the filter by root-searching the list of questions available to
" | him.
User should be able to set/change own profile. The profile should include the basic
F3.1 |. . -
information about the user (visible) to other group members.
User should be able to set/change application settings. The settings should include the
F3.2 |possibility to deny further invitations to groups, to set privacy level (of showing or no
emails to other users and of showing or no current location to other users).
F4.1 |User should be able to see the list of all groups currently enrolled to.
F4. User should be able to apply the filter by root-searching the available groups according to
™ | their title and description. All groups should be observed by search.
User should be able to see the details on any group he is enrolled to, including the list of
F4.3 |other members. User should NOT be able to see the list of other members (except their
number) for the groups he is not enrolled to.
F4.4 | User should be able to join any existing group by sending the application to group owner.
User should be able to leave any group he is enrolled to. Other group members should
F4.5 |only be notified on that. Owner cannot leave the group and the group should be deleted
manually (see F5.4).
F5.1 |User should be able to create a new group.
F5.2 User should be able to invite new members to his group by inviting them via in
| application email.
F5.3 | User should be able to invite new members to his group by sending them email.
F5.4 | User should be able to delete any group he owns.
F6.1 User should be able to see all members of the groups he is enrolled to on the map. If group
" | member has disabled this privacy setting, it will be excluded from the view.
F7.1 |User should be able to read a general help about the application usage.

3.3.5. Acceptance tests

The template sheets for acceptance tests proposed by Mobile-D (Abrahamsson et al., 2005a)
were used and the tests are defined for each application requirement defined in the product
backlog. Each acceptance test was to be approved at the end of development process, and it

includes the definition and remarks on the test of final functionality in different contexts. The

following test descriptions are examples of acceptance tests created in this step.

Acceptance test F1.1

Displaying news for current user

When the application is started the news should be displayed. News should include any
unread answers to the user’s questions; news on activities in user’s groups and other

information important for current user.

&9

Context 1

Application executed for the first time or user did not created his profile yet.

Expected output

Title Description

Welcome Welcome to KnowLedge application. To begin click to set up your user profile.
Context 2

User is not member of any group and there are no activities to display.

Expected output

Title Description
No news There are no news to display. Use application menu to join groups and become part
of KnowLedge community.
Context 3
User actively uses the application and has news in several categories.
Expected output
Title Description
New answer Your question %questionTitle has been answered by %firstName.
%questionTitle %description. [up to 50 chars]
New invitation You have invitation by %firstName to join the group %egroupName.
Application accepted Your application to join the group %groupName is accepted.
New member %firstName joint the group %ogroupName.

Linking news

Acceptance test F1.2

The news presented on the first application screen should be “links” to corresponding

application functionality.

Context

News presented on the first screen.

Expected output
News Link
Welcome Users profile page.
No news =
New answer Question %questionTitle page.
%questionTitle Question %questionTitle page.
New invitation Invitation dialog followed by group page.
Application accepted Group %groupName page.
New member New member profile page.

90

Acceptance test F2.1

My questions

Current user should be able to check all his questions, including those that have been
answered already. Questions should be presented by title and short description. Other details
about every question should be presented in new window after user clicks on it.

Context 1
User clicks on “My questions” option.

Expected output

Question title Question description [up to 50 chars]

Title 1 Description 1.

Title 2 This description cannot fit into 50 chars and wi...

Example question What is the name of this bird?

Context 2
User clicks on any question presented in the list.
Expected output

Question Question description [full] Asked by; | Group Answers

title

Title 1 Description contained from text and images. %lfirstName % List of
In single description, text and image could be | %lastName groupName | answers.
presented multiple times.

Title 2 This description cannot fit into 50 chars and %lfirstName % List of
will be shortened in list view but in question %IlastName groupName | answers.
view should be written fully.

Example What is the name of this bird? John Nature -

question Johnson
I sow it yesterday in our park. It looks like
some kind of a parrot.

Acceptance test F7.1

Help
User should be able to read a general help about the application usage.

Context
User clicks on “Help” option.

Expected output:

The new view with textual help appears. The help contains information on all application
features.

91

3.3.6. User interface sketches

In order to align the user requirements with the technological implementation and possibilities
provided by a target platform, user interface sketches were created. These sketches also
enabled the team to get a full picture of the desired functionality. After several iterations, the

sketches were finished. Figure 19 shows an example of the created document.

' |
- o | D-jp 7
"'ul-'ﬁr" Ir:"."f",l - .-"“ﬂ""l;' "G'.'“'u T .v.!\-.l S - P!’? A
i & o, . /
N = P& oa
"r' .lr...)jl.:.f g e EF gL .fJ."l-'--:Ir’.‘a"‘S M ¥ ean,
J
e
" I
y B M v < -
L 0 e Serten — M o ey
= ety e o % lI'IL kl e L

o | 5 g o - e Fa | o]
b PLE P fz b Ghuighiesy — b (= iuJ, ity [l ey e el &
{t (ased] \ (5 4 N

Wi O k-

-I‘I_(‘j‘;:_ll Ll LT i

31 T J
M e T}
4 ey W Chidurelay
< I

et g
anat Jos - 2 T C4 L
Fiwy " kn £

Figure 19 - User interface sketches

3.3.7. Trial Day

The selected feature that was to be implemented in this trial day is F3.1. The idea of
performing trial day was to create functionality that will cover (at least in basic aspects) most
of the architectural design elements and also to create the base for other features. As the
application is user oriented, having information on the current user was a prerequisite for

almost all other features which made this feature a core functionality of the system.

Table 26 - Selected feature for Trial Day

Features / stories Importance

User should be able to set/change own profile. The profile should include the basic

F3.1 information about the user (visible) to other group members.

92

Finally, the goal of this day was also to assure the functionality of the technical development

environment through the implementation of the feature. The following tables present defined

story cards (SC) and task cards (TC). These documents were defined during the planning day,

but were refined during the implementation and documentation wrap-up.

3.3.7.1. Story and task cards

Story card F3.1

Difficulty Effort .
F3.1 Type Before | After | Estim. | Spent Priority | Notes
New H H 4 5 5
Description

User should be able to set/change own profile. The profile should include the basic information about the user
(visible) to other group members.

The basic information about the user should include first name, last name and mail address. The information
should be stored in local database and synchronized with information on web service.

Date

Status

Comment

11.7.2012

Defined

This story is taken to be implemented during the trial day. This will introduce the
execution of tasks concerning preparation and validation activities and thus will
be slightly different than in implementation of other stories.

12.7.2012

Implementing

The implementation is taking longer than expected. There are many decisions that
are to be made but after some initial research is performed. This research include
prototyping and writing the code that is to be discarded, searching and reading the
available sources, looking through finished projects etc.

16.7.2012

Done

The basic architecture of this project is created. The database, business logic, user
interface, web service and helping layers are established. The automatic tests
including unit and integration testing are created.

16.7.2012

Verified

All test, including unit, integration and acceptance testing are performed and
successful.

* This story card, as all other SCs, was defined during the planning day but was refined during the
implementation.

Task card TC-0-1 - Create initial test cases

Difficulty Confi-
TC-0-1 Type Before | After | dence Notes
New 5 5 3
Description

Initial test cases for this functionality should be created.

Date Status Comment
11.7.2012 | Defined
After choosing from several existing testing frameworks, the core functionality
1272012 | Implementing will be tested by native android.test framework, and the robotic testing of
o application usage will be performed by robotium free framework
(code.google.com/p/robotium/).
Some core tests are created. Other tests and robotic integration testing will be
12.7.2012 | Done defined at the end of the stage. The problems experienced include the lack of
knowledge on the platform capabilities.
16.7.2012 | Verified All tests succeeded.

* This task card, as all other TCs, was defined during the planning day but was refined during the
implementation.

93

Task card TC-0-2 - Create database model

T Difficulty Confi- Not
TC-0-2 YP® "Before | After | dence otes

New 1 1 5
Description

The database model for mobile and web service part of the system should be created. The model should be easy as
it is only a trial of whole database model that is to be implemented in later phases.

Date Status Comment
11.7.2012 | Defined
1272012 | Implementing The 'part' of database model important for this story is created for mobile
application and for web service.
1372012 | Done The database conta.ining d@ﬁn.ed ent.ities is up and running on hosting provider.
o The model on mobile application will be deployed through database layer.
16.7.2012 | Verified All tests on mobile application succeeded.

Task card TC-0-3 - Create database layer in mobile app

Difficulty Confi-
TC-0-3 Type Before | After | dence Notes
New 3 3 5
Description

The database layer is a set of classes that are responsible to create and maintain local SQLite database, as well as
to provide the access to the data (i.e. create, read, update or delete) data.

Date Status Comment

11.7.2012 | Defined
The database layer is relatively easy to create but hard to test as it should be

12.7.2012 |Implementing tested in context of other application functionality. This will be done while
implementing task of defining synchronization layer.

1372012 | Done Currently 'layer cqntains bgse class for’ accessing database, plus entity class user
for accessing the information on user in database.

16.7.2012 | Verified All test succeeded.

Task card TC-0-4 - Create database layer in web app

Difficulty Confi-
TC-0-4 Type Before | After | dence Notes
New 5 5 3
Description

The database layer is a set of classes that are responsible to create and maintain local MySQL database, as well as
to provide the access to the data (i.e. create, read, update or delete) data. The classes should be accessible through
exposed web services with corresponding exposed methods.

Date Status Comment
11.7.2012 | Defined
. Using phpMyAdmin, the database is successfully created on MySQL server.

12.72012 | Implementing Addi%ignrflly,yweb service and supporting classeg are being deve}:loged.

The exposed web service along with supporting classes are created and tested
13.7.2012 | Done locally. The security mechanisms are not included as these are not required by

user requirements.
16.7.2012 | Verified Integration and acceptance tests succeeded.

94

Task card TC-0-5 — Implement and connect user interface

T Difficulty Confi- Not
TC-0-5 YP® "Before | After | dence otes

New 2 2 5
Description

Corresponding user interface for entering the data in mobile application should be created. The elements of user
interface, as well as other messages communicated to the user should be language independent, but implemented
in English. The functionality of user interface should through corresponding activity classes be connected to

database layer.

Date Status Comment

11.7.2012 | Defined
As the user interface for profile is not the first screen in the application, auxiliary

. operations were implemented in order to be able to navigate to target page.

12.7.2012 | Implementing activity_profile.xml is being created and should be connected to business logic
layer class ProfileActivity.java.

1372012 |Done The user interface is cregted ;nd is language independent, screen size
independent and orientation independent.

16.7.2012 | Verified All tests including acceptance test succeeded.

Task card TC-0-6 — Add synchronization layer

Difficulty Confi-
TC-0-6 Type Before | After | dence Notes
New 3 5 4
Description

The data stored in local database should be automatically synchronized to web service.

Date Status Comment
11.7.2012 | Defined
The classes and behavior necessary for data synchronization between application
13.7.2012 |Implementing and web service are created. KnowledgeService.java and JsonAdapter.java are
created and ProfileActivity.java is seriously improved.
The data cannot be stored in local database unless the user is created by web
13.7.2012 |Done service which returns the user id.
After the user is created, it can be only updated.
16.7.2012 | Verified All tests succeeded.

Task card TC-0-7 — Finalize tests

T Difficulty Confi- Not
TC-0-7 ype Before | After | dence otes

Enhance 5 5 3
Description

All created functionality should be tested thoroughly; the test for core and robotized testing should be updated and
saved. If necessary, code should be updated and fixed.

Date Status Comment
11.7.2012 | Defined
Some tests concerning core functionality were defined in previous task. Now
1372012 |Implementing other tests dependen.t on techpological spc?ciﬁcatilons should.be .deﬁ.ned, and
o finally the test defining robotized integration testing of application is to be
created.
16.7.2012 | Done 17 fully automatic tests are created. Code is refactored and fixed. More than 100

95

assertions in included in 16 unit (more than 85) and 1 integration (more than 15)

tests.

16.7.2012

Verified

All tests succeeded.

Task card TC-0-8 — Optimize and refactor

Difficulty Confi-
TC-0-8 Type Before | After | dence Notes
Enhance 1 1 5
Description

Created code should be optimized, commented and refactored. All tests should execute successfully at the end.

Date Status Comment
11.7.2012 | Defined
Considerable efforts were made during the implementation, so there was no much
16.7.2012 | Implementing work to do during the refactoring task. Instead, the classes and methods are fully
commented.
16.7.2012 | Done
16.7.2012 | Verified All tests succeeded.

3.3.7.2. Data model

The requirements analysis showed that this trial day concerns only the functionality regarding

one entity in data model. User entity was defined as follows.

-~

LUSars
i id integer(11)
D firstName wvarchar(255)
D lastMame varchar(255)
D email varchar(255)
D description varchar(255))]
e _

Figure 20 - Entity users (trial day)

The same data model was deployed on mobile database and on web service database hosted

online.

3.3.7.3. Created web service

Exposed web service covering the functionality of managing the system users is exposed and

can be accessed by the URL: http://knowledge.uphero.com/users.php. The frontend part of the

web application is accessible to the mobile application through several methods that are

described in Table 27. Other functionality is defined in the backend and cannot be accessed

96

http://knowledge.uphero.com/users.php

directly, but still plays a crucial role in the functionality of the web service. The model of the

whole web application (with web service) is presented in the next chapter.

Table 27 - Web service (users.php) specification

http://knowledge.uphero.com/users.php

method json* response** description

create firstName responseld Creates a new user in database. Compulsory data
lastName responseText | in post include method name and the data about
email [newUserld] new user packed into JSON format.

[description] Web service will return JSON formatted string. If
everything was OK the string will contain
additional data on newUserld.

update id responseld Updates an existing user in the database.
firstName responseText | Compulsory data in post include method name
lastName and the updated data about user packed into
email JSON format.

[description] Web service returns JSON formatted string
containing the operation result id and text.

delete id responseld Deletes and existing user from the database.
responseText | Compulsory data in post include method name

and user id.
Web service returns JSON formatted string
containing the operation result id and text.

* json — parameter name. Should contain all stated elements in JSON format.
** response — String response from web service. Contains all stated attributes in JSON format.

3.3.7.4. Created class models

As the feature selected for the trial day spans vertically through the whole system architecture,

the class model designed and created during this phase is not so simple. The model contains

classes for database connectivity layer, business logic layer, user interface layer plus some

helper classes to connect to web service. The model of the mobile application is presented in

Figure 21.

97

http://knowledge.uphero.com/users.php

ProfileActivity
-loadDatal)}
NewsActivity -setEditable(value : bool)
-savellserData()
initializes |+acceptMotification|message : stri...
1

User
+User(id : int, firstName : string, lastMame : strin...
+getCumrentUser() : User
#refreshCumentUser(}
is connected to inst. of currentlUser +getld() : integer
1 |+setld(id : integer) : void
+getFirstName() : string
+setFirstNamei(firstName : string) : void
+getlastName() : string
+setlasthame(lasthame : string) : void
+getEmail() : string
+setEmail(email : string) : void
SavelUserAsyncTask is connected to inst. of currentUser 4 +getDescription() : string
extends #doln Background(params : Object) : string < +setDescription(description : string) : void
#HonPostExecute(result : String }
’1 Uses 0.1

¢ 1

N

AsyncTask
+execute(params : Object)

|
|
|
|
|
|
UsEs | depends on
|
|
|
|
i
|
i

0.*

uses

reads data from
1

JsonAdapter connects to
etls ting(json : JSONObject) : stri

1

Users Adapter
-UsersAdapter()
+getinstance() : Users Adapter
+getCumentUser|) : User
0.1 +insertUser(user : User) : long

KnowladgeSarvices DBHelper +updateUser{user: User): boolean
+KnowledgeServices() +DBHelper(name : string, version : int} +deleteUser(userld : int) : boolean
+users(method : string, jsonData : string) : string +onCreate(db : SQLiteDatabase) 0.* uses 1 -ﬂmeuR&_ad[}
+onUpgrate{db : SOLiteDatabase, cldve. [4@#®|-openTaVirite()
+setBaseContext(context : Context) -close()

Figure 21 - Class diagram (mobile app - trial day)

Class NewsActivity was used only to provide the functionality of opening the target
ProfileActivity class and thus is not defined at this phase. Additionally, some classes extend
native Android classes, but these are not presented unless it was necessary in order to
understand the navigability through the model (e.g. AsyncTask provides method execute
which was called by ProfileActivity, as the method in SaveUserAsyncTask are protected and
thus inaccessible from mentioned ProfileActivity class). The private attributes are hidden in
the diagram as they are irrelevant in this report. Finally, many classes use native Android
classes which are not shown in this diagram in order to make it clean and simple and direct

the focus only on the architectural design.

On the other hand, as presented in Figure 22, web application comprises of one exposed web
service (users.php) which is backed up by several classes providing the means of accessing

and storing the data and loading the necessary configuration.

98

users.php (web service) loadIni. php ini.php
+create(json : sting) : string +parselniFile() File containes the
4update(json : string} : string messages the weh service

+delete(json : string) : string 0 includes 1 | _ _rr._\a_d_s_ _ _|should return according to
-reply(msgld : int, jsonData : string) context.
1
uses
0.*
Adapts Database

+UserAdapter(} +Database()
+createUser(firstName, lastName, email, description) : int uses -dbConnect(}
[+updateUser(id, firstMame, lasthName, email, description) : int ’ +execute_query(query : string) | Result
+deleteUser(id) : int

Figure 22 - Class diagram (web service - trial day)

3.3.7.5. Implementation

During the implementation tasks, the classes presented in the above figures were implemented
in Java and PHP. According to the Mobile-D methodology, very strict coding standards were
applied, and at the end of the implementation process, the code was commented. An example
of a part of a commented class is shown in Code 2. As it can be seen, the comments include
the description and the tags defining the author, date, connecting task and other elements

usual for code comments (such as see also, code etc.).

package foi.uah.knowledge.entities;
import foi.uah.knowledge.database.UsersAdapter;

/**
* Class represents an User entity. When ever in application the information about
* the user should be used it should be provided by this class. As the application

* can only have one user, the behavior of this class is some-what specific.
*

* @author Zlatko

* @date 13.7.2012.

* @task TC-0-2

*/

public class User {
private static User currentUser;
private int id;

private String firstName = "";
private String lastName = "";
private String email = "";
private String description = "";
/**

* Constructor which creates new user according to given parameters.
*

* @param id User id. The value should be obtained from web service.
* @param firstName First name. Compulsory.

* @param lastName Last name. Compulsory.

* @param email Email address. Compulsory.

* @param description An optional description of user to be created.
*

99

* @author Zlatko
* @date 13.7.2012.
* @task TC-0-2
* @changes
*/
public User(int id, String firstName, String lastName, String email, String
description)
{

setId(id);
setFirstName(firstName);
setLastName(lastName);
setEmail(email);
setDescription(description);

*

Static method returns object with information on current user written in
database. If data in database is changed, the information on current user
will not change automatically, and thus the

refreshCurrentUser method should be used.

@see #refreshCurrentUser()
@return An object with information on current user, if such exist in
database.

@author Zlatko
@date 13.7.2012.
@task TC-2-2
@changes

¥ X K X K X X X X X X ¥ ¥ ¥

*/
public static User getCurrentUser()

{

if (currentUser == null)

{

UsersAdapter ua = UsersAdapter.getInstance();
currentUser = ua.getCurrentUser();

}

return currentUser;

*

Static method which refreshes the current object with the latest data on
user in database. This method should be called whenever the database
information is changed.

@author Zlatko
@date 13.7.2012.
@task TC-0-2
@changes

* X K K X X ¥ X X

*/

public static void refreshCurrentUser()

{
currentUser = null;
UsersAdapter ua = UsersAdapter.getInstance();
currentUser = ua.getCurrentUser();

Code 2 - Commented class

100

Additionally, the best practices of object oriented programming (abstraction, inheritance,
encapsulation, polymorphism, error handling etc.) were used (Mitchell, 2003), which resulted
in a high internal cohesion (Miller, 2008) and at the same time the external coupling was kept
low. Although the trial day resulted in a relatively small number of classes, the same

principles were applied during the whole development process.

3.3.7.6. Testing

As the Mobile-D methodology suggests (Abrahamsson et al., 2005a), the whole development
process was based on Test Driven Development (TDD) (Hammond and Umphress, 2012). As
it is visible from the defined tasks, the working day began with the activities of writing the
unit tests for core functionality. As some of the technological aspects were not familiar to the
implementer of this task (i.e. me, a PhD student), the task resulted with only a few basic unit

tests regarding already familiar and known classes.

Other unit tests were written during the development and the TC-0-7 (Finalize tests) task. The
whole process resulted in 16 unit tests which completely automatically asserted more than 85

different conditions.

The integration testing was also automatized by defining the Robotium test (Reda, 2012)
which robotically runs the application on mobile phone or on simulator and performs all
possible actions including creation of the user, inaccurate attempts of updating the user,
accurate updating tests and similar. The integration testing thus included the tests of some
features that were impossible to test by unit testing (like asynchronous behavior of some

classes).

In the end, and after the refactoring, all 17 tests (16 unit tests + one integration test) were

successfully run, and more than 100 assertions gave expected results as shown in Figure 23.

As it can be seen from the test results, only two tests were time consuming. The web service
test took more than 10 seconds as it called the web service more than 15 times. Additionally,
the automated integration robotic test took more than 40 seconds, as it tested the application
as a user would. These results were expected and also confirmed that there were no other

time-heavy objects.

101

Finished after 56,853 seconds

Runs: 17/17 B Errors: 0 B Failures: 0

4 T_;| emulator-5554 [Runner: JUnit 3] (56,677 s)
4 |Fi) foiuah.knowledge test. ProfileActivityRobotiumTest (42,496 s)|
EF_'—_| testRobotium_UserProfile (42,496 <)
4 i foiuahknowledge.test.database UsersAdapterTest (1,53 5)
E,'E'—_| testConstructorSingleton (0,461 <)
el testDeletelser (0,377 s)
EE' testInsertUser (0,400 =)
v testUpdatelser (0,200 <)
EE' testAndroidTestCaseSetupProperly (0,100 5]
a4 ?_;| foi.uah.knowledge.test.entities.5avellserAsyncTaskTest (0,050 s
i testAndroidTestCaseSetupProper , 5.
=] testAndroidTestCases pProperly (0,050 s)
4 T_:| foi.uah.knowledge.test.entities.UserTest (0,426 s)
BE' testConstructer (0,101 =)
EE testCurrentUser (0,075 =)
E] testGettersAndSetters (0,100 s)
EF_'—_| testManylnstances (0,075 s)
| testAndroid T estCasebetupProper| X 3
I=] testAndroidTestCaseS pProperly (0,075 5]
4 Fi) foiuah.knowledge test.lib.JsonAdapterTest (0,250 5)
EE' testGetlsonArrayString (0,075 5)
¢l testAndroidTestCaseSetupProperly (0,175 =)
4 i foiuahknowledge.test.services.KnowledgeServicesTest (11,917 5)
EE' testUserCreate (4,745 s)
BE' testUserUpdate (7,072 5)
i testAndroidTestCaseSetupProper ., 5.
=] testAndroidTestCases pProperly (0,100 s)

Figure 23 - Test results (trial day)

Finally, all tests were designed by accepting the Mobile-D recommendations (Abrahamsson et
al., 2005a) on performing the test driven development. Additionally the tests were designed in
such a manner that the order of execution of tests was not important, the tests were not
dependent on any existing system configuration and revert original data in local database and

thus did not interfere with manual testing performed during the development.

3.3.7.7. Application screenshots

Dl 8 3:03em Gl @ 3:05em Gl B 3:05em D8 3:130m
First Name First Name First Name
[] Zlatko Zlatko
Last Name Last Name Last Name
Stapic Stapic
E-mail E-mail E-mail

zlatko.stapic@foi.hr zlatko.stapic@foi.hr

Description Description

Please create your profile! I like to share knowledge!l

‘ Save Cancel

Description

W' User created successfullyl

Figure 24 - Application screenshots (trial day)

102

Above figure shows several screenshots taken at the end of the trial day. These screenshots
show only one use case which was implemented during this phase and do not cover the whole
implemented functionality. The whole functionality was successfully tested during the

execution of the corresponding acceptance test.

3.3.7.8. Project plan checklist

At the end of this stage there was no need for performing the usual activities of the release
day. All tests including the acceptance test were performed successfully and the
documentation including the artifacts of everything that was done was wrapped up. Finally in
order to check if everything was done correctly, the requirements defined by the Mobile-D
and stated in the check list (see Table 28) were checked.

Table 28 - Project plan checklist — 0 Iteration

0 Iteration Yes | No | NA
Requirements

The project plan has been updated concerning the selected trial requirements for 0 %

iteration

The project plan has been updated concerning the realization of the selected trial X

requirements for the O iteration

Architecture line definition has been included in the project plan X

3.4. Productionize

3.4.1. Firstiteration

The selected features to be implemented in this iteration are presented in Table 29 and mainly
concern the manipulation of groups owned by user. The reason for having these features
selected is that the functionality regarding group management set up the basis for other
functionalities. As stated in the project backlog, the importance of F5.1 and F4.1 is very high,
which also justifies the decision. Although the F5.3 is currently not important, the email
invitations are easy to implement and tightly connected with F5.2 and thus this easy task is
included in this iteration as well. As it can be seen in the following table, the order of the

execution was slightly changed.

103

Table 29 - Selected features for first iteration

Features / stories Importance
F5.1 | User should be able to create a new group. 5
F4.1 | User should be able to see the list of all groups currently enrolled to. 5
F5.4 | User should be able to delete any group he owns. 2
F5.0 User. shguld be gble to invite new members to his group by inviting them via in)
application email.
F5.3 | User should be able to invite new members to his group by sending them email. 1

3.4.1.1. Story cards and task cards
Story card F5.1

Difficulty Effort .
F5.1 Type Before | After | Estim. | Spent Priority | Notes
New L M 4 5 5

Description

User should be able to create a new group.
The basic information about the group should include name, description and creator. The information should be
stored in web database and downloaded locally when necessary through web service.

Date Status Comment
This functionality is prerequisite for most of other functionality of this iteration
17.7.2012 | Defined as well as of following iterations. It should be implemented by calling appropriate

web service and displaying the results.

The approach established during the trial day is taken in implementation of this
19.7.2012 |Implementing feature. The only difference is that groups should not be stored in local database
after created and confirmed from the web service.

23.7.2012 |Done The functionality is created.

2672012 | Enhanced The refactor}ng was.made and the code is significantly improved and made
simple but sill functional.

27.7.2012 | Verified All tests succeeded.

Story card F4.1

Difficulty Effort]
F4.1 Type Before | After | Estim. | Spent Priority | Notes
New L M 4 5 5 Partial implementation!

Description

User should be able to see the list of all groups currently enrolled to.

The basic information about the group should include name, description and number of members. The information
should be stored in web database and downloaded locally when necessary through web service. This functionality
will be partially implemented in this phase as currently there is no possibility to see invitations and to accept them
and thus user will not be enrolled in any group except own groups.

Date Status Comment
This functionality is prerequisite for most of other functionality of this iteration
17.7.2012 | Defined as well as of following iterations. It should be implemented by calling appropriate

web service and displaying the results.

The implementation of web role is focused in this task as it performs the most

19.7.2012 | Implementing important logic. The mobile application will receive and display the data.

It took us little bit longer than expected to finish this task. The web service role
24.7.2012 | Done was hard to debug. This problem should not be neglected while preparing the
implementation of other requirements.

The refactoring was made and the code is significantly improved and made

26.7.2012 | Enhanced simple but sill functional.

104

27.7.2012 | Verified All tests succeeded.

Story card F5.4

Difficulty Effort L.
F5.4 Type Before | After | Estim. | Spent Priority | Notes
New L L 3 4 2

Description

User should be able to delete any group he owns.
The group will not be deleted from the web service, but it will be rather marked as deleted and will stay in
database for analytical purposes.

Date Status Comment

Appropriate web service should be called and the data in database should be
17.72012 | Defined marked as deleted but kept for analytical purposes.

The mobile side of the system should do the majority of work including the

19.7.2012 | Implementing communication with the user and preparation of data to be sent to web service.

The user is asked to confirm the action and after the parameters are sent to web

25.7.2012 Done service which logically marks the group as deleted.

2672012 | Enhanced The refactor}ng was.made and the code is significantly improved and made
simple but sill functional.

27.7.2012 | Verified All tests succeeded.

Story card F5.2

Difficulty Effort]
F5.2 Type Before | After | Estim. | Spent Priority | Notes
New L M 3 4 2

Description

User should be able to invite new members to his group by inviting them via in application email.
In-application emails should be implemented through web database. This means that the email should be “sent”
by marking the information in database, and “read” after the client application will ask for news feed. This news
should include “emails”.

Date Status Comment

1772012 |Defined Appropr.late web service should be called and the email should marked in
appropriate database entity.

The mobile side of the system should do the majority of work including the

19.7.2012 | Implementing communication with the user and preparation of data to be sent to web service.

26.7.2012 |Done The data collected from Ul and local objects is sent to web service.

26.7.2012 | Enhanced ”Fhe refactor}ng was.made and the code is significantly improved and made
simple but sill functional.

27.7.2012 | Verified All tests succeeded.

Story card F5.3

Difficulty Effort et
F5.3 Type Before | After | Estim. | Spent Priority | Notes
New L 1 2 2 1

Description

User should be able to invite new members to his group by sending them email.

The simple email should be sent from the web server and it should contain the information that there is new
invitation to group. In the application, the user should see the invitation after contacting the web service for news
again as described in F5.2.

105

Date Status Comment

1772012 | Defined The eme'ul should be sent automatically after calling the web service in F5.2 if
appropriate parameter is present.

19.7.2012 | Implementing The 1mplem§ntat10n of this r§qu1rement will be realized through the
implementation of F5.2 requirement.
The necessary changes in existing functionality of mobile and web service are

26.7.2012 |Done created. Web service is enhanced with the functionality of preparing and sending
the e-mail messages.

2672012 | Enhanced The refactor}ng was.made and the code is significantly improved and made
simple but sill functional.

27.7.2012 | Verified All tests succeeded.

By analyzing the aforementioned user stories, we concluded that the best approach is to

combine all five of them into a single sequence of tasks. This decision was made as the

functionality described in these user stories is strongly interconnected and interdependent.

The tasks identified are described by the following task cards.

Task card TC-1-1 - Create initial test cases

Difficulty Confi-
TC-1-1 Type Before | After | dence Notes
New 5 5 3
Description

Initial test cases for these functionalities should be created.

Date Status Comment
17.7.2012 | Defined The agreed and tried android.test and robotium framework should be used.
The analysis showed that there are not many new classes in mobile application
19.7.2012 |Implementing suitable for unit testing, but on the other hand the test for web services should be
prepared.
The unit tests concerning the functionality of mobile application classes and
19.7.2012 |Done .o, . .
synchronous communication with web services are created.
27.7.2012 | Verified The tests are finalized and successful in run.

Task card TC-1-2 — Update database model

Difficulty Confi-
TC-1-2 Type I pefore| After | dence | °t€S
Enhance 1 1 5
Description

Web application database model should be updated. It should be an easy task as there will probably be no changes
on existing model. On the other hand, several more entities should be created in order to cover all functionality for

this iteration.

Date Status Comment
17.7.2012 | Defined
19.7.2012 | Implementing It is not necessary to alter existing model.
New model includes entities users, groups and enrolments and is capable of
20.7.2012 | Done storing data on users and on active and inactive (canceled) groups and
enrolments.
27.7.2012 | Verified All tests succeeded and the model is suitable for current requirements.

106

Task card TC-1-3 — Implement server side functionality

Difficulty Confi-
TC-1-3 Type Before | After | dence Notes
New 4 4 4
Description

Web service leaning on the upgraded data model should be written. It should include exposed methods as well as
backend supporting functionality. The approach created during the trial day should be used.

Date Status Comment
17.7.2012 | Defined
. All features in this iteration are counting on web service support. Thus the

20.7.2012 | Implementing planned services should be carefully imilemented and erroi3 IEree.

This task took longer than expected to be finished. The majority of functionality
2372012 |Done is supported by web services and the development of those is time consuming and

o hard to debug. In any case the planned services are developed and ready for

usage.

27.7.2012 | Verified All tests succeeded.

Task card TC-1-4 — Implement mobile app functionality

Difficulty Confi-
TC-14 Type Before | After | dence Notes
New 4 5 4
Description

Using the basics of infrastructure created during the trial day, new classes should be developed and connected to
display the data in appropriate user interface (see Ul sketches). The information should be downloaded from the
web services in real time.

Date Status Comment
17.7.2012 | Defined
There are several new concepts which are not tried (prototyped) but are to be
23.7.2012 |Implementing developed. These concepts include the usage of custom dialogs, the handling of
user actions and hardware keys etc.
This task also took longer than expected. The main reason is the development of
26.7.2012 |Done not trialed concepts and little bit complicated infrastructure that resulted in
asynchronous communication. This source should be refactored.
The source is heavily refactored. The service layer is made free of business logic
26.7.2012 | Enhanced and is now only used for communication with web services. This reduced the
number of classes in service layer.
27.7.2012 | Verified All tests succeeded.

Task card TC-1-5 — Finalize tests

Difficulty Confi-
TC-1-5 Type Before | After | dence Notes
Enhance 5 5 3
Description

All created functionality should be tested thoroughly; the test for core and robotized testing should be updated and
saved. If necessary, code should be updated and fixed.

Date Status Comment

17.7.2012 | Defined The agreed and tried android.test and robotium framework should be used.
. This task should include the preparation of integration tests. During the test

26.7.2012 | Implementing design is concluded that isolation of test cases could be the problem.

26.7.2012 |Done All integration tests are created in one sequence. Although this is not good

107

approach, the execution of isolated test cases proved to be very time consuming
as every test case has to prepare the context from scratch.

27.7.2012

Verified

All tests succeeded.

Task card TC-1-6 — Optimize and refactor

TC-1-6

Type

Difficulty Confi-

Before

After | dence Notes

Enhance

1

2 5

Description

Created code should be optimized, commented and refactored. All tests should execute successfully at the end.

Date Status Comment
17.7.2012 | Defined
The asynchronous nature of the communication with web service and wrong
2672012 | Implementing infra'structure dgsign madfe the s§rvic§ layer very ’heavy. Current clas's-per- ’
service-call environment is dealing with preparation of data and business logic.
This is not good.
The preparation of data and business logic was moved to the real business logic
27.7.2012 |Done layer which made the service layer very simple. This resulted in several new
classes which ensure proper communication between these two layers.
27.7.2012 | Verified All tests succeeded.

3.4.1.2. Database model

Updated database model was initially created during the planning day, and slightly updated

during the working days. The final version satisfying all requirements of this phase can be

seen in the following picture. Only the database model representing server side functionality

was updated.

f e G q::n) I
If i Intager{11) E name vm:::{ZSS]
[J firstName varchar(255)] descriplin varcher2s)
D lasihame vachar(285) | creates Ghawmm: i
email varchar(255) [cmstonete st
[3] description varchar(255) [)]] deleonDate ~daie N
C enrolments has members
enrolled into <, groupld intager(11)
S userld intager(11)
[enrclled bit
O 7] invitationDate date bo— |
[emaiiDate date N|
[] enroimeniStart ~ date N
[] enroimentFinish ~ date IN

Figure 25 - Data model (iteration 1)

The important information was stored in groups and enrolments entities. These entities are

designed to store information on currently active, but also on inactive groups and enrolments.

108

After the group is created, the owner is automatically enrolled into a group (enrolled = 1 and
enrolmentStart = currentDate). After the owner invites another member, a new record is
added to the enrolments table, but the information keeping attribute this time is invitationDate
which is set to currentDate, and other attributes await for user to accept (or reject) the
invitation. After the group is deleted, its deletionDate is set up and for all members of that
group, enrollment is canceled by setting the enrolled to 0 and enrolmentFinish to currentDate.
Thus, the database model ensures proper navigability and information preservation and can be

considered as valid.

3.4.1.3. Created web services
The following tables describe created web services, their methods and corresponding
parameters sent and received in JSON format. Some of the listed web services are still not

used and thus not included in any test.

Table 30 - Web service (groups.php) specification

http://knowledge.uphero.com/groups.php

method json response description
create name responseld Creates a new group in database. The owner of the
description responseText group is automatically enrolled in the new group.
ownerld [newGroupld] If everything was OK the return string will contain
additional data on newGroupld.
update id responseld Updates an existing group in the database. Only name
name responseText and description are allowed to be changed.
description Web service returns usual response.
delete id responseld Logically deletes existing group from the database by
responseText setting the deletionDate value. All memberships are
automatically canceled by setting the enrolled = 0 and
enrolmentFinished valued.
Web service returns usual response.
my ownerld responseld Returns JSON string containing an array of groups
responseText owned by given user. The information contains a
[groups] number of members in every group.

Table 31 - Web service (enrolments.php) specification

http://knowledge.uphero.com/enrolments.php

method json* response** description
inviteUser groupld responseld Adds new enrolment invitation in database. Optional
inviterld responseText data includes parameter sendEmail that defines if
email normal email invitation should be sent or not. Only
[sendEmail] invitationDate and optionally emailDate attributes are
defined.
Web service returns usual response.
enroll groupld responseld Enrolls user in a group. In this iteration the method is

109

http://knowledge.uphero.com/groups.php
http://knowledge.uphero.com/enrolments.php

userld responseText not used, thus it is not jet tested by service or
integration tests.
Web service returns usual response.
cancel groupld responseld Cancels the user’s enrolment by setting the enrolled to
userld responseText false and noting down the withdraw date. This service

is not jet used and thus is not tested.
Web service returns usual response.

3.4.1.4. Created class models

During the planning day, the technology independent class model was created, but during the

working days it was slightly improved to fit the target platform. The second version of the

class model included some technology dependent classes like AsyncTask which are specific

for Android platform. In any case, the specific focus was given so the class model can be re-

used during the development of application for other target platforms.

DBHelper

+DB Helper(name : string, version :
+onCreate(db : SQLileDatabase)
+onUpgrate(db : SQLiteDatabase,.
+setBaseContext{context : Contest)
+gelBaseContext() : Context

l-clearinput : OnClickListener

[

uses

f

Users Adapter

[Usersadapter()
|+aetinstance() : UsersAdapter
+getCunentUser() : User
+insertUser(user : User) : lang
+updateUser(user: User): boolean
+deleteUser{userld ! int): boolean
openToRead()

openTowiritel)

[-close(}

raads data from

executesTaskBy

|-saveNewGroupNofiication : AsyncTaskCallback

t : OnClickListener e

+onCreate(sis : Bundie}

+onCreateCy

#confimActionftitie : string, questi..
———————— [>{#closeDialog() : OnClickListener

leads current user

‘

+onOpti

: Menu)

+onBackPressed(}
-saveNewGroup(} A

+Knowle dgeServices()

+callWebService(service ! string, method : string, jsonDat..

0.1

connect to

extends|

implements

+execute{params : Object)

(S ey 2o V8 M
-deleteGroup : OnClickListener
leaveGroup : OnClickListener

exiends

allback

-acceptMyGroups : AsyncTaskCalback
7 iplemaies invitati tfication : AsyncTaskCallback
H +onCreatefsis : Bundle) 1
' +onCreateOptionshenu(menu : Menu)
' .
.
|

manages

+onOpti
+onCreateContextMenu(menu, v, menulnfo)
+onC: item :

)
AsyncTaskCallback +markAsDirty(]

+acceptotfication{result : string, ..

-loadMyGroups()

+invitebember(id : int) uses

sendsResultTo
1
= ¢ L

|+getCurrentUser() : User
+refreshCumentUser()
+getld(} - integer
+setldlid : integer) : void
+gelFirsihama) : string

+getLasiName(}: string
+getEmail(} : string
+setEmailemail : string) : void
+getDescription() : sting

+User(id : int, firstName : string, lastName : sirin.

+setFirstNamel(firsthlame : string) : void

+setastiNameflastName : siring) : void

+setDescription(description : sting) : void

!
1 | Group
ServiceAsyncTask \ executesTasksBy +Grouplid : int, name : string, description :
i#dolnBack : Object}: Objact T +getld() : int
MW‘:‘,“’: R ! +setld(id : int) : void
: Object]} : void I “
i +getNamey): string
1 ! intiai +setName{name : string): void
I ces +getDescription() : string
! +setDescription{description : string) : void
implements | +getOwnerld() : int
| [Cotiaizes T +setOwnerld{ownerld : int) : void
I +getMembers() : int
} +setMem bers(members : int) | veid
! .
TasksB; ! 1 o
-saveUserD: tion : AsyncTaskGallback
.| ©onCreate(sis : Bundie)
¥ |+onCreateOptionshenulment : Menu). JsonAdapter returns List o
1 menages current user - S = prs
Z 1
[HoadDatal} etlse tring(json : JSONObject) : siri
|-setEditable(value : bool) *string): Lis P 1
|-saveUserData() uses 1

Figure 26 - Mobile app class model (iteration 1)

Although a little complicated, the architecture of the mobile application was still flexible and

modular. As it can be seen, activity classes are the most important part of the functionality.

Those classes execute tasks by ServiceAsyncTask class which asynchronously communicates

with web service, and sends the result through AsyncTaskCallback interface that is

implemented by the caller.

110

The new entity added in this iteration was Group entity. This class is simple as it is just used

to encapsulate the data download from the web service.

JsonAdapter is a static class providing helpful functionality when working with JSON objects
and strings, and finally, the only class that deals with local database is class User which

provides information on the current user.

loadini. php ini.php functions.php
+parselniFile(} File containes the +currentDate() : DateTime
d messages the web service +writeLog{data, putTimeStamp)
| _ _rﬁi _s_ _ _|should return according to +send_email{groupld, email, userld, inviterld)
context.
IERE 1111
includes
includes includes includes
included
<> includes <> <> é
users.php (web service) php({web service) groups.php (web service)
+create(json : sting) : string +inviteUser(json : string) : string +create(json : sting) : string
+update(json : string) : string +enml(json : string) : string +update(json : string) : string
+delete(json : string) : sting +cancel(json : sting) : string +delete(json : string) : string
-rephy(msgld : int, jsonData : string) -rephy(msgld : int, jsonData : string) +my(json : string) : string
-replyimsgld : int, jsonData @ string)

1 1 1 1 1
uses uses
uses uses uses

0.*

0 o~ 0. 0. GroupAdapter
UserAdapter EnrolmentAdapter +GroupAdapter() » _
+UserAd:) +Userid m +createGroup(name, daaumm_n,_mna;fld} tint
screateLisar{firstName, lastNama, @... +addOwner{groupld, userld) : int +updateGroup(id, name, description} : int
+updateUser(id, firstName, lastNam... +inviteUser{groupld, userld) int +deleteGroup(id) : int _
+deleteUser(id) : int +enroll{groupld, userld) : int +getGroupByOwner{owner|d) : int)
oupld, userld) : int qmwmﬂpmmld} : string
+setvValue{groupld, userld, attribute, value)... -getvalue(id, attibute) : Object
1 -retumAmray Result{db_result, membars): Array
1
1
uses
0.°
uses 0." [+patabase) uses
-dbConnect(} 0.

+execute_query(query : string) : Result

Figure 27 - Web app class model (iteration 1)

In the web application, the infrastructure was not changed. The web services were backed up

with adapters which communicate with the web database.

3.4.1.5. Implementation

The most important infrastructural functionality developed in this phase concerns the
communication with the web services. The implementation protocols and practices
established and described during the trial day phase were closely followed in this phase as
well. The model developed during the trial day was insufficiently flexible and had to be
improved as there were many calls to the web services. The following example shows the new

approach in solving this problem.

111

*

* X X X X ¥ ¥ ¥ ¥

*/
pri

{

*

¥ X X X X X ¥ ¥ X X ¥ ¥

*/

The method coordinates the web service call/response. The data is obtained,
prepared and sent to service proxy. The results will be asynchronously received
by AsyncCallbackTask pointed when calling the proxy.

@author Zlatko
@date 13.7.2012.
@task TC-0-6
@changes 26.7.2012

vate void saveUserData()

try{
//getting the data
strFirstName = txtFirstName.getText().toString();
strLastName = txtLastName.getText().toString();
strEmail = txtEmail.getText().toString();
strDescription = txtDescription.getText().toString();
String method = "";
String responseAttribute = "";
//preparing json object
JSONObject jsonObject = new JSONObject();
jsonObject.put("firstName", strFirstName);
jsonObject.put("lastName", strLastName);
jsonObject.put("email"”, strEmail);
jsonObject.put("description”, strDescription);

if (User.getCurrentUser() == null) {
method = "create";
responseAttribute = "newUserId";
}
else {
method = "update";
jsonObject.put("id", User.getCurrentUser().getId());

}
String jsonString = JsonAdapter.getJsonArrayString(jsonObject);

//calling the service and showing progress dialog
ServiceAsyncTask asyncTask = new ServiceAsyncTask();
ProgressDialog dialog = ProgressDialog.show(this, "",
getResources().getString(R.string.dialogSaving), true, true);
Object params[] = new Object[]{this, jsonString, "users", method,
responseAttribute, dialog, saveUserDataNotification};
asyncTask.execute(params);
}
catch (JSONException e) { }

This callback task is called after web service returns the results. According

to the results, it is necessary to perform synchronization with local databas

and to inform the user on actions performed. The data will be stored in

local database only if web service request responds with message 100 (OK). The
method inserts data in local database

only first time and after that it only updates the data.

@author Zlatko

@date 26.7.2012.
@task TC-1-6
@changes

AsyncTaskCallback saveUserDataNotification = new AsyncTaskCallback() {

@Override

112

public void acceptNotification(String result, boolean ok) {
if (ok) {
if (User.getCurrentUser() == null){

//create new user in local database

int id = Integer.parseInt(result);

User user = new User(id, strFirstName, strlLastName,
strEmail, strDescription);

UsersAdapter.getInstance().insertUser(user);

Toast.makeText(context, getResources().getString (R.
string.msgUserCreated), Toast.LENGTH_LONG).show();

}
else{
//update data in local database
int id = User.getCurrentUser().getId();
User user = new User(id, strFirstName, strlLastName,
strEmail, strDescription);
UsersAdapter.getInstance().updateUser(user);
Toast.makeText(context, getResources().getString(R.
string.msgUserUpdated), Toast.LENGTH_LONG).show();
}
setEditable(false);
}else{
Toast.makeText(context, result, Toast.LENGTH_LONG).show();
}
}

1

Code 3 - Handling web service call and response

The code example shows the basic approach taken in handling web service call and response.
Before calling the asyncTask, the data is obtained and prepared into JSON object.
Additionally, other parameters are also prepared, along with JSON data packed into a single
object with a predefined structure, and sent to the proxy to communicate with web service.
After gaining the async callback, the results are analyzed and the data is synchronized with
the local database. This approach allows similar communication with web service from any

object in mobile application.

3.4.1.6. Testing

During the implementation of the respective tasks concerning testing, we faced several
important challenges. The implementation resulted in few classes suitable for unit testing.
Despite that, the unit tests were created in advance for all classes which were used in the
application except the classes which deal with asynchronous communication with web
services. Additionally, the complete suite of unit tests was created to test the web services

directly.

On the other hand, asynchronous behavior was also tested, but through the sequential fully
automatized integration test which additionally tests the behavior of activities. At the end of
the iteration, a total of 26 tests with approximately 200 assertions were run and were

completely successful.

113

Runs: 26/20 B Errors: 0 B Failures: 0

4 |F_;| htec-hte_wildfire-HTOC2PY06311 [Runner IUnit 3] (222 794 s]|

4 F_;| foiuah.knowledgetestIntegrationRobotiumTest (191,930 =)
E.F-'—_| testRobotiumintegration (191,930 <)

4 [t foiuah.knowledge test.database.UsersAdapterTest (1,575 5)
E‘F—'—_l testConstructorSingleton (0,250 5)
tE] testDeletelser (0,325 <)
E.F—I—_| testlnsertUser (0,225 <)
tE] testUpdateUser (0,350 <)
tE] testAndroidTestCaseSetupProperly (0,425 5)

4 [t foiuahknowledge.test.entities. GroupTest (0,500 <)
EE' testConstructor (0,275 =)
tE] testGetersAndSetters (0,125 <)
EF_'—_| testManylnstances (0,125 <)
tE] testAndroidTestCaseSetupProperly (0,075 5)

4 [t foiuah.knowledge.test.entities.UserTest (0,900 <)
EE' testConstructor (0,100 =)
E.F-'—_| testCurrentUszer (0,100 =)
bE] testGettersAndSetters (0,325 5
E‘F—'—_l testManylnstances (0,225 =)
tE] testAndroidTestCaseSetupProperly (0,150 <)

4 F_;| foiuah.knowledge testlib.JsonAdapterTest (0,175 =)
tE] testGetGroups (0,050 <)
tE] testGetlsonArrayString (0,075)
tE] testAndroidTestCaseSetupProperly (0,050 5)

4 [foiuahknowledge.test.services.KnowledgeServicesTest (27,514 <)
E.F—I—_| testEnrolmentslnvitellser (5,151 =)
E.F-'—_| testGroupCreate (3,425 <)
tE] testGroupDelete (3,051)
tE] testGroupGetMy (4,600 <)
EE' testUserCreate (4,562 =)
tE] testUserUpdate (5,625 <)
tE] testAndroidTestCaseSetupProperly (0,100 5)

4 [t foi.uah.knowledge test.services.ServiceAsyncTaskTest (0,100 <)
tE] testAndroidTestCaseSetupProperly (0,100 <)

Figure 28 - Test results (iteration 1)

114

3.4.1.7. Application screenshots
Q_I.':' .‘.

% mlE 11:52

K

My groups

% il 1152
Add new group
Geeks with a plane! Members: 1

Group name Group of geeks owning a plane!

[PhD related! }

Delete me! Members: 1

;) .
Group description This gourp will be deleted!

PhD related!
Join us if you are PhD student!

Members: 1

Joinus if you ard

New group successfully created!
Go and invite members now!

= RuE 11:43

Invite new member!

(¥) Areyou sure?

Please enter in email
zlatko.stapic@foi.h Are you sure you want to

delete the group and all

memberships?

Send invitation by email?

o 114

Invite members

Delete

)

My groups

Geeks with a plane! Members: 1
Group of geeks owning a plane!
PhD related! Members: 1

Join us if you are PhD student!

Successl This gorup will not
bother anyone anymaorel

Figure 29 - Application screenshots (iteration 1)

Above figure shows several screenshots taken at the end of the first iteration.

3.4.1.8. Project plan checklist

At the end of this stage there was no need for performing the usual activities of the release

day. All tests including the acceptance tests are performed successfully, the documentation

including artifacts of everything that is done is wrapped up, and finally in order to check if

everything is done correctly, the requirements defined by the Mobile-D and stated in the

check list (see Table 32) are checked.

115

Table 32 - Project plan checklist — 0 Iteration

Productionize Iteration(s)

Requirements

The project plan has been updated concerning the selected requirements for the current
iteration

The project plan has been updated concerning the realization of the selected requirements
for the current iteration

The project plan has been updated concerning any changes in, e.g., the schedule, rhythm,
requirements, and resources

The project plan has been updated concerning the realization of quality assurance activities
in current iteration

3.4.2. Other iterations

As had been planned, all other iterations were performed in a similar manner. As the objective

was to identify the artifacts, there is no need to report all the iterations in detail here. Rather,

this chapter will present the summary information on the performed tasks and outputs, as well

as give the final versions of some important documents.

3.4.2.1. Iterations overview

According to iterations plan which was a part of the overall project plan, the four remaining

iterations included the implementation of user stories (features) as presented in Table 33.

Table 33 - Iterations plan with features selection

Features / stories Importance
12 - Second iteration - Enrollment
F4. User should be able to apply the filter by root-searching the available groups according to)
| their title and description. All groups should be observed by search.
User should be able to see the details on any group he is enrolled to, including the list of
F4.3 | other members. User should NOT be able to see the list of other members (except their 4
number) for the groups he is not enrolled to.
F4.4 | User should be able to join any existing group by sending the application to group owner. 5
User should be able to leave any group he is enrolled to. Other group members should
F4.5 |only be notified on that. Owner cannot leave the group and the group should be deleted 1
manually (see F5.4).
F6.1 User should be able to see all members of the groups he is enrolled to on the map. If group 3
" |member has disabled this privacy setting, it will be excluded from the view.
I3 - Third iteration — Questions management
User should be capable to add new question. New questions should be defined in separate
F2.2 |windows which should include all important information about the question (title, text and 5
images). The images should be taken by the phone camera.
F2.1 | Current user should be able to check all his questions, including those that have been 5

answered already. Questions should be presented by title and short description. Other

116

details about every question should be presented in new window after user clicks on it.
F2.7 User should be able to apply the filter by root-searching the list of questions available to)
" |him.
User should be capable to delete own question. The deletion should not be performed
F2.3 . , 3
without user’s explicit confirmation on deletion action.
24 User should be capable to change own question. The process of changing question should 1
" | be similar to process of adding new question.
F2.5 |User should be capable to add answers to own and others’ questions. 5
F2.6 | The owner of the question should be able to mark a question as answered. 5

14 - Fourth iteration — News feed

When the application is started the news should be displayed. News should include any
F1.1 |unread answers to the user’s questions; news on activities in user’s groups and other 3
information important for current user.

The news presented on the first application screen should be “links” to corresponding

Fl.2 application functionality.

IS - Fifth iteration — Settings and help

User should be able to set/change application settings. The settings should include the
F3.2 |possibility to deny further invitations to groups, to set privacy level (of showing or no 2
emails to other users and of showing or no current location to other users).

F7.1 |User should be able to read a general help about the application usage. 1

All iterations included planning, working and release days. Thus, the working days were
navigated through the series of predefined tasks, which described along with other documents
can be found in the documents library. The summary of the performed tasks during the

implementation is presented in the following table.

Table 34 - Performed tasks

Difficulty Confi- Date
Id Task card Type Before | After dence finished
12 - Second iteration - Enrollment
TC-2-1 Create initial test cases New 5 5 3 1.8.2012
TC-2-2 Implement supporting web services Enhance 4 3 5 2.8.2012
TC-2-3 Implement group searching and viewing New 5 5 4 3.8.2012
TC-2-4 Implement group enrolment and leaving Enhance 3 3 4 6.8.2012
TC-2-5 Implement map view New 3 4 4 7.8.2012
TC-2-6 Finalize tests Enhance 5 5 3 8.8.2012
TC-2-7 Optimize and refactor Enhance 2 2 5 8.8.2012
I3 - Third iteration — Questions management
TC-3-1 Create initial test cases New 5 5 4 17.8.2012
TC-3-2 Update database model Enhance 1 1 5 20.8.2012
TC-3-3 Implement supporting web services New 3 3 5 22.8.2012
TC-3-4 Develop questions management New 5 5 5 27.8.2012
TC-3-5 Develop answers management New 4 5 5 29.8.2012
TC-3-6 Finalize tests Enhance 5 5 3 31.8.2012
TC-3-7 Optimize and refactor Enhance 2 2 5 3.9.2012
I4 - Fourth iteration — News feed
TC-4-1 | Create initial test cases | New | 5 | 5 | 4 | 11.9.2012

117

TC-4-2 Update database model Enhance 1 1 5 11.9.2012
TC-4-3 Implement supporting web services New 3 3 5 13.9.2012
TC-4-4 Implement mobile app functionality New 5 5 5 17.9.2012
TC-4-5 Finalize tests Enhance 5 5 3 19.9.2012
TC-4-6 Optimize and refactor Enhance 2 2 5 20.9.2012
IS - Fifth iteration — Settings and help

TC-5-1 Create initial test cases New 5 5 4 28.9.2012
TC-5-2 Update database model Enhance 1 2 5 1.10.2012
TC-5-3 Update web services Enhance 3 4 5 3.10.2012
TC-5-4 Implement settings management New 3 3 5 5.10.2012
TC-5-5 Update groups management Enhance 2 3 5 9.10.2012
TC-5-6 Update profile management Enhance 2 3 5 11.10.2012
TC-5-7 Define help content New 1 2 5 12.10.2012
TC-5-8 Develop help functionality New 3 3 5 15.10.2012
TC-5-9 Finalize tests Enhance 5 5 3 17.10.2012
TC-5-10 Optimize and refactor Enhance 2 2 5 18.10.2012

3.4.2.2. Final database model

The final version of the database model, which has gone through tree additional iterations, is

presented in the Figure 30. The presented model completely satisfies user requirements for the

whole system, it is “open” and not tied to any technology, and is flexible to be updated or

changed if necessary during the project lifecycle.

-

USers

integer(11)
varchar{255)

date

date N
blob

integer(11)
integer(11)

bit

i integer(11) | pelongste L __________
D firstName varchar(255)
D lastName varchar(255)
0 email varchar(255) [groups
[description varchar(255) [1 integer(11)
0 inviteMe bit [] name varchar(255)
[showEmail bit [] description varchar(255)
is created by .
[]] showLocation it R it Ao ownerld integer(11)
[tengtude numenc(19,12)] crea [creationDate date
{ tatitude numeric(18, 12) [}{] { deletionDate date
—: + is related to isrelatedto T
is related to | belopgs to
: 1 C enrolments R
! ! S groupld integer(11)
: } %usm h_mgnrml
I |] enrolled bit
' | [invitationDate date N
' | [] invitationAccepted date 09| nas
S g M—
X | anrolls D Wﬁmm date N}
i I [] emaiiDate date N
X | [enroimentstart date N|
X | []] enroimentFinish date IN|
I | _ J
I I
U
marks SR
[reachowss D R
7 1 ineger(11) 1 id ﬁluy 11
Gauserd integer(11) I} ::‘ L
Gmiypeld integer(11) . [name varchar(255)
Qvabe integer(t1) gused g
D 5 is related to
value2 integer(11) [}f]

Draadnam date

Figure 30 - Final database model

118

is related 10—:

has Q@

Answers

integer(11)
integer(11)
integer(11)
date

blob

bit

The model is created in the well-known Crow’s foot notation (also known as James Martin’s
notation (Martin, 1986)). As it can be seen, three entities are considered to be weak entity
types: enrolments, readNews and answers. These entity types are dependent on other strong
entity types. Additionally, some relationships were made non-identifying by purpose of easier
navigability and indexing, but also because of the idea of putting the read news into a specific
entity in order to be excluded from the news feeds. Finally, special focus was put to
relationships, role naming and cardinality in order to define those according to the best

practices in data modeling.

3.4.2.3. Created web services

The final list of web services developed during the whole development process is shown in
Table 35. The services developed in early development cycles were already described in
detail. All other mentioned web services use the same Representational State Transfer (REST)
communication protocol (Fielding, 2000), accept JSON formatted data and respond with
JSON formatted response (Crockford, 2006). This approach was initially chosen as platform

independent and is most likely to prove useful for other platforms as well.

Table 35 - Web services specification

Method

JSON formatted request

JSON formatted response

USERS (http://knowledge.uphero.com/users.php)

create firstName, lastName, email, [description] responseld, responseText, [newUserld]
update id, firstName, lastName, email, [description] | responseld, responseText
delete id responseld, responseText
position id, longitude, latitude responseld, responseText
settings id, inviteMe, showEmail, showLocation responseld, responseText

GROUPS (http://knowledge.uphero.com/groups.php)

create name, description, ownerld responseld, responseText, [newGroupld]
update id, name, description responseld, responseText

delete id responseld, responseText

my ownerld responseld, responseText, [groups]
search keyword responseld, responseText, [groups]

ENROLMENTS (http://knowledge.uphero.com/enrolments.php)

inviteUser groupld, inviterld, email, [sendEmail] responseld, responseText
enroll groupld, userld, [action] responseld, responseText
cancel groupld, userld, [action] responseld, responseText
members groupld, userld responseld, responseText, [users]
apply groupld, userld responseld, responseText
userLocations userld responseld, responseText, [users]

QUESTIONS (http://knowledge.uphero.com/questions.php)

create name, question, userld, groupld responseld, responseText, [newQuestionld]
update id, name, question, groupld responseld, responseText

delete id responseld, responseText

searchByUser userld responseld, responseText, [questions]

119

http://knowledge.uphero.com/users.php
http://knowledge.uphero.com/groups.php
http://knowledge.uphero.com/enrolments.php
http://knowledge.uphero.com/questions.php

searchByGroup groupld responseld, responseText, [questions]

searchByString userld, keyword responseld, responseText, [questions]

searchByld id responseld, responseText, [questions (full)]

ANSWERS (http://knowledge.uphero.com/answers.php)

create answer, userld, questionld responseld, responseText, [newAnswerld]
update id, answer responseld, responseText
searchByQuestion | questionld responseld, responseText, [answers]
markAnswer id responseld, responseText

NEWS (http://knowledge.uphero.com/news.php)

markRead userld, typeld, value, [value2] responseld, responseText

getByUser userld responseld, responseText, [news]

The usage of Service Oriented Architecture (SOA) in mobile application development got the
acceleration during the last several years. This is a result of a wider Internet availability on
mobile devices and of improved capabilities of mobile devices in terms of hardware. There
are many projects that propose different SOA frameworks that could be used in development
of mobile applications (Papageorgiou et al., 2009; Yee et al., 2009). Although our prototype
application has Service Oriented Architecture, it is important to notice that the whole web part
of this prototyping system is developed only for supporting purposes, and many concepts that
should be implemented in commercial projects were not implemented here. Thus, the stated

web services are stripped off of any session keeping, security checking, logging etc.

3.4.2.4. Class models

The alignment between planned and implemented system architecture can be observed
through the final version of the class diagram. As it can be seen in Figure 31, it contains more
than 25 classes, and it is unreasonable to present it in detail thus it is presented on the level of
class names and relationships. The important conclusions that arise in this point are that
during the development, the business logic layer which contains the activity and service
classes become heavy but easy to maintain. The previously explained infrastructure was
followed through all five iterations, and it is easy to notice that asynchronous calls to web
services made the almost all activity classes to lean on ServiceAsyncTask and to receive the
results through AsyncTaskCallback interface. The obtained results were later transformed into

readable entity object through JsonAdapter object.

120

http://knowledge.uphero.com/answers.php
http://knowledge.uphero.com/news.php

Users Adapter
(Class Diagram)

DBHelper
(Class Diagram)

(Class Diagram)

LocationUpdate
(Class Diagram)

User
(Class Diagram)

Question
(Class Diagram)

Answer
(Class Diagram)
Group
(Class Diagram}

HouseKeeping
(Class Diagram)

{Class Diagram)

AsyncTaskCallback
(Class Diagram)

ProfileActivity
{Class Diagram)

MapActivity
(Class Diagram)

(Class Diagram)

NewsActivity

{Class Diagram}

QuestionsAddActivity
(Class Diagram}

QuestionsActivity
(Class Diagram)

i

GroupsViewMembersActivity

(Class Diagram)
(Class Diagram)
(Class Diagram)
(Class Diagram}
(Class Diagram)

GroupsViewActivity

GroupsAddActivity

QuestionsChangeActivity
QuestionsAddAnswerAnswer

(Class Diagram)
GroupsActivity
(Class Diagram)

QuestionsViewActivity

[

(Class Diagram)

ServiceAsyncTask
(Class Diagram)

<

AsyncTask
(Class Diagram)

KnowledgeServices

(Class Diagram)

Figure 31 - Final class model (mobile application)

121

3.4.2.5. Application screenshots

The glimpse view of several use cases of final application functionality can be seen in the

following figure containing the application screenshots. The presented functionality is fully

tested, and all unit test as well as acceptance tests resulted in success.

+_F' ‘:

® -
@ Friends on Map

Zlatko Stapic ¥
rlatko.stapic@mailcom | %, S

Q‘% @1&’

Hospital Principe
de Asturias

| &)
¥ %
%
el
Corg, m|
i [E-50 |
ety 3
%m ,
Vol
\;(’? %’d‘d
o5,
‘ﬁ\m" %%;% +
E %

o

il o
Google ¢ ©2013 Google - Magiata ©2013 Goagle, hasado en BCN IGN Espana

Knowledge

Are you familiar with research desighiestion
Asked by Ivan Horvat on 2012-08-27

How to perform literature review? (uestion
Asked by Zlatko Stapic on 2012-08-27

36 @ 1715
Search results

PhD Students Members: 1

Group will cover topics related to scientific and
practical issues reported by PhD students whil...

Cutting Edge Technology Members: 1

Ifyou like to learn and share news about cutting
edge technology join this group, We are exchan...

Cloud Computing And Business Members: 1
|oin us in the clouds and discuss with us the
benefits of using cloud computing in you

Android Developers Members: 1

The name itself describes this group the best, If
you are keen on learning about android develop..,

|ulian Alpes Members: 1
If you have ever been mountainclimbing than you

know that Julian Alpes are most beautiful mounta.,
Wild And Beautiful Nature Members: 1

Share with us your experiences of wild and
beautiful nature,

36 g 1734

I have some experiencem| §

Add answer Cancel

Figure 32 - Application screenshots

122

3, @ 1715

@ Choose action!

Open

Join group

)

Question details

Question

Does anyone of you have a practical
experience in performing a literature
review? [mean, where to start from and
what to do first? After short reading I
realized that there are rather different
approaches such as mapping studies
and systematic literature reviews, but [
wonder which one do you recommend?

Answer by YOU on FEW SECONDS
AGO 3}

[have some experience in performing
5LR. As a good starting point
recommend paper from Kitchenham
and Charters from 2007

3.5. Stabilize

By definition, the purpose of this phase is to integrate smaller subsystems developed by
different teams into a single product. Activities that were performed during this phase are
exactly the same to the activities performed during the working days and thus artifacts the
teams usually create are semantically same as artifacts we created in the earlier phases. As our
mobile application was not divided into subsystems, there was no need to perform integration

activities.

The additional task that characterizes this phase of mobile application development is called
“Documentation wrap-up” task. Although the documentation was created during the whole
development process, especially during the planning days of each phase and iteration, this
task is specific as it produces the documentation for the project stakeholders and not for the

agile team. Thus, the outputs of this task are finalized architectural, design and UI documents.

Following the rules given in (Abrahamsson et al., 2005a) we produced the mentioned

documents that are salient, short and useful.

3.6. System test & fix

The important phase in the development of our project was System Test and Fix phase. As it
can be seen in figure (Figure 33) taken from VTT’s web application (2006a), the most
important task is System Test task which comprises the activities of updating the test plan,

executing the tests, logging the results and reporting the defects.

MOBILE-D

TEST & FIX

TASK: S¥STEM TEST
TASK: TEM TE
eLE s 2l The purpose of this task is to find defects in the

W TEMPLATE: SYSTEM TEST PLAN [produced software after the implementation

. TEMPLATE: SYSTEM TEST REPOET 5] phase of the project. The System Test procedure

provides defect information for last fixing
. oy
u LA LB] uEa e iteration of the Mobile-D pracess.

PLANNING DAY
.
WORKING DAY
&
RELEASE DAY

Figure 33 - System Test and Fix phase

123

As defined in Mobile-D methodology, this activity is performed only once (i.e. after the
implementation phase of the project). The activities largely depend on the test results and
sometimes no fixes are necessary. Some artifacts used in this phase were only updated as they
had been already presented (UI tests, Acceptance tests, Integration Test, Unit tests) while

others were newly created (final release, documentation of found defects).

As identified during the testing, and described in the minutes of the post iterations workshops,

the following elements (see Table 36) of the mobile system functionality could be improved.

Table 36 - Recognized system limitations

Identified limitation of KnowLedge system

1 The system does not treat email as unique. This might reflect on problems with sending the email
invitation.

2 User cannot be invited or apply to join to a group repeatedly.

3 It is not possible to send email invitations to the users which are not already registered in KnowLedge
system. This might slowdown the progression in getting new users.

4 Not all news should be canceled manually, as there are some news that should be automatically canceled
(like notification of user leaving a group or similar).

5 Some data storage and data transfer optimization should be made. The existing content should not be
downloaded repeatedly.

6 In some cases, the possibility of changing an existing answer could be useful. This should be carefully
designed and planed with implementation of proper control.

The removal of these limitations would not have any influence on the identified set of artifacts
but would significantly extend the development process. As these functionalities were not
included in the user requirements, it was decided to leave them for some future versions of

this system. Thus, the activities of fixing the application were not necessary.

Finally, we moved forward to publish the final version of the application on Google Play
store. The process of publishing is straightforward and easy if all development activities are
performed carefully and application manifest entries are correct. Google does not perform any
manual application testing, and the only criteria that are to be satisfied concern the automated
testing of application package. Having this in mind, we had to create an application icon in
several formats, sign and publish the application by a wizard, and prepare the application
screenshots and description. After uploading these documents to Google Play, our
development process was officially finished. The application is available for download at

http://barok.foi.hr/~zstapic/knowledge/android.

124

http://barok.foi.hr/~zstapic/knowledge/android

3.7. Development of Windows Phone application

The development of KnowLedge application for Windows Phone (WP) target platform was
conducted after the development targeting Android platform. We used same Mobile-D

methodology and same Test Driven Development approach.

Expectedly, from the methodological perspective, the development process was much easier
as many artifacts developed earlier were completely or partially reused in this process. This
possibility of reusing the artifacts was of our specific interest, as the overall goal of this
research was to discover the similarities and to semantically describe them. While some
artifacts remained the same, the other could be reused only as templates and the last group

was formed from the artifacts that had to be built from scratch.

On the other hand, the development process was unexpectedly time-consuming. Although we
were completely familiar with the desired application functionality, and although we reused
some code templates, still the development for a new platform was a very challenging task
which brought many obstacles. WP technology is very different from Android technology,
and as can be seen from the description that follows, some aspects of the implementation
approach (for example, in user interface, in communication with web service, in internal

application structure) had to be reconsidered from scratch.

Additionally, although some artifacts were built from scratch their structure is very similar to
the structure of the artifacts we have already presented. Thus we find no reason to report the
whole process in detail again. Having this in mind, the following chapters discuss the
performed development phases, but from the point of view focusing on the similarities and

differences. Only completely new artifacts will be presented here.

3.7.1. Explore phase

The activities of stakeholder establishment, the scope definition and project establishment
were almost completely omitted in the development process for the second target platform. In
this phase, we didn’t have to redefine the target users, stakeholders or initial requirements and
architecture line description as these remained the same as for the Android target platform.
The only activities that we had to perform included the definition of technological domain,

redefinition of technology related risks and needed skills.

Regarding the technology, we decided to define a requirement of the application being
runnable on any device running Windows Phone 7.5 (API level 7.1) or newer. The reasons for
choosing this API level are guided by the principle of targeting as many devices as possible.

As we do not need any capabilities of newer APIs, targeting 7.1 was a reasonable choice.

125

In a similar manner, the software architecture, project plan, documentation, and monitoring
measures remained the same as for Android. The planned duration was not changed by

purpose of making comparisons at the end of both development processes.

3.7.2. Initialize phase

The initialize phase took the same activities that we performed in the first development
process. The existing virtual machine along with the set of tools not related to the
development was reused, but the development environment for WP had to be established from
scratch. We installed Microsoft Visual Studio, WP7.1 SDK, WP Toolkit, Microsoft Zune and
connectivity software for our test devices. Finally, the testing of the development environment

was performed by creating test project and deploying it to the testing device.

On the other hand, the activities that were supposed to produce updated project plan,
architecture line plan and product backlog were unnecessary. All these artifacts including the
system architectural diagrams, definition of features and the first version of acceptance tests
remained the same and were reused. Thus again, we ended up with a product backlog

containing the description of 22 features to be implemented in this development process.

The only document that we had to build again was the document containing the user interface
sketches. The comparison of Ul elements that are used in Android with those that could be
used in WP showed that the relationships are not always direct. The in-detail analysis of the
problem of automatic Ul transformation was not in the focus of this research, but we found
this software engineering challenge very interesting and thus tried to identify the elements that
should be used in WP in order to give the user WP native look and feel along with the same
functionality. In Figure 34 we can see that, for example, list (in the background of the
Android sketch) can be translated to the same concept of list in the WP. But, the custom
dialog does not have a WP implementation and we can either use another screen, or make
changes in design of the existing form in a way that filter option will be a part of the main

screen.

126

p}vij\"ﬁ'id \\U?Q{

~ — % odel AP ‘S-’u L e
h‘,) Gughors — ey @ H\a ﬂtal-w"} Gave Fi b
. - ’-"‘*\-\:‘; 7[/1‘ \e :)'(U&’LO\'!'
@(—\L-{C\L’N \ L \ i) 73”“&
i 3 \ | ————
[[Tt ' A
flr 2 ’:}[}i,,\kon -\4“%
| rut."{_p! L N
() B nd
Tillee \ d \‘ Screm ((ogd \
f‘mh-“, ‘ | : Niw 25 (g Al .I o muthin
Wit a Tl i (}A'I'J‘irb SGM‘LL\
‘ Jiws wn GREY Jj ¥ ol ,
Lo Qo o mme e

Figure 34 - Translating user interface from Android to WP

In the same sense we had to find different solutions to translate some other concepts like

Android’s toast message and progress dialogs.

The purpose of a trial day in this 0O-iteration remained the same. The plans of features that
ought to be implemented in order to trial and establish the internal application infrastructure
remained the same. We also reused the data model completely and the story card and task
cards as partially reused artifacts. Even without the need to design and develop the supporting
backend system, the implementation of WP functionality took more time than planned and
much more time than for Android. There are many reasons for this, mostly concerning
platform restrictions and a narrowed set of usable features when compared to Android.
Additionally, the recommended practice in development of WP applications is to use
MVVM" pattern which requests a significant increase in development efforts. The use of this
pattern helps in making a strong distinguishing line between the application layers in a multi-

layered architecture.

Finally, another problem in WP development is the application of TDD approach. Although
there are several 3" party unit testing frameworks available for use, we found them to be out
of date or without any maintenance and support — abandoned. The official Microsoft testing
framework for Windows Phone was released very recently (as a part of Visual Studio 2012
Update 2) and targets the testing of Windows Phone 8 mobile applications. Thus, we had to

use a limited functionality of Microsoft test framework that targets testing of .Net

' MVVM stands for Model View ViewModel architectural pattern from Microsoft. This pattern is largely based
on MVC pattern, but with the focus on event-driven programming of UI development platforms.

127

applications. This limited the testing functionality only on Core classes and not on the user

interface classes.

@) Testrun completed Results (Group By: Class Mame): 19/19 passed; !

Result Test Name Error Message
4 {JsonAdapterTest
4=]@ Passed TestSingleton
4=]@ Passed TestGetGroups
gj.ﬁ Passed TestGetlsonArraystring
4 KnowledgeServiceAsyncTest
¢=]@ Passed TestAsymcTask
4 KnowledgeServiceTest
oj.ﬁ Passed TestGroupCreate
oj @ Passed TestUserCreate
4=]@ Passed TestGroupGethy
¢=](@ Passed TestGroupDelete
q,j @ Passed TestEnrolmentsInviteUser
4=]@ Passed TestUserUpdate
4=]@ Passed TestSingleton
4 UserDataContextTest
¢=](@ Passed TestManylnstances
¢=]@ Passed TestUpdateUser
¢=]@ Passed TestInsertUser
oj @ Passed TestConstructar
=)@ Passed TestDeleteUser
¢=](@ Passed TestCurrentlUser
4 UserltemTest
¢=]@ Passed TestGettersAndSetters
oj @ Passed TestConstructar

Figure 35 - Automated WP unit testing

The automated integration testing of WP was and still is impossible. There is no framework
that might provide the features of automatic or robotized testing of Windows Phone
applications, especially not for testing on devices. The only possible solution was to use a
software that is capable of recording mouse and keyboard events. As this solution did not
provide any possibility of making assertions we had to reject it and perform manual

integration testing at the end of iteration.

3.7.3. Productionize

The approach and issues that we faced during the four Productionize iterations were very
similar to the approach and issues we faced during the O-iteration. We reused many artifacts
which were related to project plan, iteration plans, product backlog, acceptance tests and other
documentation. We also partially reused artifacts which were connected to activities of noting

the current tasks such as story and task cards.

There was not need to make any changes to existing web service and remote database, which
can bring us to conclude that the development process of these parts of the systems was

thorough and with good quality.

128

While developing the WP application, we found the Android classes that were used to define
entities very useful and we simply converted them to model classes in the new architecture.
Additionally, some classes that were classified as libraries and were used to manipulate with
JSON strings or to do housekeeping were also reused and easily translated to .Net. The
process of localizing the mobile application reused all keys and values, but the original XML
document had to be manually translated into a .Net resource file. We kept almost all the keys,
and used exactly the same translations in both applications. Finally, the logic used to prepare
the web service requests and to analyze the results was also reused and simply translated to

the new programming language.

On the other hand, the existing code related to user interface manipulation, as well as the code
related to web service asynchronous call and response had to be completely rejected. The .Net

architecture made it easier to implement this functionality by using the events and delegates.

3.7.4. Stabilize

As the exhausting testing was performed during the development which initially included the
integration with existing web services, at the end of the iterations the stabilize activities turned
out to relate only to finishing of the documentation by performing wrap-ups. The final (but
manual) integration testing was performed in this phase and as the results were positive we
were capable of finishing the architectural, design and UI documents and move forward in the

next iteration.

3.7.5. System test & fix

After having all iterations performed, the system test & fix activities were on schedule.
Similar to the Android case, unit, integration and acceptance tests were positive. As the initial
requirements were the same, the list of functionality that could be improved was also the
same. As the removal of these limitations would not have any influence on the identified set

of artifacts, we again decided to leave it for some future version of this system.

The process of publishing the finalized application on the Windows Market resulted in some
new artifacts. We were obliged to use Marketplace Test Kit tool, to package application into a
.XAP document and to provide the Market with icons and screenshots in different format than
those for Android. After the testing process, the application will be available for download at
http://barok.foi.hr/~zstapic/knowledge/wp.

129

http://barok.foi.hr/~zstapic/knowledge/wp

3.8. Conclusions on implementation

By observing the whole development process again we can conclude that the implemented
activities are well aligned with the planned activities. The following table (Table 37) displays
the planned and realized activities and only differences from the Android case are in the
duration of some activities while the overall project duration was shortened for 14 working

days, but all activities had to be performed.

Table 37 - Duration of planned and real activities

. . Duration in days
Stage/Phase/Activity Planned | Android WP
KnowlLedge 101 87 71
Explore 5 4 1

Stake holder establishment 2 1 0
Scope definition 2 2 0,5
Project establishment 1 1 0,5
Initialize 9 7 5
Project set-up 3 2 1
Planning day 0 3 2 0
Working day 0 3 3 4
Productionize 73 69 62
Iteration 1 — Group management 8 9 9
Planning day 2 2 1
Working day 5 6 7
Release day 1 1 1
Iteration 2 — Enrolment 8 9 10
Planning day 2 2 1
Working day 5 6 8
Release day 1 1 1
Iteration 3 — Question management 22 19 22
Planning day 5 4 2
Working day 15 13 17
Release day 2 2 3
Iteration 4 — News feed 22 12 11
Planning day 5 3 2
Working day 15 8 8
Release day 2 1 1
Iteration 5 — Settings and help 13 20 10
Planning day 2 3 1
Working day 10 16 8
Release day 1 1 1
Stabilize 12 4 2
Planning day 1 0 0
Working day 5 0 0
Documentation wrap-up 5 4 2
Release day 1 0 0
System Test & Fix 2+ 1 1
System test 2 1 1

The duration of the development process in WP case is shorter for 30 working days if

compared to the planned duration and is shorter for 16 working days (18.4%) if compared to

130

the Android development case. Such improvements in performance could be the result of the
fact that we had already been familiar with the system requirements, that the backend system
had already been developed and that different artifacts were partially or fully reused. On the
other hand, we stated that the development time was not significantly reduced as we
experienced many development issues and that the improvements could be result of our
approach. As this is not important for the rest of the research we did not performed detailed

analysis.

As serious testing had been done through all the iterations, the final tests were successfully
executed in both development cases and there was no need for any changes in the system
during the System Test and Fix phase. In any case, the overall development process was
conducted in such manner that all activities and artifacts defined by Mobile-D methodology

were performed and created.

Mobile application KnowLedge was designed to, by its purpose, cover the main and most
common functional development requirements, and as such, it is a representative of the vast
majority of mobile applications. Such requirements in general cover distinct development
concerns, including Ul features, local database, device API-s, connection to web services and

3" party features.

As Mobile-D methodology is well defined, it was not hard to follow the development process
through all Mobile-D phases. Still, as the developed project was rather small and developed
solely by the researcher with some minor help from his supervisors, small and acceptable
divergence and misalignment with the Mobile-D was necessary. Still, we think that the
performed process faithfully demonstrates the development process that would be performed

by any small company developing a mobile application.

While developing Windows Phone application, the whole process was performed again. As
the structure of the created artifacts along with the development process was the same as the
one presented for the Android case, we found no reasons to report it again in detail. Thus, we
reported the development process from the point of view in which we discussed the
possibilities of reusing the existing artifacts. We found that many artifacts concerning the
planning activities were reusable. Some of them concerning the product backlog, source code,
resources and inner application logic were partially reusable, and of course, some had to be
created from scratch. We also found that the backend part of our system requested no changes
and although this lowered the overall workload the total development time was not shortened

as we experienced some WP platform specific issues and some testing issues.

All empirical evidence created during the implementation was used in the next phases of this
research process in order to identify their semantics, relationships and similarity between the

two target platforms.

131

3.9. Relevance of the chapter

This section reported the development of mobile application KnowLedge by implementing
Mobile-D methodology and Test Driven Development. First we gave a short overview of the
methodology and approach and we defined the point of view in which the created artifacts
took the most important role. Then, in the Android case, the performed phases were reported
in detail along with the created outputs and their connections. The Mobile-D process with its
clear technical specification was well documented and easy to follow and the overall

development process took less time than initially planned.

In the case of Windows Phone application development, the whole process was performed
again, but as the structure of the created artifacts was the same as the one presented in the
Android case, we found no reason to report it again in detail. Thus, we reported the
development process from the point of view in which we discussed the possibilities of reusing
the existing artifacts. We found that many of the artifacts were completely or partially

reusable.

We think that the performed process faithfully demonstrates the development process that
would be performed by any small company developing mobile applications. The empirical
evidence collected during this development was used in the subsequent research process of

identifying the methodological interoperability and semantically similar artifacts.

132

4. IDENTIFICATION OF THE ARTIFACTS

In this chapter we will look back on the implementation results but from the artifact
identification point of view. All artifacts that arose in the development sub-processes are
enumerated and systematized in order to prepare the inputs for the next phase of the semantic

description.

In order to perform a straightforward and unbiased analysis, first we defined the setting which
includes the definition of artifacts, the relations with other methodological concepts that will
be observed and the template that is to be used for the artifact description. As the artifacts
were observed as “any piece of software developed and used during software development
and maintenance” we found the list of Mobile-D artifacts related to the process tasks not

sufficient and thus we performed our own analysis.

Thus, we observed the development process for each target platform separately and identified
more than 70 artifacts that we initially grouped in 12 categories. After performing the cross-
platform analysis we found that more than 70% of all identified artifacts were in common to

both platforms and 66% percent of them are partially or completely reusable.

4.1. Analysis setting

In Chapter 3.1.3 we defined the conceptual model and gave a definition of artifacts that arise
in the development process which utilizes some development methodology. In our case,
Mobile-D methodology was chosen. For this research we adopted the Conradi’s (2004)
definition of the artifacts as “any piece of software (i.e. models/descriptions) developed and
used during software development and maintenance. Examples are requirements
specifications, architecture and design models, source and executable code (programs),
configuration directives, test data, test scripts, process models, project plans, documentation

2

etc.

The conceptual model given in the mentioned chapter introduces the position of the artifacts
in the overall development process. As the goal of this research was to analyze only the
structural and semantic aspects of these sets of artifacts, we performed an analysis only from

the semantic concept view, while other possible views, such as procedural concept view or

133

pragmatic concept view are not covered by it. Thus, we only observed the artifacts and their
connection to the activities and tasks. The semantic of this connection was reduced to the

concept of affiliation (e.g. which artifact is produced and used in which activity or task).

[}
[}
|
Activities | ¢ Outputs____ _ _ _ ______ \

and Tasks

[}
]
]
[}
[}
[}
[}
]
Artifacts

In this setting, the semantic concept view which describes the facts and the knowledge about

Figure 36 - Focusing semantic of artifacts and their origin

the observed world was used. Additionally, by applying a procedural concept view, the
analysis could be enhanced with procedural knowledge such as states, intentions, plans and
rules and by applying a pragmatic concept view it could be additionally described by
intentions, obligations or pragmatics of action. As we aimed to describe the concepts on
artifacts in order to enhance the reusability while developing for second and other target

platforms, the last two concept views are out of the scope of this research.

Mobile-D methodology, as described in chapter 3.1, comprises development process of five
phases which are executed in combined sequential and incremental manner. Table 23 given in
Chapter 3.1.3 presents inputs and outputs that were used in these phases. The list was created
according to the Mobile-D process library and it includes documents and other deliverables,
but also presents them at a very high level of abstraction and as completely platform-
independent. After summarizing the information given in the Mobile-D process library
(Abrahamsson et al., 2005a) and after correcting logical errors found in the existing overview,
the mentioned artifacts were read (R), updated (U) or created (C) in tasks as presented in
Table 38.

On the other hand, our analysis included only those documents that were used in the
development of our prototype projects and introduced specific platform dependent
deliverables. In this sense, our analysis, for example, provides a more specific description
than the output “implemented functionality” states or specifies exact standards that were used

rather than just specifying “relevant standards” as artifacts.

134

Table 38 - Mobile-D artifacts by tasks

PHASE:

| - Explore

Il -Initialize

Il - Productionize

IV -Stabilize
V-System test & Fix

Customer establishment

Initial requirements collection

Initial project planning

Architecture line definition

Process establishment

Customer communication

establishment

Architecture line planning

Initial requirements analysis

Acceptance test review

Acceptance test generation

Iteration planning

Post-iteration workshop

Requiremements analysis

Continuous integration

Inform customer

Pair programming

Refactoring

Test-driven development

Wrap-ups

Acceptance testing

Pre-release testing

Release Ceremonies

System Integration

Documentation wrap-up

System test

Product proposal

o

o

o

o

Organizational process library

]

Contract

Initial requirements document

Project plan

Standards

Base process description

Training plan

Measurement plan

Architecture line description

Architecture line plan

Software architecture and design

Product backlog

Developer notes

Ul-illustrations/description

Acceptance tests/documentation

0ojojo|o

clo|jn|C

Implemented functionality

C

RIC

||

Metrics data

Experience

Storyandtask cards

Action point list

135

(Table 38 continued)

1591 Wa3sAg

IV

dn-desm uoljeluawndoq

uolleldaju| waisAs
S9lUOWII) Isea|ay
Buiisol asea|al-aid
u3s91 adueidandy
sdn-deapy

1uSwWdOo|aAdp UBALIP-1SIL
Sulio1oe)9y

Suiwwesdoud Jied
JBWOISNI WJoju|
uol1eJgaiul snonuiuod
sisAjeue syuswawalinbay
doysyJom uol1elall-1sod
Suluue|d uoilesay|
uollelauasd 1593 aoueydany

M3IADJ 159) dduerdadoy

sisAjeue sjuswadinbau ey

Suiuue|d aul| a4n3a931yduy

JusaWYsi|qeIsa
UOI3eDIUNWWOD J3WOo3Ish)

JUBWIYSI|geISd SS8204d
uol}ulYdp dUl| 34NIIBHYIIY
Suiuue|d 309foud |e3iu|

U01193(|02 syuawaJlinbal [e13iu|

juawysiigelss Jawoisn)

- Create

C

- Read
U - Update

R

- Task input

- Task output

PHASE:

| -Explore

Il -Initialize

11l -Productionize

IV - Stabilize
V-System test & Fix

Development artifacts

Knowledge

Data

Manuals, APl specs and other

Unit tests

Daily status report

Defect list

Release audit checkllist

The finalized documentation

System test report

Test log

Source: Based on information from (Abrahamsson et al., 2005a)

136

Additionally, this agile methodology uses main concepts of planning, working and release day
through several phases. The activities and tasks, and thus the artifacts as well, are very similar
regardless of the phase they are created or used in. This means that the approach of
identifying and grouping the artifacts only according to the phases of the origin would not be
a good way. Thus, while identifying the artifacts, we initially collected the data that included
name, type/category, description and usage of the artifacts as presented in the following
template (Table 39).

Table 39 - Template for describing the identified artifacts

Artifact name Type Description I m | mar || v
Slol BBl BB
HEEIEEIEEEEE:
s HEHEHEHE
Sl=IEEIE=IE S

4.2. Artifacts targeting Android platform

After establishing the point of view we had decided to take in this research phase, we will
move forward to identify and summarize the artifacts that emerged in the Android
development process of our prototype mobile application. Although this has already been
stated, it should be highlighted again that the development process itself was pretty much
straightforward in following the Mobile-D methodology (see chapter 3.8) with only a slight
misalignment in the organizational point of view — the project was not developed in an
organization but by the researcher himself. Although this might have some negative and
arguable influences, we assumed that the possibility of taking notes and observing the
development process from the “inside” offers more advantages. We strived to follow all
practices as they have been defined by the professional community and/or Mobile-D
methodology, and we also developed a final and publishable product — the same as a company

would do.

Thus, from the conceptual point of view, we created a solid basis for identifying not only the
documents that had been created, but also other artifacts that might be hard to identify if the

project was performed outside the laboratory.

The table presented below shows the list of identified artifacts, along with their initial
classification, description and connection with the Mobile-D phases. We used standard CRU

notation for denoting the artifacts that were created (C), used/read (R) and updated (U).

137

Table 40 - Identified artifacts in development process for Android

Phases inputs and outputs
I Im | 1r | 1Iv | Vv
Artifact name Type Description - - - - -
N 2| - S| - S| - S| - =
S| & 3| &= &8s
£|8|2|82|8|E|8| 5|8
Process library describing the Mobile-D
Moblle—D process | @ iment methodology in Fletqll. U.sed as R R R R R
library methodology guidelines in every phase.
(Abrahamsson et al., 2005a)
Generated before the development process.
Product proposal Document [Describes the initial and general idea on R
the product.
Created according to product proposal, but
later updated with information on
Initial requirements Document stake;holders and‘ functional system. clrlulrlulr R
document requirements. It is also updated during the
planning phase in O-iteration and
subsequent iterations.
Contains all information on project
including definition of customer group,
. scope, planned activities and their duration,
Project plan Document plans on documentation etc. Aligned with B
agile practices, this document is also
updated during the iterations.
Project plan Document |Mobile-D project plan checklist. This C U U U U
checklist artifact document is part of project plan.
Project plan Mobile-D project plan checklist
checklist template Template (Abrahamsson et al., 2005a) R
Model containing the graphical
Project plan Gantt information on project plan iterations,
chart Model activities and their duration. It is used in s N U
Project plan document.
Includes the metrics and plan for
Document monitoring of the project. In our case we
Measurement plan . recorded only the duration of activities and C/R|{U/R|U|R|UR|U
artifact . .
compared them with plan. This document
is part of project plan.
Created during the architecture line
definition task and updated in architecture
Architecture line Document |line planning activity. Contains the
. . . . C|R|U|R
description artifact information on system context,
technological scope, architectural risks etc.
This document is part of project plan.
Software
archltecture gnq Document Contains the technical documentation on clrlulrlU
design description the developed product.
document (SADD)
Contains the information on planned
Architecture line Document (system architecture. Created after the C
plan artifact prototyping is finished. This document is
part of SADD document.
Document Describes the illustrations of mobile
Ul-illustrations . application user interface. It is part of C|R|U|R R
artifact
SADD document.

138

Artifact name

Type

Description

Phases inputs and outj

puts

I

I

11

10%

Input

Output
Input

Output
Input

Output
Input

Output
Input

Output

Data model (mobile)

Model

Entity-Relationship-Attribute model of the
mobile database. It is presented in SADD
document.

(@]

=

Data model (web)

Model

Entity-Relationship-Attribute model of the
web application. It is presented in SADD
document.

Web service
specification

Document
artifact

Contains information on exposed web
services along with available methods,
their parameters and other communication
elements. Part of SADD document.

Class model
(mobile)

Model

UML class diagram describing the mobile
application internal structure and created
classes. This model is used in SADD
document.

Class model (web)

Model

UML class diagram describing the web
application internal structure and created
classes. This model is used in SADD
document.

Class

Model
element

UML model element used to describe a
new class that is to be implemented.

Android class

Model
element

UML model element used to describe an
existing Android class that is to be used.

System Test plan

Document

Contains the information on purpose, plan
and definitions of system test.

Acceptance test

Document
artifact

Created during initial requirements
analysis. Contains the information on
acceptance test of one product feature. Can
include different contexts, and test
scenarios with sample data. The document
is part of System Test Plan document.

Acceptance test
template sheet

Template

Mobile-D acceptance test template sheet
(Abrahamsson et al., 2005a)

Prototype
functionality

Code

Developed functionality during the trial
day. It prototypes some of the main
application functionalities and is used to
define the basic approach for implementing
the similar functionalities in other
iterations.

Product backlog

Document

Contains the information on features that
are (to be) implemented in the
development process, through several
iterations. Users can contribute in defining
the features/stories.

Story card

Document
artifact

Basic documentation card containing
information on one feature that is
implemented. It is defined during the
planning day but is refined during the
implementation and wrap-up. It is part of
the Product backlog document.

Story card template

Template

Mobile-D story card template
(Abrahamsson et al., 2005a)

139

Artifact name

Type

Description

Phases inputs and outj

puts

I

I

11

10%

Input

Output
Input

Output
Input

Output
Input

Output
Input

Output

Task card

Document
artifact

Basic documentation card containing the
information on one task that is to be
performed during the iteration. it is defined
during the planning day and refined during
implementation and wrap-up. It is part of
the Product backlog document.

=

Task card template

Template

Mobile-D task card template
(Abrahamsson et al., 2005a)

Iterations plan

Document
artifact

Contains the information about planned
iterations along with selected features for
specific iteration. This document is part of
Product backlog document.

Iteration backlog

Document
artifact

Contains the information on specific
iteration including story and task cards.
Each iteration document is created from
scratch. It is part of Product backlog
document.

System test report

Document

Final document on testing. Contains
information on performed tests and issues
detected.

Test results

Document
artifact

Results are obtained during the whole
development process testing tasks. At the
end this document becomes part of System
test report.

Defect list

Document
artifact

Document created after testing is
performed. It contains found issues and
planned activities. At the end this
document becomes part of System test
report document.

Unit test

Code

Unit test tests a single unit of code. It is
created in separate project and references
main project while performing different
assertions.

Integration test

Code

Robotized test which tests application
integrated functionality.

API documentation

Example

Android API documentation from
developers.android.com

Example code

Example

Android example code on different topics
found on the internet from various sources.

Development
unrelated software
tools

Software

These software tools support the main
operations performed by project team. For
example these include office suit, PDF
reader, image editor etc.

Project management
software tool

Software

The tool used for project management.

Drivers

Software

Set of drivers used to install the device
connectivity for testing purposes.

Development
environment

Software

Set of applications used for Android
development. We used Eclipse base SDK.

Throw-away
prototype

Code

Project created to test development
environment and connected devices. This
project is discarded.

140

Phases inputs and outputs
I m|m | Iv | Vv
Artifact name Type Description - - - - -
[2|l 2|l=|2|=|2|=|Z2
S| & 2| &= & & &
RHEHHEEHEE
Web application The web application development and
development Software . : C
X hosting environment had to be set up.
environment
Mobile application [Product The mobile application created in the C U U
development process.
Web service Product The web part of the system created in the C U
development process.
Java code Code 'Java code dey clop e.d .d}lrmg the C|R|U|R R
implementation activities.
PHP code Code PHP code developed during the C|R|U
implementation activities.
XML resource Code XML code d.escrlbn}g application layout, clrlu
menus, localized strings etc.
Application XML document containing the information
PP’ Code on application. This document is most C U R
manifest) .
important code artifact.
Google Play Google library containing the classes
; Code e R
Services necessary if using Google Maps.
Represents java class that inherits Android
Activity Code Activity class with the purpose of C|R|U|R
controlling the application view.
Layout Code Repre.sents XML code that is used to clrlu
describe user interface form or screen.
Represents XML code that is used to
Layout element Code describe any user interface element such as C|R|U
text box, list box, button etc.
Represent XML code that is used to
Localization strings |Code provide localized translation of values C|R|U R
according to value unique key.
Google license identifying the developer as
. unique person. This key is application
Google API Key License specific and is used when using Google R|C
Maps API.
IEEE Standard No. Standard Standard defining the JSON format. R R
RFC4627 (JSON) (Crockford, 2006)
Application Resource Application scre.en.shots are created as C U U
screenshot needed for publishing process.
Application icon Resource Appl.lca.tlon icon is designed as needed for C
publishing process.
Short but important description used for
Apph.ca‘Flon Resource publlshlgg process. .It 1np1udes the C
description information on application, category,
authors etc.
Deployment i
package Resource |APK file created for publishing purposes. C

C — Created, R — Read/used, U - Updated

141

The identification process resulted in total of 60 different artifacts that are grouped in 12
groups according to their type. From our point of view, which is based on conceptual analysis
of semantic interoperability among different target platforms, we identified the following

types related to Android development:

Table 41 - Types of artifacts related to Android development

Artifact type

Description

Document

Represents used documents or created artifacts that are published as documents during
or at the end of development process.

Document artifact

Represents document that could be observed as stand-alone artifact, but is usually
included in some other document.

Template

Represents templates that are used to create some artifacts.

Model

Represents models that are created during the development process. Models could be
observed as stand-alone artifacts, but are usually presented as a part of some document.

Model element

Represents the atomic level (i.e. integral) artifact that could be observed as stand-alone
and is used to create models.

Represents any artifact created during the implementation and is written in any

Code . .
programming or description language.

Example Reprgsent§ code artifacts created by thirq party and used as examples of implemented
functionality or to solve some programming issue.

Software Represents software tools used during the entire project.

License Represents individual-specific unique key that is obtained or used during the
development process.

Standard Represents document containing formal and internationally recognized description of

some concept or element.

Represents resources that are created during the development process and are used in

Publishing resource publishing purposes.

Product Represents final product as most important project deliverable.

Although some semantic links between the identified artifact types are obvious, the detailed
semantic analysis, the definition of the relationships and the hierarchy among the artifacts and
the identified types was performed in the next research phase and hence they were not focused
on in this phase. In order to facilitate understanding, at this point it should be pointed out that
some documents contain parts (document artifact) that should be observed separately which is
why we identified them as a specific (new) type. Similarly, the model element could be

observed as a stand-alone artifact used to build more complex models.

4.3. Artifacts targeting Windows Phone platform

As has been reported in Chapter 3.7, the development of mobile application targeting
Windows Phone (WP) platform aimed to analyze if the existing artifacts from the Android
case can be reused. This resulted in the fact that several activities in the Explore phase were
completely omitted and some other activities were simplified due to the artifacts partial reuse.

But, although all used artifacts were not created in the windows phone development process,

142

we nevertheless consider them as artifacts that belong to this process and subsequently they

were included in the following table.

The cross-platform comparison and analysis of the artifacts similarity was performed later and

is not in focus of this chapter. We bring here the list of the identified artifacts that were used

in the Windows Phone development case. Again, we used the standard CRU notation for
denoting the artifacts that were created (C), used/read (R) and updated (U).

Table 42 - Identified artifacts in Windows Phone case

Artifact name

Type

Description

Phases inputs and out

puts

I

I

111

1A%

Input

Output
Input

Output
Input

Output
Input

Output
Input

Output

Mobile-D process
library

Document

Process library describing the Mobile-D
methodology in detail. Used as
methodology guidelines in every phase.
(Abrahamsson et al., 2005a)

=

=

=

=

Product proposal

Document

Generated before the development process.
Describes the initial and general idea on
the product.

Initial requirements
document

Document

Created according to product proposal, but
later updated with information on
stakeholders and functional system
requirements. It is also updated during the
planning phase in O-iteration and
subsequent iterations.

Project plan

Document

Contains all information on project
including definition of customer group,
scope, planned activities and their duration,
plans on documentation etc. Aligned with
agile practices, this document is also
updated during the iterations.

Project plan
checklist

Document
artifact

Mobile-D project plan checklist. This
document is part of project plan.

Project plan
checklist template

Template

Mobile-D project plan checklist
(Abrahamsson et al., 2005a)

Project plan Gantt
chart

Model

Model containing the graphical
information on project plan iterations,
activities and their duration. It is used in
Project plan document.

Measurement plan

Document
artifact

Includes the metrics and plan for
monitoring of the project. In our case we
recorded only the duration of activities and
compared them with plan. This document
is part of project plan.

Architecture line
description

Document
artifact

Created during the architecture line
definition task and updated in architecture
line planning activity. Contains the
information on system context,
technological scope, architectural risks etc.

This document is part of project plan.

143

Phases inputs and outputs
I Im | mur | 1Iv | v
Artifact name Type Description - - - - -
HEHEHEHEBE
HEEEEEEEEE
Software
architecture gnc.l Document Contains the technical documentation on clrlulr|U
design description the developed product.
document (SADD)
Contains the information on planned
Architecture line Document |system architecture. Created after the C
plan artifact prototyping is finished. This document is
part of SADD document.
. . Document Descfribe.:s the illgstrations of.mobile
Ul-illustrations artifact application user interface. It is part of C|R|U|R R
SADD document.
Entity-Relationship-Attribute model of the
Data model (mobile)|Model mobile database. It is presented in SADD C R
document.
Entity-Relationship-Attribute model of the
Data model (web) |[Model web application. It is presented in SADD C|R|U|R
document.
Contains information on exposed web
Web service Document |[services along with available methods,
. . .) . C|R|U|R
specification artifact their parameters and other communication
elements. Part of SADD document.
UML class diagram describing the mobile
Class model application internal structure and created
(mobile) Model classes. This model is used in SADD CIRIUIR
document.
UML class diagram describing the web
application internal structure and created
Class model (web) - \Model classes. This model is used in SADD CIRIUIR
document.
Class Model UML model el'ement u'sed to describe a clrRlulr
element |new class that is to be implemented.
Model UML model element used to describe an
Net class element existing .Net class that is to be used. R R R
System test plan Document Contains Fhe information on purpose, plan C|R|U|R|U|R R
and definitions of tests.
Created during initial requirements
analysis. Contains the information on
Document |acceptance test of one product feature. Can
Acceptance test artifact include different contexts, and test CIRIUIR R1U
scenarios with sample data. The document
is part of System Test Plan document.
Acceptance test Template Mobile-D acceptance test template sheet R
template sheet (Abrahamsson et al., 2005a)
Developed functionality during the trial
day. It prototypes some of the main
Prototype Code application functionalities and is used to clr
functionality define the basic approach for implementing
the similar functionalities in other
iterations.

144

Artifact name

Type

Description

Phases inputs and out

puts

I

I

11

v

Input
Output
Input

Output
Input

Output
Input

Output
Input

Output

Product backlog

Document

Contains the information on features that
are (to be) implemented in the
development process, through several
iterations. Users can contribute in defining
the features/stories.

=
c
=

Story card

Document
artifact

Basic documentation card containing
information on one feature that is
implemented. It is defined during the
planning day but is refined during the
implementation and wrap-up. It is part of
the Product backlog document.

Story card template

Template

Mobile-D story card template
(Abrahamsson et al., 2005a)

Task card

Document
artifact

Basic documentation card containing the
information on one task that is to be
performed during the iteration. it is defined
during the planning day and refined during
implementation and wrap-up. It is part of
the Product backlog document.

Task card template

Template

Mobile-D task card template
(Abrahamsson et al., 2005a)

Iterations plan

Document
artifact

Contains the information about planned
iterations along with selected features for
specific iteration. This document is part of
Product backlog document.

Iteration backlog

Document
artifact

Contains the information on specific
iteration including story and task cards.
Each iteration document is created from
scratch. It is part of Product backlog
document.

System test report

Document

Final document on testing. Contains
information on performed tests and issues
detected.

Test results

Document
artifact

Results are obtained during the whole
development process testing tasks. At the
end this document becomes part of System
test report.

Defect list

Document
artifact

Document created after testing is
performed. It contains found issues and
planned activities. At the end this
document becomes part of System test
report document.

Unit test

Code

Unit test tests a single unit of code. It is
created in separate project and references
main project while performing different
assertions.

Integration test

Document
artifact

Represents the description and results of
integration test that is performed manually.
This document is part of System Test Plan
document.

API documentation

Example

WP API documentation from
http://msdn.microsoft.com

145

Phases inputs and outputs
I m|m |1v | Vv
Artifact name Type Description - - - - -
S| & 2| &= &8 &
E|8|5|8|2|8|£18| |8
Example code Example WP example .code on dlfferent‘ topics R R R
found on the internet from various sources.
These software tools support the main
Development) .
operations performed by project team. For
unrelated software |Software . . C
example these include office suit, PDF
tools . .
reader, image editor etc.
Project management Software |The tool used for project management. C
software tool
. Set of drivers used to install the device
Drivers Software .) C
connectivity for testing purposes.
Development Set of applications used for Windows
cop Software |Phone development and integrated in C
environment . .
Visual Studio.
Throw-awa Project created to test development
rototype Y Code environment and connected devices. This C
p P project is discarded.
Web application The web application development and
development Software . : C
. hosting environment had to be set up.
environment
Mobile application [Product The mobile application created in the C U U
development process.
Web service Product The web part of the system created in the C U
development process.
C# code Code C# code developed during the C|IR|U[R| [R
implementation activities.
PHP code Code PHP code de.velope.d .d}lrmg the C/R|U
implementation activities.
XAML description |Code XMIf ba.sed XAML code describing C|R|U
application layout and layout elements.
XML document containing the information
WMAppManifest |Code on apphcatlor.l. It. includes the 1nfqrmat10n C R
on some application resources. It is created
automatically.
Microsoft Phone lerary. containing the classes necessary
. Code for adding some basic and advanced R R
Controls Toolkit
controls.
Silverlight Map Code Library containing the classes necessary R
Control for using Bing maps in WP application.
Page (CH) Code Represepts C# clasg thqt has.the purpose of clrlulr
controlling the application view.
Page (XAML) Code Reprc?sents XAML code that is used to clrlu
describe user interface form or screen.
Represents XAML code that is used to
Page element Code describe any user interface element such as C/R|U
text box, list box, button etc.
Represents code that is used to provide the
application with resources (strings, images,
Resource file Code icons, audio, files and other). We used it to C|R|U R
provide the application with localized
translation for two languages.

146

Phases inputs and outputs
I m|m |1v | Vv
Artifact name Type Description - - - - -
O 10— OO I U 0~ RN I A
S| & 2| &= &8 &
E|8|5|8|2|8|£18| |8
Microsoft license identifying the developer
. . as unique person. This key is application
Bing maps key License specific and is used when using Silverlight RIC
Map Control.
IEEE Standard No. Standard Standard defining the JSON format. R R
RFC4627 (JSON) (Crockford, 2006)
Application Resource Application scr;e@shots are created as C U U
screenshot needed for publishing process.
Application icons |Resource Apphcagop icons are designed as needed C
for publishing process.
Short but important description used for
Apph.cagon Resource publlshlqg process. ‘It 1npludes the C
description information on application, category,
authors etc.
Deployment .
package Resource | XAP file created for publishing purposes. C

C — Created, R — Read/used, U - Updated

The total of 61 artifacts were identified and described. All artifacts are classified according to
the same classification of 12 different artifact types recognized in the first development case.
In the following chapter, a cross-platform analysis will be performed in order to identify

common, specific, and partially reusable artifacts in both development processes.

4.4. Cross-platform artifacts comparison

The undertaken activities of identifying and describing the artifacts that were used in the two
development cases resulted in a list of 60 artifacts in the Android case and 61 artifacts in the
Windows Phone case. The initial classification of these artifacts resulted in 12 different types.
The purpose of this chapter is not to perform a detailed semantic analysis of the artifacts
relations, but rather to do a cross-platform comparison in order to separate those that are
common to both platforms from those that are specific to one or the other and those that are

partially reusable.

We strongly believe that the order of execution of the development cases did not have any
influence on the identified set of artifacts. We also believe that the artifacts that were reusable
in our presented scenario would also be reusable if we developed for Windows Phone first.
However, having only this development case, we cannot make strong conclusions, but the
evidence collected in this scenario indicates on this characteristic. This could be another

positive aspect of the approach taken in this dissertation.

147

4.4.1. Common artifacts

In the cross-platform analysis we found that 50 artifacts (70.42% of all identified artifacts) are
common to both development cases. Thus, we named them common artifacts. These artifacts

are enumerated in Table 43.

Table 43 - Common artifacts in Android in WP case

Partially

Different
reused

Artifact name Identical

Mobile-D process library X

Product proposal X

Initial requirements document X

Project plan

> | <

Project plan checklist

Project plan checklist template

> | <

Project plan Gantt chart

Measurement plan X

Architecture line description

> | <

Software architecture and design description document

Architecture line plan X

Ul illustrations X

Data model (mobile)

Data model (web)

eltadlel

Web service specification

Class model (mobile) X

Class model (web) X

Class X

System test plan X

Acceptance tests X

Acceptance test template sheet X

Prototype functionality X

Product backlog

> | <

Story card

Story card template X

Task card X

Task card template X

Iterations plan X

Iterations backlog X

System test report X

Test results X

Defect list X

Unit test X

Integration test

API documentation

itk

Example code

Development unrelated software tools X

Project management software tool X

Drivers

Development environment

itk

Throw-away prototype

Web application development environment X

Mobile application X

Web service

PHP code

il

IEEE standard No.RFC4627 (JSON)

Application screenshot X

148

Application icon X
Application description X
Deployment package X
TOTAL (50) 20 13 17

Additionally, many of these common artifacts are platform independent as being products of
methodological approach. In total, 20 out of 50 identified artifacts (40.00%) have been
created or obtained only once, as these were identical in both development processes. In this
group, it is important to distinguish between those artifacts that were only used as inputs
while performing the methodology (like Mobile-D process library, various templates,
standards, tools) and those that had to be created by a development team, but only once (like
artifacts concerning some aspects of project planning activities, testing or backend system
development activities). A proper reuse of these artifacts will give the development team the

first fruits of taking the approach we are proposing in this dissertation.

On the other hand, there are 13 artifacts (26.00%) that could be partially reused while
performing the development process for the second or any other target platform. There are
various reuse levels that we recognized in this group (from reusing artifact creation approach,
reusing content inner logic, to reusing some parts of content itself). We believe that a different
additional analysis should be performed in this direction and that the results could give a more
specific knowledge on reusable artifact elements, which, in the end, could result in more

specific and easier to follow instructions and thus better results for development teams.

Finally, we recognized 17 artifacts (34.00% of all common artifacts) with a very low level of
possible reuse. They were classified as ones that should be developed from scratch for every

target platform.

The results presented in this chapter are very encouraging and we can conclude that they
create a strong basis and motivation for additional research and analyses. In this dissertation,
we have covered only one possible approach, but as has been stated before, other approaches

are also welcome.

4.4.2. Platform dependent artifacts

The artifacts that are characteristic for one target platform and are significantly different from
artifacts of other target platform are classified as platform dependent artifacts. As presented in
Table 44 there are 10 Android specific artifacts and 11 Windows phone specific artifacts that

were created in this particular development case.

149

Table 44 - Android and WP specific artifacts

Android specific artifacts

Android class

Java code

XML resource

Application manifest

Google Play Services

Activity

Layout

Layout element

Localization strings

Google API Key

TOTAL (10)

Windows Phone specific artifacts

Net class

C# code

XAML description

WMAppManifest

Microsoft Pone Controls Toolkit

Silverlight Map Control

Page (C#)

Page (XAML)

Page element

Resource file

Bing maps key

TOTAL (11)

If we carefully observe and compare these platform specific artifacts, we can conclude that
even in this case there are some semantic similarities. For example, Java code and C# code
are separate artifacts but they might have reusable parts like sequencing, iterations, algorithms
etc. Thus we did not reject them as irrelevant for the rest of the research, and have used them

as well in the next phase of the semantic analysis.

4.5. Relevance of the chapter

To summarize, in this chapter we have identified all artifacts that arose in our development
process for two target platforms: Android and Windows Phone. The artifacts are observed as
“any piece of software developed and used during software development and maintenance”
(Conradi, 2004), and thus we first created a list of artifacts that were specific for Mobile-D
methodology and then enhanced it with the artifacts identified in our development cases. The

total of 71 artifacts were recognized and initially classified in 12 different categories.

Our cross-platform analysis showed that 50 artifacts (70.42%) are common to both
development cases. We found that 20 artifacts are exactly the same in both cases and another
13 artifacts are partially reusable. Thus, in total the 33 artifacts (66.00% of the common

150

artifacts) are completely or partially reusable. This brought us to the conclusion that these

results provide a solid basis and motivation for the semantic analysis that follows.

With the identification and cross-platform analysis of the artifacts we have concluded the
second phase of our research process. We now move to the third phase where we will

semantically and ontologically describe these artifacts.

151

5. THE ONTOLOGY FOR METHODOLOGICAL
INTEROPERABILITY

The main goal of this research is to ontologically describe artifacts that arise in the
methodologically managed process of mobile application development targeting two or more
mobile platforms, and to create the basis for more efficient and interoperable process of multi-

platform mobile applications development.

In the previous chapters we analyzed the state of the art in the usage of methodologies for
mobile applications development, and also performed a development process for two different
target platforms by utilizing Mobile-D methodology, and based on the gathered empirical
evidence we identified more than 70 different artifacts that arose in these two development

cases.

In this chapter we will move on to our last research phase in order to semantically describe
the identified artifacts, their meaning and relations and finally to create a formal ontology
containing the knowledge on possibilities of artifacts reuse in multi-platform mobile

application development.

The chapter is organized in four parts. First, we will introduce and define the concept of
ontology, discuss possible usages, types, development methodologies and tools, in order to
determine the type of our ontology along with the environment that will be used to develop
and describe the ontology. Secondly, we will develop an ontology describing the development
for Android platform and in this part we will focus on ontology development by utilizing an
ontology development methodology. In the third part we will define the second ontology
describing the development for Windows Phone target platform and in this part we will put

focus on the concepts of ontology reuse and update.

Finally, in the fourth part we will present the development of the common ontological
description for both platforms, and in this chapter we will focus on the concepts of ontology

merging, extension, evaluation and testing.

153

5.1. Ontology

5.1.1. Definitions

The term ontology is a philosophical term that has its roots in Greek words “on” (genitive
“ontos”) - “being”, and “logia” - “writing about, study of”. It is often stated that Greek
philosophers Parmenides, who argued about nothingness, and Aristotle, who argued about
theory of being in his work Metaphysics, begot the concept of ontology in the 4™ century BC.
Since then, many other philosophers have used the concept and the term. In philosophy
ontology is defined as “a branch of metaphysics concerned with identifying, in the most
general terms, the kinds of things that actually exist. Thus, the ontological commitments of a
philosophical position include both its explicit assertions and its implicit presuppositions
about the existence of entities, substances or beings of particular kinds” (Kabilan, 2007). In

other words, ontology is the theory of existence.

From our perspective, we are more interested in the concept of ontology that is currently used
in some other disciplines including Artificial Intelligence, Knowledge Management,
Information Systems and Software Engineering. Gruber (1993a) defined ontology as “an
explicit specification of conceptualization”. To put it another way and according to Gruber,
ontology is a specification of a representational vocabulary for a shared domain of discourse
and it includes definitions of classes, relations, functions and other objects. According to
Gong et al. (2006), ontology is a general conceptualization of a specific domain in a format
readable to humans and to machines. Same authors define Process Description Ontology as a
formal semantics to traditional process modeling elements, such as entities, objects and

activities, their relationships et cetera.

Following Gruber’s definition, Studer et al. (1998) defined ontology as “a formal, explicit
specification of a shared conceptualization.” This definition includes: the term
conceptualization as an abstract modeling of some phenomenon and identification of its
relevant concepts; the term shared representing that the knowledge included in the ontology
should be consensual and shared; the term formal to exclude the use of natural languages and
to make the ontology machine readable: and the term explicit denoting that the concepts and

the constraints on their use should be explicitly defined.

On the other hand, based on their experience Noy and McGuinness (2001) took the pragmatic
approach and defined the ontology as “a formal explicit description of concepts in a domain
of discourse (classes (sometimes called concepts)), properties of each concept describing
various features and attributes of the concept (slots (sometimes called roles or properties)),

and restrictions on slots (facets (sometimes called role restrictions))”.

154

According to Hilera et al. (2010) ontology is a knowledge representation tool, and the
knowledge representation tools can be classified at four different levels. Dictionaries,
taxonomies, thesauri and ontologies are respective representatives of these levels. The last
one, the ontology level, includes definitions of concepts (dictionaries), implicit or explicit
vocabulary, as well as descriptions of specialized relationships between concepts
(taxonomies), lexical and equivalence relationships (thesaurus), and combination of
relationships with other more complex relationships between concepts to completely represent

a certain knowledge domain.

As we can see, the term “ontology” was taken from philosophy, but its use and meaning in
Computer Science got a new and adapted perspective. As there is no consensus on the
definition of ontology, in the context of this research we consider ontology as an explicit
formal conceptualization of a shared understanding of the domain of interest which includes
vocabulary of terms for describing the domain elements, semantics in order to define the
relationships of the domain elements and pragmatics in order to define possible usages of

these elements.

5.1.2. Uses of ontologies

The use of ontologies in the domain of Computer Science grew rapidly in the last two
decades. Firstly, ontologies were used mainly as tools in the area of Artificial Intelligence, but
now, their usage become popular in many other fields as they provided the domain experts the

possibility of categorizing the domain knowledge.

Noy and McGuinness (2001) gave a comprehensive overview of possible reasons for the use
of ontologies. They found following reasons which are here shortly explained and
demonstrated on our example:

o To share common understanding of the structure of information among people or
software agents. In our case, after having the ontology of artifacts that arose in the
development process defined, we created a basis for development of an automated
system or software agent that could provide teams with information on requested
queries or event in order to guide them in the development process.

e To enable reuse of domain knowledge. This is one of the strongest reasons for
ontology usage. For example, if we need a detailed description of the Android
operating system in our ontology, we can simply reuse the existing ontology if one
exists. Additionally, we might consider using an existing general ontology and
extending it to the knowledge describing our domain.

e To make domain assumptions explicit. Explicit assumptions bring several advantages

in terms of understanding, improving or correcting knowledge. Thus, the assumptions

155

created in our ontology of artifacts can be changed without the need to change the
system that uses them, and will still be readable to people without any knowledge
about the design of the system that is based on the ontology.

e To separate domain knowledge from the operational knowledge. This is another
common use of ontologies. In our example, we could describe the artifacts and their
relationships separately from describing the operational knowledge on using those
artifacts. Thus, the system built on this operational knowledge could be easily fed with
some other ontology of artifacts without the need to be changed.

o To analyze domain knowledge. The process of creating ontologies is possible only
when the domain terms are declaratively specified. The ontological description thus

enhances declarative description and makes the knowledge formal and reusable.

In the end, it is important to notice that ontology should not have a purpose in itself. The
ontologies should be built with an existing idea of their application. The desired application
always has an influence on the ontology structure and its final form. Thus, the ontological
description of artifacts that arise in the methodologically driven development process would
not be the same if we build it with the idea of using the application in teaching on
methodological process and if we build it with the idea of using the application to advise and

help on artifact reuse when developing for different platforms.

5.1.3. Ontologies and semantic interoperability

Interoperability is in nature multilateral and can be best understood as a shared value of the
community. According to European Interoperability Framework for European Public Services
(EIF) (European Commission, 2010) the interoperability within the context of European
Public Services delivery can be defined as “ability of disparate and diverse organizations to
interact towards mutually beneficial and agreed common goals, involving the sharing of
information and knowledge between the organizations, through the business processes they
support, by means of the exchange of data between their respective ICT systems.” Also, the
EIF defines Interoperability framework as “an agreed approach to interoperability for
organizations that wish to work together towards the joint delivery of public services. Within
its scope of applicability, it specifies a set of common elements such as vocabulary, concepts,

principles, policies, guidelines, recommendations, standards, specifications and practices.”

In the context of this research, the IEEE definition of interoperability will be adopted and
extended. The original definition (IEEE Computer Society., 1990) says that interoperability is
“the ability of two or more systems or components to use the information that has been
exchanged”. The definition of interoperability will be extended with the methodological and

social component to “the ability of two or more systems, components, teams or team members

156

to use and exchange the information and methodological artifacts that have been created

during the mobile application development process”.

Observing from different points of view, we can talk about several types of interoperability.
The most suitable division for this research is the one that defines two types of
interoperability. Several authors are talking about semantic and syntactic interoperability
(Park and Ram, 2004). So, according to Park and Ram semantic interoperability is the
knowledge-level interoperability which provides the interoperable systems with a possibility
to bridge the semantic conflicts, and syntactic interoperability is the application-level
interoperability that allows interoperable systems to cooperate regardless of their
implementation techniques (Park and Ram, 2004). This thesis will deal only with semantic

interoperability.

Additionally, Park and Ram define three different areas of semantic interoperability.
Mapping-based approach creates mappings between semantically related information
sources, intermediary-based approach depends on the use of intermediary mechanisms to
achieve interoperability, and query-oriented approach is based on interoperable languages
(Park and Ram, 2004) (Gong et al., 2006). The mapping-based approach is not designed to be
independent of particular schemas and applications; the query-oriented approach requires the
users to understand all underlying local databases; so the most promising approach is the
intermediary-based approach as it uses intermediary mechanisms such as mediators or
ontologies, which may have domain-specific knowledge, mapping knowledge, or rules
specifically developed for coordinating various and autonomous information sources (Park
and Ram, 2004).

According to Paulheim and Probst (2010), interoperability can be performed on different
levels, and subsequently they define integration on data source level, integration on the

business logic level and integration on the user interface level.

Surprisingly, interoperability on the methodological level is rarely mentioned in literature.
Thus, the goal of this research is to create an ontological definition that can be used as a
knowledge source for information system guiding the development teams to increase the
methodological interoperability by reusing the artifacts that are created in the development

process of mobile application for the second and every other target platform.

5.1.4. Ontology types

There is no single point of view which could be taken when defining ontology types.
According to Lovrenc¢i¢ (2007) ontologies can be grouped in accordance with their forms, the
volume and the type of conceptualization structure, the conceptualization subject and the

richness of described content. The same author emphasizes that the most common

157

classification is according to the conceptualization subject. Upon adapting the classification

from (Gomez-Pérez, 2004) she describes the following eight categories of ontology types
(Lovrenci¢, 2007):

Knowledge representation ontologies aim to represent the domain knowledge by
utilizing a knowledge representation paradigm. These ontologies are built from
common modeling artifacts — classes, relationships and attributes. The most commonly
used knowledge representation paradigms are Frame Ontology, Resource Description
Framework (RDF), RDF Schema (RDFS), Ontology Interface Layer (OIL), DARPA
Agent Markup Language + OIL (DAML+OIL) and Web Ontology Language (OWL).
General/Common Ontologies describe the common knowledge that can be used in
different domains. These ontologies define different general concepts like time, space,
events and similar.

Top-level Ontologies describe abstract concepts which are related to the specific
concepts used in ontologies at lower abstraction level. These ontologies should be
universal and expressive. Some of well-known upper-level ontologies are Cyc (aims to
describe the whole human consensual knowledge) and SUMO (Suggested Upper
Merged Ontology supported by IEEE).

Domain Ontologies describe concepts belonging to one specific domain. The domain
should be described at the highest possible abstraction level so the ontology could be
reused while developing other ontologies in the same domain. Some of the domains
could be Education, Law, Knowledge Management, Medicine, Engineering et cetera.
As the number of domains grew, the need for structured ontology libraries resulted in
several well-known libraries like Protégé Ontology Library, DAML Ontology Library
and others.

Task Ontologies describe the concepts that are related to a specific task or activity and
needed to solve the problems related to that task.

Domain Task Ontologies are similar to Task Ontologies, but are reusable in the same
domain. We consider these ontologies as more general.

Method Ontologies give the description of the concepts that are used in the
specification of the process of decision making in order to solve a task.

Application Ontologies define the concepts related to the knowledge in a specific
application. These ontologies are dependent on their appliance and usually extend

other domain and task ontologies related to the observed application.

As it can be seen from the listed ontology types, the main difference between the ontologies is

in the level of abstraction of the described concepts. They form a continuum that covers

concepts ranging from being very specific to being very general and abstract. The level of

abstraction is directly connected to the possibility of ontology reusability as general

158

ontologies are highly reusable and those describing specific concepts are not (Lovrencic,
2007).

Similar ontology classification created upon ontology generality was created by Guarino
(1998). He defined four types of ontologies we already mentioned: 7Top-level Ontology,
Domain Ontology, Task and Problem Solving Ontology and Application Ontology. These

types are, according to Guarino, hierarchically ordered as it is shown in Figure 37.

Top-level
Ontology

N

Task and Problem
Solving Ontology

'\/’

Application
Ontology

Domain Ontology

Figure 37 - Guarino's types of ontologies according to generality level

As domain ontology can be defined as a network of domain model concepts (topics,
knowledge elements) that defines the elements and the semantic relationships between them
(Brusilovsky et al., 2005), the use of domain ontologies is suitable to describe all content
regarding development methodology and approach, and thus, the ontology that is a subject of
this research is classified as domain ontology as well. In this way, the adaptive Web-based
system, which we plan to develop on the base of the results of this research, will be able to
select and recommend the most relevant reusable content during the development of multi-

platform mobile application.

5.1.5. Ontology development methodologies

Gruber (1993b) defined five principles that became de facto standard in the ontology design
not only in the Artificial Intelligence field but also in other fields where ontologies are used.
These five principles include clarity, coherence, extendibility, minimal encoding bias and
minimal ontological commitment. We will give a glance overview of these principles as they
are the goals that should be achieved in every ontology development activity. According to

(Gruber, 1993Db) the principles can be described as:

159

Clarity: Ontology should be able to transmit the encapsulated knowledge and the
meaning to its users through objective and complete definitions. Documentation of
definitions should be written in a natural language.

Coherence: Ontology should be logically coherent at the level of axioms as well as
informally coherent in concepts that are described for instance in a natural language or
in examples. Subsequently, the inferred knowledge should be coherent to that
described in the documentation.

Extendibility: Ontology should be designed to anticipate the usage of a shared
vocabulary in such a way that it should be possible to extend the ontology with new
terms that are based on the existing vocabulary without the need of changing the
existing definitions.

Minimal encoding bias: The conceptualization should be specified at the knowledge
level without depending upon any symbol or language encoding. This will enable the
automatic transformation of ontology among different encoding styles and will enable
the usage of ontology in knowledge-sharing agents implemented in different
representation systems.

Minimal ontological commitment: Ontology should make as few claims as possible
about the world being modeled. This is done by defining only essential terms needed
for communication of the knowledge. Subsequently, this will enable further

specialization and instantiation of the ontology as needed.

Gruber concluded his criteria definition with discussion about the necessity of having some

trade-offs among the stated criteria. Although the criteria are not diagonally opposite, some

trade-offs are necessary. But, as we can see, Gruber did not give any guidelines on how to

achieve these criteria in a methodological manner. He did not provide a cookbook that we can

use while designing the ontology. Additionally, these criteria define only the requirements

regarding the creation of ontology artifacts, but do not reflect upon the intended purpose of

the ontology.

In addition to the stated, Kabilan (2007) defined specific design choices that are to be made

while designing domain ontologies. She defined the following questions:

Which concepts are relevant and necessary to be included in the proposed ontology?
What is the optimum design architecture for the proposed ontology?

What kind of design strategy is best suited for the given domain and given purposes?
How to be consistent in the conceptualization of similar categories of concepts?

How to match the functional requirements of the targeted application with the goals of
ontology design? How do these functional requirements influence the ontology design

choices?

160

e What is the minimum required level of knowledge formalization?

e Which knowledge representation formalism/language to choose?

e Once the above design decisions are taken, how should a designer actually proceed in
capturing, analyzing and representing the implicit and explicit domain knowledge?

e What tools, methods, other knowledge sources, models may be chosen to help in the

knowledge modeling process?

Providing answers to all of these questions is not a trivial task. It is obvious that a structured
and guided approach is necessary. Thus, during these 20 years since the earlier mentioned
design principles have been stated, a number of ontology development methodologies have

been proposed.

There are several papers that give an extensive overview of ontology design methodologies,
such as (Dahlem, 2011), (Lovrenci¢, 2007) and (Kabilan, 2007). Dahlem compared sixteen
ontology design methodologies and he concluded that three of them have their roots in the
creation of Knowledge Based Systems (CommonKADS, Cyc and KBSI IDEFS), five of them
aim at the construction of ontologies from scratch (Griininger and Fox, Uschold and King,
METHONTOLOGY, Ontology Development 101 and UPON), two of them emphasize the
collaborative evolution of ontologies (DILIGENT and HCOME), three of them are focusing
on reuse of existing knowledge (SENSUS, KACTUS and ONIONS) and the remaining three
are inspired with database engineering (DOGMA), wiki-based systems (mOnt) and
Knowledge Management (On-To-Knowledge). Although the list of compared methodologies
is not an exhausting one and there are many other methodologies described in literature, in the
case of our research, methodologies that aim at construction of ontologies from scratch (as it
is later elaborated in Chapter 5.2.2) are from our specific interest, and they will be shortly

described in the following paragraphs.

5.1.5.1. METHONTOLOGY

After identifying the lack of standardized procedures in the ontology development process,
Fernandez-Lopez et al. (1997) defined an ontology development methodology — namely
METHONTOLOGY - as the methodology that is based on software development process.
Their method is based on the execution of the following phases which provide the activities

for building an ontology from scratch:

1. Specification — The idea of this phase is to produce informal, semi-formal, or formal
specification document written in natural language including information on the
purpose of the ontology, users, scenarios of use, the level of formality of future
ontology and the scope which includes a set of terms to be represented, its

characteristics and granularity.

161

2. Knowledge acquisition — The activities of knowledge acquisition are independent
activities in the ontology development process, but are performed simultaneously with
specification and other phases.

3. Conceptualization — This phase should result in conceptually structured domain
knowledge in terms of the domain vocabulary identified in the ontology specification
phase. Glossary of Terms should be created in this phase and it should include
concepts, instances, verbs and properties. The following activities include: grouping
activity where concepts and terms are grouped according to their inner cohesion; the
activities of concepts description, verbs description and tables of formulas and rules
creation.

4. Integration — As a result of this activityy, METHONTOLOGY proposes the
development of an integration document, summarizing the meta-ontology that will be
used along with detailed links between terms that are to be used and the terms defined
in conceptual model.

5. Implementation — This phase should result in the ontology codified in a formal
language. The activities of this phase should be supported by ontology development
environment which should at least provide: a lexical and syntactic analyzer,
translators, an editor, a browser, a searcher, evaluators and so on.

6. Evaluation — In the METHONTOLOGY, evaluation assumes the terms of verification
which refer to technical process that guarantee the correctness of the ontology and
validation which checks if the ontology corresponds to the system that they supposed
to represent.

7. Documentation — This support activity should be done through the whole ontology
development process. After mentioned phases, the documentation activities include
the creation of a requirements specification document, a knowledge acquisition
document, a conceptual model document, a formalization document, an integration

document, an implementation document and an evaluation document.

The mentioned activities can be divided into two main groups: the technical activities and the
support activities. Technical activities include specification, conceptualization and

implementation, while the remaining are support activities.

Although the presented methodology slightly evolved during the time, its basic approach

remained the same.

5.1.5.2. Ontology Development 101
Another well-known and often used methodology for ontology development is Ontology
Development 101 (Noy and McGuinness, 2001). This methodology describes iterative

approach in ontology development, and is created as one possible approach that can be used.

162

The approach gained popularity mainly because of its simplicity, clarity and focus on the

results.

Basic assumptions built into the Ontology Development 101 (OD101) methodology are: there

is no single correct way to model a domain and the best solution always depends on the

application and the expected extensions of the ontology; ontology development is necessarily

an iterative process; the concepts in the ontology should be close to objects (nouns) and

relationships (verbs) in the domain of interest (in the sentences that describe the domain). The

whole methodology is comprised in execution of 7 steps as described in (Noy and
McGuinness, 2001):

Step 1. Determine the domain and the scope of the ontology. In order to define a
domain and the scope of the ontology, OD101 proposes the list of basic questions that
should be answered. The list includes questions like: What is the domain that the
ontology will cover? For what are we going to use the ontology? Who will use and
maintain the ontology? The answers to these questions aim at limiting the scope of the
model. Additionally, the OD101 authors suggest the creation of a list of competency
questions that a knowledge base, based on the ontology, should be able to answer. In
our case, the competency questions list could contain questions like: What artifacts do
I need in this development step? What are the outputs of this step? Is the class
diagram presented in the test plan document or software design and description
document? What artifacts can I reuse in this phase?

Step 2. Consider reusing existing ontologies. There are different libraries containing
already developed ontologies that can be reusable in our particular case. Additionally,
if our system needs to interact with other applications that have already committed to
particular ontologies or vocabularies, it is necessary to reuse and build upon these
ontologies and vocabularies.

Step 3. Enumerate important terms in the ontology. The list of terms that arise in our
domain of interest should be created. This list will be updated in all iterations and
while building it we can think of: what terms we would like to talk about, what
properties do those terms have and what would we like to say about those terms? For
example, some terms that could be interesting to our ontology are: artifact, phase,
activity, task, input, output et cetera.

Step 4. Define the classes and the class hierarchy. This step and step 5 are closely
connected and are always performed in parallel by defining a few definitions of the
concepts in the hierarchy and then continue by describing properties on those
concepts. These two steps are also two most important steps in the ontology design
process.

There are three basic approaches that can be taken while developing a class hierarchy:

163

A top-down development process starts with the definition of the most general
concepts in the observed domain and continues with subsequent specialization of the
concepts.

A bottom-up development process starts with the definition of the most specific
classes and then groups them into more general concepts.

A combination development process combines a top-down and bottom-up approach.
The idea of this approach is to define more salient concepts first and then to make
generalization or specialization as needed. The Uschold and Gruninger (1996) (who
define this approach as “middle-out approach”) argue that top-down and bottom-up
approaches have a number of negative effects (like over-detailed ontologies, high
efforts needed, less stability) and they find a middle-out approach as a balanced
approach that they used successfully in practice.

In any case, the terms are in this step converted into classes which are then organized
into a hierarchy. A class should become a subclass if all instances of that class are also
instances of its super class.

Step 5. Define the properties of classes — slots. In this step the internal structure of the
concepts is created. As the classes from the list of terms created in Step 2 are already
selected, most of the remaining terms are properties of these classes. In general, there
are several types of properties that could be created: intrinsic properties, extrinsic
properties, structure properties, and relationships. The mentioned properties should
be attached to the most general class that can have that property.

Step 6. Define the facets of the properties. Each defined property should be described
in detail by defining some additional restrictions like the type of its value, cardinality,
domain (classes that property describes) and range (allowed classes of instances),

Step 7. Create instances. This is the last step in an ontology creation process. It results

in a list of individual instances of classes in the hierarchy.

By the characteristics of the presented methodology (simplicity, focus on results and iterative

approach) we can call this methodology an agile ontology development methodology, and that

1s why we find this methodology as the most suitable for our research process and we will use

it in defining our ontology.

5.1.5.3. UPON
Unified Process for ONtology building (UPON) is an ontology building methodology based
on the Unified Process (UP). The methodology is proposed by De Nicola et al. (2005) who

tried to show that the basic phases in developing a software system could be the same when

building an ontology. They also propose the reuse of UML modeling language to model some

aspects of ontologies as they find them use-case driven, iterative and incremental.

164

Similar to UP, UPON also defines cycles, phases, iterations and workflows. Each cycle
consists of inception, elaboration, construction and transition and results in the release of a
new version of the ontology. Each phase is further subdivided into iterations where five

workflows take place: requirements, analysis, design, implementation and test (see Figure
38).

cycles

A
7 phases I

_— / \ T~ Domain Engineer
Inception Construction) Knowledge Engineer <<~ -
Elaboration Transition
r . | ' | ' | : :
Require ments n ! ! '
Analysis I '-‘

q pes | [

esign v

Imple mentation (!

Test /\/V\/—\\ \'
N ' ' ' —
/ \ Involve ment

Iteration 1 y¢e ration 2 Iteration n-1 Jteration n

Figure 38 - De Nicola’s UPON framework
(De Nicola et al., 2005)

5.1.5.4. Uschold and King
Back in 1995, Uschold and King defined a skeleton for a methodology for building
ontologies. The skeleton consisted of four main phases which are defined as follows (Uschold
and King, 1995):

e Identify Purpose

¢ Building the Ontology

e Ontology capture

e Ontology coding

e Integrating Existing Ontologies

e Evaluation

e Documentation

If compared to other methodologies created later, we can conclude that this simple
methodology created the basis for its successors. By describing other mentioned
methodologies we already described all concepts that were focused by Uschold and King as

well.

165

5.1.5.5. Griininger and Fox

The ontology development methodology presented by Griininger and Fox (1995) is based on
the activities that transform [Informal Competency Questions through specification of
Terminology in First-Order Logic, to Formal Competency Questions and finally to
specification of Axioms in First-Order Logic. The procedure is finished after the
Completeness of Theorems is checked. This methodology defines formal approach in
ontologies development and provides a framework for evaluating the adequacy of created
ontologies by proving the completeness of theorems for the ontologies with respect to the

formal competency questions.

Similarly to Uschold and King’s methodology that highly influenced the methodologies for
development of semi-formal™ ontologies, this methodology highly influenced the
development of other methodologies for development of formal (also known as rigidly

formal) ontologies.

5.1.6. Ontology development tools and languages

Prior to moving forward in our research process we have to state what ontology representation
language and what ontology development tool we will use. The ontology representation
language and tools are usually related to ontology design methodology. Starting from
Ontolingua which is proposed by Gruber (1993a), there are many such languages like LOOM,
OCML or OWL. These languages vary in the degrees of formality and expressive power
(Corcho et al., 2003). OWL — Web Ontology Language®' created by W3C Web Ontology
Working Group, became the most widely used language and is supported by most generic
tools, such as editors or reasoning systems (Lumsden et al., 2011). Current version of OWL is
OWL2”,

In the same manner, many ontology development tools exist. Among many analyses and
comparisons of these tools we point out the analysis performed by Youn and McLeod (2006)
who compared fourteen ontology development tools by seven criteria. Although many of
these tools evolved a lot during the last years, it might be important to notice the authors’
conclusion that all of them have their advantages and disadvantages. The authors did not

propose any tool as the best solution.

20 Uschold and Gruninger (1996) classified ontologies upon their formality and complexity and they defined four
major categories as follows: highly informal are ontologies expressed in natural language; semi-informal are
ontologies expressed in structured form of natural language; semi-formal are expressed in artificially formally
defined language; and rigidly formal are those ontologies that have terms defined with semantics, theorems and
proofs.

! http://www.w3.0rg/2004/OWL/

* http://www.w3.org/TR/owl2-overview/

166

On the other hand, Khondoker and Mueller (2010) analyzed the usage of ontology editors and
found that SWOOP, TopBraid Composer, OntoTrack, Internet Business Logic, Protégé and
IHMC Cmap Ontology Editor are the only tools used by participants they questioned. Their
results show that 75% of all participants used Protégé and 41.95% of participants created the
ontologies in the domain of Information System Design. This gives us a solid basis to accept
the Protégé® as the most commonly used tool and the one to use in our ontology

development.

As Protégé natively works with Frames and OWL (and from version 4 it also supports
OWL2), we had to decide whether to use Frames or OWL as our ontology representation
language. According to Wang et al. (2006) the main difference between them is that Frames is
used when close-world assumptions (CWA) are suitable and OWL otherwise. The concept of
CWA represents the semantics with the presumptions that what is not currently known to be
true 1s false. On the other hand, capabilities and expressiveness of OWL are needed to deliver
the functional requirements, when we need Description Logic (DL) reasoning to ensure
logical consistency of ontologies, when we aim to create robust terminologies or when
classification is a paradigm for reasoning in applications. Although it is possible to use both

languages in our case, we find the use of OWL representation language more appropriate.

OWL is a language for defining and instantiating ontologies by defining descriptions of
classes, properties and their instances. It provides three increasingly expressive sublanguages
(W3C Web Ontology Working Group, 2004). OWL Lite supports classification hierarchy and
simple constrains features, OWL DL supports maximum expressiveness without losing
computational completeness and decidability of reasoning system, while OWL Full is meant
for users who want maximum expressiveness and freedom but with no computational
guarantee and with no full reasoning support. Although OWL DL has to include constructs
with some restrictions, in our ontology we need full reasoning support, and thus we will use

OWL DL representation language.

Besides defining the abstract structure of the ontology, OWL provides the ways in defining
their meaning in terms of formal semantic description which specifies how to derive the
logical consequences out of the ontology, i.e. facts not literally presented in the ontology but
entailed by the semantics. In OWL2 we can use two alternative ways of assigning meaning to
the ontologies: Direct Semantics** and RDF-Based Semantics™. According to (W3C OWL
Working Group, 2012), “OWL2 DL is used informally to refer to ontologies interpreted using

3 Protégé is a free, open-source, plugin-based platform that provides suite of tools to construct domain models
and knowledge-based applications with ontologies. It can be obtained for free from http://protege.stanford.edu/
** http://www.w3.org/TR/owl2-direct-semantics/

 http://www.w3.org/TR/owl2-rdf-based-semantics/

167

http://protege.stanford.edu/

the Direct Semantics and OWL2 Full is used informally to refer to RDF graphs considered as
ontologies and interpreted using the RDF-Based Semantics*. This means that we are more
interested in capabilities of Direct Semantics reasoning which assigns meaning directly to
ontology structures, resulting in semantics compatible with the model theoretic semantics of
the SROIQ*® description logic. This also brings the necessity of placing some restrictions’’ on

ontology structures in order to ensure that they can be translated into SROIQ knowledge base.

Finally, concrete syntax is needed in order to store OWL2 ontologies and to exchange them
among tools and applications. The primary exchange syntax for OWL2 is RDF/XML* but
other concrete syntaxes may also be used. These include alternative RDF serializations, such
as Turtlezg; an XML serialization’ 0; and a more readable syntax, called the Manchester
Syntax”'. As Protégé supports all mentioned syntaxes along with automatic translation among
them, we can later decide which of these alternatives to use while exporting our ontology into

a human readable format.

5.1.7. Final remarks on ontologies

Ontologies gained a huge popularity during the last two decades and are currently used in
different scientific fields. As they provide means of explicit and formal specification of
knowledge and conceptualization, which is readable to humans and to machines, we also
found it appropriate to use the ontologies as a tool in defining our framework for

methodological interoperability in multi-platform mobile applications development.

In previous chapters, we tried to give a short overview of a several concepts that are related to
ontologies and ontology development. First, for the purpose of this research we defined
ontology as an explicit formal conceptualization of a shared understanding of the domain of
interest which includes the vocabulary of terms in order to describe the domain elements,
semantics in order to define the relationships of the domain elements and pragmatics in order

to define possible usages of these elements.

** SROIQ represents fragment of first order logic with useful computational properties. An overview of DL
languages can be seen in (Belcar and Lovrenci¢, 2012). Belcar and Lovrenci¢ defined SROIQ languages as
follows: S — AL and C with transitive properties; AL — base attributive language that allows atomic negation,
concept intersection, universal restriction and limited existential quantification; C — complex concept negation; R
— limited complex role inclusion axioms, reflexivity and irreflexivity, role disjointness; O — nominals
(enumerated classes or object value restrictions); I — inverse properties; Q — qualified cardinality (number)
restrictions.

*7 The details on restrictions are given in Section 3 of OWL 2 Structural Specification document which can be
obtained at http://www.w3.0rg/TR/2012/REC-owl2-syntax-20121211/#Ontologies

* http://www.w3.0rg/TR/2004/REC-rdf-syntax-grammar-20040210/

* http://www.w3.org/TR /turtle/

% http://www.w3.org/TR/2012/REC-owl2-xml-serialization-20121211/
*!http://www.w3.0rg/TR/2012/NOTE-owl2-manchester-syntax-20121211/

168

We also presented the most common reasons for the use of an ontology and we argued about
their classification in accordance with different points of view. In this context we concluded
that in this research we will create domain ontology in order to semantically describe concepts
belonging to one specific domain — development of mobile applications for specific
platforms. The goal of such ontology is to create a knowledge basis for information system
that could guide the development teams in increasing the methodological interoperability by

reusing the created artifacts.

In order to choose an ontology development methodology, we gave a short overview of
several influencing ontology development methodologies which are either commonly used
today or made a great influence on the development of other methodologies. In this context,
we decided to use Noy and McGuiness’ methodology, namely Ontology Development 101,
which by its characteristics can be described as agile ontology development methodology.
This methodology consists of seven steps which are designed as guidelines in iterative

ontology development from scratch to final ontology.

Finally, we argued about the possibilities of using different ontology development tools and
ontology development languages. The research performed by Khondoker and Mueller (2010)
showed that by far the most widely used tool is Protégé tool developed at Stanford University.
As Protégé is aligned with the OD101 methodology, and being widely used from scientists
and practitioners in, among others, fields of Information Systems Development and
Knowledge Management, we decided to use it in our research as well. Subsequently, as
Protégé works with two ontology representation languages, Frames and OWL, we discussed

both and selected OWL2 DL as the most appropriate language in our case.

Having selected the ontology development methodology, development tool and representation
language we can advance to the next step in our research process — to define the ontology for

Android and Windows phone artifacts created in Mobile-D managed development process.

5.2. Android artifacts ontology

This chapter presents the development process and the final ontology describing the artifacts
that arose in the development of our prototype application for Android target platform by
using Mobile-D methodology. As described in previous chapters, we decided to use Noy’s
and McGuinness’s Ontology Development 101 (OD101) methodology as the guidelines for
development process. We also decided to use Protégé tool and to develop OWL2 DL
ontology.

169

The mentioned OD101 methodology is in detail described in (Noy and McGuinness, 2001) as
an iterative approach in ontology development that gained popularity mainly because of its
simplicity, clarity and focus on the results. Basic assumptions incorporated into the OD101
methodology include that there is no single correct way to model a domain; the best solution
always depends on the application and the expected extensions of the ontology; that ontology
development is necessarily an iterative process; and that concepts in the ontology should be
close to objects (nouns) and relationships (verbs) in the domain of interest (in the sentences

that describe the domain).

As we described in chapter 5.1.5.2, the whole methodology consists of execution of seven
steps. The following sections describe the final results obtained at the end of iterative

ontology development process.

5.2.1. The domain and the scope of the ontology

The domain and the scope of our ontology are clearly defined from the beginning of this
research process and there was no need for us to define it from scratch. As stated in our
research goals, the ontological description should describe the elements of methodological
interoperability containing structural and semantic aspects of sets of artifacts created in the
development process of (in this case) Android mobile application. Such ontology will be
reused in subsequent research steps to develop a common ontology for two target platforms

that aim to help in achieving higher methodological interoperability.

In order to precisely direct the ontology development process, we also defined a set of
competency questions that a knowledge base, based on this ontology, should be able to
answer:
e What are development phases, activities and tasks in Mobile-D methodology?
e As Mobile-D is an iterative process, what are the exact tasks performed in every
activity?
e What artifacts arise in the development process of Android mobile application?
e What artifacts originate from the used development methodology and what from
Android target platform?
e What are the categories that these artifacts can be categorized into?
e What artifacts are classified in any specific category?
e In what tasks are the specific artifacts created, updated or used?
e How are the artifacts mutually connected?
e What is the hierarchy among the identified artifacts?
e What are the final products in the development process?

e What artifacts are only used and not created in the process?

170

As it can be seen from the list of defined questions, the ontology should be capable of
answering the questions regarding the structural aspects of methodological phases, activities
and tasks, structural aspects of the identified artifacts and the semantic aspects regarding the

origin, type and use of artifacts.

5.2.2. Reuse of existing ontologies

We performed research and went through several ontology libraries (including Protégé
Ontology Library’>, DAML Ontology Library®® and ONKI Ontology Library Service**) but
were not able to find any existing ontology that deals with mobile applications development,
android development, software development artifacts or software development methodologies
that were suitable for reuse in our case. We have been able to reuse some vocabulary from top
level (upper) ontologies, but as our vocabulary was simple and in this case we do not put

specific focus to the vocabulary, we decided to build an ontology from scratch.

5.2.3. Identified terms

The list of terms that arise in our domain of interest was incrementally created during the
whole ontology development process. The final list of terms that are the base for our ontology
includes: phase, activity, task, artifact, task input, task output, artifact type, artifact origin,

artifact usage, artifacts hierarchy. Mentioned terms are described in Table 45.

Table 45 - Basic terms in Android Case Ontology

Term Context

Phase Mobile-D phases.

Activity Mobile-D activities structured according to phases.

Task Mobile-D tasks structured according to activities.

Task input Artifacts that are used as input while performing specific tasks.

Task output Artifacts that are produced or updated while performing specific tasks.

Artifact Any piece of software developed and used during software development and
maintenance. It includes models, tools, templates, documents et cetera.

Artifact type Characteristic types of artifacts that could be recognized in order to classify all identified

artifacts.

Artifact origin

In terms of reusability, artifacts origin becomes important. It defines the origin of
artifacts such as identifying those artifacts that are defined (or requested) by used
methodology or those that are products specific for target platform.

Artifact usage

The most important term. It includes knowledge on creation, usage and update of the
artifacts in concrete tasks.

Artifact hierarchy

Defines hierarchy among artifacts if it exists.

32 http://protegewiki.stanford.edu/wiki/Protege_Ontology Library
3 http://www.daml.org/ontologies/
** http://onki. fi/en/browser/

171

5.2.4. Classes and class hierarchy

In the process of class and hierarchy definition, we followed the advice from Uschold and
Gruninger (1996) and used middle-out approach by first defining more salient concepts and
then making generalizations and specializations as needed. The approach resulted in total

definition of 152 classes that are organized in 7 top level classes (see Figure 39).

= createsArifact (Domain=Range)

=== has individual

Inferred i

== has subclass
= hasArtifactOrigin (Domain=Range}

Art n'actOrlgln } hasArtifactType (Domain=Range)

= includes (Domain=Range)

isCreatedByTask (Domain=Range}

isPartOf (Domain=Range)

Phase] ..

= ic|lpdatedByTask (Domain=Range)

= ig|lzedByTask (Domain=Range)

= pdatesArtifact (Domain=Range)

Art IfactType J I'-‘ usesArtifact (Domain=Range)

Thing

AT [" @ Artifact

2% v

Figure 39 - Android Case ontology top level artifacts

The above figure focuses class Artifact which is top level class (hasParent Thing) but also has
connections with defined classes Task, ArtifactType, ArtifactOrigin and itself. Although

existing, the relationships among other top level classes are not presented in this figure.

We believe that at this point, two additional explanations are needed regarding the presented
classes. First, class Inferred represents all classes defined only by using Description Logic
(DL). These classes are populated by respective equivalent classes by the reasoning tool. This
is one possible approach in extracting knowledge from ontology definition. Figure 40 shows

asserted sub-model of Inferred class.

172

Ex xpl:re.ﬂ-.ntwltles)

d_.-—"- ———
-
is — D
{h SysternTestAndFmﬂmtnntles __)
B '(__.-“'--
—— . { i%a — e
(USEHAHI!F'IEHHI:EHD!I:HFHEHE:) Iu' ,/y & StahilizEAnti\ritiE:}l
T - __iza-——"'_____ o T
is—/ ‘ Actlwtl esEIyF'f ffeﬂs_ﬁ_— i \Ln iti a_lleAnttrLtf_s__;
/ = e =
i QPrnduntlnnlzeAntlvltles 2
|'l B -
i TR o, L
.'(/ ___':H___S_ENmEArtlfa ‘ii-r-.’/l f_&:_:flpe[!eﬁmtmnTi;s_lf__dJ
/ . e T T
PO "
[(UthErAl‘tlfil:t.f‘,' . HE|EESEDE?TE§G/'
{7/ o —_— = _
[/ —
I/ e —— ——
ﬂm ?,/y 'f AndroidArifa ::15%:' (_ W:ﬂ{lngﬂaylnﬂlterah:nTasJG »
o -% A e | ——
I Thlng M—“‘*ﬁ—i Inferred)= /
—_— — 53 —
N _ﬁwj\ {Fil‘li|ﬂﬂnul’l‘lEl‘ltitlﬂl‘l J / (_DnnumentatlnnWrapUpTasks >
Ay — e il
IR o Iga—
A e — — .
VY s ; P -~
‘.I' (. TasksByActivities \LSy-sternTE:tTaslu_;l
\ \ \\\ T _ o
- o
Pl DayTasks
(PlanningDayTasks)

\H"‘-\..___ - .

= :
(':_StakehnIderE:tahIishmentTasks__:)

hy ",) .
is-a \'“\H e —
'_H__ElnrrnwEdArhfant 3

I"__i"ra Mh“--,__
b '\-\.,_____ e T e
ht 'ifrnjentSEtupTaslu_:}

 MethodologicalArifacts

is-a _EHH
‘\\ C:_-F'_IanningBayInDltElatinnTask_s:f)

1
I\l\s—a ~ -
\\ {;;JentEdahllshmentTam)

o

"

——
Far . "
.\.!.fl.l'nrkm glayT ask_s_._,.

Figure 40 - Android Case ontology asserted subclasses of Inferred class

Secondly, classes ArtifactOrigin and ArtifactType presented in Figure 39 are created by using
the so-called Value Partition pattern. This pattern uses a covering axiom in order to define a
class with finite number of subclasses. In our case, classes have finite number of types and

origins.
All other classes created and defined in the ontology, along with the class hierarchy are

presented in Table 46.

173

Table 46 — Android Case ontology classes and class hierarchy

. - . Artifact Artifact
Thing Phase Activity Task Artifact Hac mac Inferred
Type Origin
Documentation Acceptance Test Acceptance Test . . Activities by
Phase Explore Wrap-up Generation Acceptance Test Template Sheet Code Android Artifact Phases (5)
. B Methodological Android
Activity Initialize Planning Day Acceptance Testing Android Activity Android Class Document Artifact Artifacts
Task Productionize Planning]?ay In Acceptar.lce Test API Documentation Apph?atpn Document Other Artifact Borrpwed
0 Iteration Review Description Element Artifacts
. . Project Architecture Line oy o . . . Final
Artifact Stabilize Establishment Definition Application Icon Application Manifest Example Service Artifact Documentation
Artifact | System Text . Architecture Line Application Architecture Line . .
Type And Fix Project Set-up Planning Screenshot Description License Final Products
Artifact Continuous Architecture Line . Methodological
Origin Release Day Integration Plan Class Model Mobile Model Artifacts
Customer Model
Inferred Scope Definition Communication Class Model Web Data Model Mobile Other Artifacts
! Element
Establishment
Stake Holder Customer . Service
Establishment Establishment Data Model Web Defect List Product Artifacts
Documentation Development Tasks by
System Test Wrap-up Deployment Package Environment Resource Activities (11
Development Used and
Working Day Environment Set-up | Unrelated Software Driver Software Produced
Tool Documents
Working Day In
. Inform Customer Example Code Google API Key Standard
0 Iteration
Initial Project . Initial Requirements
Planning Google Play Services Document Template
Initial
Requirements Integration Test Iteration Backlog
Analysis
Initial
Requirements Iteration Plan Java Code
Collection
Iteration Planning JSON Standard Layout

174

Pair Programming

Layout Element

Localization String

Practice
Post Iteration . .
Workshop Measurement Plan Mobile Application
Pre Release Testing Mobile-D Process PHP Code
Library
Process
Establishment Product Backlog Product Proposal
. o Project Management .
Publish Application Software Tool Project Plan
Refactoring Project Plan Project Plan
Practice Checklist Checklist Template
Release Project Plan Gantt Prototype
Ceremonies Chart Functionality
Requlrem§ nts SADD Document Story Card
Analysis
System Integration | Story Card Template System Test Plan
System Test System Test Report Task Card
Test Driven
Development Task Card Template Test Results
Practice
Wrap-u, Throwaway UI Illustrations
p-up Prototype
UML Class Unit Test
Web D.evelopment Web Service
Environment
Web.SerV.lce XML Resources
Specification

175

All classes are presented in alphabetical order. Class names are made easier to read by
removing suffixes and presenting the names in multiple-word format rather than in a single-
word format (so-called CamelCase) that is used in the ontology. Additionally, in the ontology,
the classes are described by several annotations including labeling and commenting. Where
applicable, description of Mobile-D elements is taken from (Abrahamsson et al., 2005a),
while other classes (especially artifacts) are described as presented in chapter 4.2. Additional
details on defined classes and the ontology in general including description logic can be found

in OWLDoc documentation available at http://barok.foi.hr/~zstapic/ont/acao/doc/.

5.2.5. Properties of classes

Defined properties are closely connected with classes. We define a concept of property as a
binary relation between two things. In ontology definition, properties should be observed as
relations between individuals that are described through relation between two classes of
individuals. Our resulting ontology contains only object properties and annotation properties,

as we had no need to use datatype properties.

As annotation properties are used to provide ways of describing other ontology elements (for
human reading), in this chapter we will put focus on created object properties. In order to
define knowledge on structure, semantics and usage of ontology elements we defined 12

object properties. Table 47 shows properties and their detailed description.

Table 47 - Android case ontology object properties description

Property Facets Description
consistsOf Domain: Property connecting individual Activities that are performed
Activity or Phase in specific Phases and individual Tasks that are performed
Range: during specific Activities. Logically, this property is inverse
Task or Activity property of isPerformedin, but we explicitly defined it in
order to have the information available even in the original
model.
createsArtifact Inverse Of: Inversed property of isCreatedByTask. It connects Task
isCreatedByTask individuals and created specific Artifact individuals.
Domain: Task
Range: Artifact
hasArtifactOrigin Characteristics: Property connecting individual Artifact and individual in
Functional definite class ArtifactOrigin which defines several possible
Domain: Artifact types of Artifact origin. This property is used to classify
Range: ArtifactOrigin artifacts by types but from different point of view than
property hasArtifactType.
hasArtifactType Characteristics: Property connecting specific Artifact individuals with
Functional ArtifactType individuals. It defines type of the specific
Domain: Artifact Artifact according to defined classification according to
Range: ArtifactType artifact usage.
includesArtifact Characteristics: Inverse property of isPartOfArtifact. It defines individual
Asymmetric Artifacts that are included in observed Artifact.
Inverse Of:
isPartOfArtifact
Domain and Range:

176

http://barok.foi.hr/~zstapic/ont/acao/doc/

Artifact

isCreatedByTask Inverse Of: Property connecting the Task individuals that create specific
createsArtifact Artifact individuals. Creating the artifact logically means it
Domain: Artifact usage even if it is not explicitly stated.
Range: Task

isPartOfArtifact Characteristics: Property connecting individual Artifacts into hierarchy. This
Asymmetric property is Asymmetric as two individuals cannot be both part
Inverse Of: of each other.
includesArtifact
Domain: Artifact
Range: Artifact

isPerformedIn Domain: Property defines relationship between specific Task
Activity or Task individuals and owning Activity. Logically, this property is
Range: inverse of consistsOf property, but we defined both separate
Phase or Activity to have the information available even in the original model.

isUpdatedByTask Inverse Of: Property connecting the Task individuals that update specific
updatesArtifact Artifact individuals.
Domain: Artifact
Range: Task

isUsedByTask Inverse Of: Property connecting the Task individuals that read specific
usesArtifact Artifact individuals.
Domain: Artifact
Range: Task

updatesArtifact Inverse Of: Inversed property of isUpdatedByTask. It connects Task
isUpdatedByTask individuals and updated specific Artifact individuals.
Domain: Task
Range: Artifact

usesArtifact Inverse Of: Inversed property of isUsedByTask. It connects Task
isUsedByTask individuals and used specific Artifact individuals.
Domain: Task
Range: Artifact

The restrictions defined by Description Logic (DL) used in OWL 2 DL had some influence on
defined object properties. For instance, transitive properties cannot be defined as asymmetric
or irreflexive, functional properties cannot be transitive etc. But, all concepts that are
restricted by direct definition can be modeled alternatively and thus we had no problems that

would threaten our logical model.

5.2.6. Knowledge definition and inference

Connecting the instances of classes with defined properties we had to follow OWL 2 DL
restrictions, rules and syntax. Additionally, OWL DL is based on Open World Assumption
(OWA) logic paradigm, and as we have already stated, the OWA paradigm assumes that we
cannot conclude that something does not exist until it is explicitly stated that it does not exist.
In other words, we cannot assume that something is false just because it is not stated to be
true. Thus, for example, logical definition of artifact MobileDProcessLibrary would be

insufficient as presented in Code 4 example.

177

SubClass Of:

Artifact

hasArtifactOrigin some MethodologicalArtifact
hasArtifactType some Document

isUsedByTask some Task

Code 4 - Insufficient class description in OWA paradigm

As stated in Code 4 we defined MobileDProcessLibrary artifact to be the subclass of a named
class Artifact, but also to be a subclass of unnamed classes of things that have origin as
MethodologicalArtifact, or that are of type Document or used by any Task. The good side of
OWA is that in this case we cannot conclude that our artifact is equivalent to other artifacts
that for instance have origin as MethodologicalArtifact. Such conclusion, even if possible,
would be wrong. But, on the other hand, although we only stated that our artifact is used by a
Task we cannot conclude that it was not created and was not used by some (the same or
another) Task>. Thus, query searching for all artifacts that are only used in our process, as

presented in Code 5, would not obtain the correct answer.

Artifact

and (not (isCreatedByTask some Task))
and (not (isUpdatedByTask some Task))
and (isUsedByTask some Task)

Code 5 - Query searching for used but not created Artifacts

In order to completely define the mentioned artifacts we have to use closure axioms and to
explicitly state that such artifacts were not created and not modified in our development
process. Thus, the complete description looks like the one presented in Code 6. Of course,
there are additional possibilities of “closing” open world logic in OWL but we will not

elaborate on them here.

SubClass Of:

Artifact

hasArtifactOrigin only MethodologicalArtifact
hasArtifactOrigin some MethodologicalArtifact
hasArtifactType only Document

hasArtifactType some Document

isUsedByTask only Task

isUsedByTask some Task

not (isCreatedByTask some Task)

not (isUpdatedByTask some Task)

Code 6 - Sufficient class description in OWA paradigm

Using the same approach, we described every class defined in our ontology. Other examples

are more complicated only if many properties are applied. For example (see Code 7),

% For instance, this would be possible in CWA paradigm.

178

SystemTestPlan artifact is defined by six different properties and some of them describe

“more than one” cardinality relationship.

SubClass Of:
Artifact
hasArtifactOrigin only MethodologicalArtifact
hasArtifactOrigin some MethodologicalArtifact
hasArtifactType only Document
hasArtifactType some Document
isCreatedByTask only InitialProjectPlanningTask
isCreatedByTask some InitialProjectPlanningTask
isUpdatedByTask only

(InitialRequirementsAnalysisTask

or PostIterationWorkshopTask

or ProcessEstablishmentTask

or SystemTestTask)
isUpdatedByTask some InitialRequirementsAnalysisTask
isUpdatedByTask some PostIterationWorkshopTask
isUpdatedByTask some ProcessEstablishmentTask
isUpdatedByTask some SystemTestTask
isUsedByTask only

(ArchitectureLineDefinitionTask

or ArchitectureLinePlanningTask

or DocumentationWrapUpTask

or IterationPlanningTask

or ProcessEstablishmentTask

or SystemTestTask

or TestDrivenDevelopmentPractice)
isUsedByTask some ArchitectureLineDefinitionTask
isUsedByTask some ArchitectureLinePlanningTask
isUsedByTask some DocumentationWrapUpTask
isUsedByTask some IterationPlanningTask
isUsedByTask some ProcessEstablishmentTask
isUsedByTask some SystemTestTask
isUsedByTask some TestDrivenDevelopmentPractice

not (isPartOfArtifact some Artifact)

Code 7 - Example class description in OWL2 DL

Similarly, DL queries are used to define the already mentioned inferred classes of objects that
are from our specific interest in this ontology. We defined 24 DL queries that answer the
competency questions stated earlier in this chapter. The examples of created description logic

queries are presented in Table 48.

179

Table 48 - DL Queries for inferred classes

Inferred class

DL Query

Activities by Phases (5)

isPerformedIn some Explore

Android Artifacts

hasArtifactOrigin some AndroidArtifact

Borrowed Artifacts

Artifact
and (not (isCreatedByTask some Task))
and (not (isUpdatedByTask some Task))
and (isUsedByTask some Task)

Final Documentation

Artifact
and (not (BorrowedArtifacts))
and (not (isPartOfArtifact some Artifact))
and (hasArtifactType some Document)

Final Products

Artifact
and (not (BorrowedArtifacts))
and (not (isPartOfArtifact some Artifact))
and (hasArtifactType some Product)

Methodological Artifacts

hasArtifactOrigin some MethodologicalArtifact

Other Artifacts

Artifact
and (not (AndroidArtifacts
or MethodologicalArtifacts
or ServiceArtifacts))

Service Artifacts

hasArtifactOrigin some ServiceArtifact

Tasks by Activities (11)

isPerformedIn some PlanningDayActivity

Used and Produced
Documents

Artifact
and (not (isPartOfArtifact some Artifact))
and (hasArtifactType some Document)

A part of inferred model for class Artifact is presented in Figure 41°°. As we can see, the
reasoning system rearranged the artifacts and grouped them according to the defined classes

for inference.

Full OWL Documentation for Android Case Ontology which contains DL description of all

classes and queries is available as OWLDoc on http://barok.foi.hr/~zstapic/ont/acao/doc/.

3¢ Full inferred model is available at http://barok.foi.hr/~zstapic/ont/acao/inferred/inferred.png

180

http://barok.foi.hr/~zstapic/ont/acao/doc/
http://barok.foi.hr/~zstapic/ont/acao/inferred/inferred.png

AR . TmnesuB > .

MethodologicalArtifacts . | - Q’ﬂ‘_‘ﬂjwmmemu?ﬂ-})
7, Sy SIuryCar:D

Measmmemp\:D

ctureLineFlan isa

ProjectPlancheskist

nevahunsPl;)

jﬂenﬂenﬂa@
q SyﬁamTeﬂP\a-D

AcnzptannzTEs‘TEmp\alESh29
smwcamemma«e)
\ TamcarﬂTemvlat‘eD
B

_ T ProductPraposal

L s

isa, v
UsedAndProducedDacuments
<
y, —
// MabileDPrecessLibrery
£ iss
3 GooglePlaySe i 5
i3
. E————
AF‘\I}nnumEnlalmD
i3
' iwa £
:
Eximp\eﬂu;s
Layout)
is-

LacalizationStri

Javacade)
)

Gryeo—Cim

\ ﬂ-r;v:»wavp rototype

XMLRmm§

I}epluymantPicka@

) DevelopmentEnviianment
isa = —
isa J— —

2 < DevelopmentUnrelatedSoftwareToal
CtherArtifacts] —_ S
=7 2 —
iver)
2 N

Full picture is available at http://barok.foi.hr/~zstapic/ont/acao/inferred/artifact.png

Figure 41 - Part of inferred model for class Artifact

181

http://barok.foi.hr/~zstapic/ont/acao/inferred/artifact.png

5.2.7. Final remarks on Android Case Ontology

By following Ontology Development Methodology 101 (Noy and McGuinness, 2001) we
have created an ontology which describes the development process of our prototype android
mobile application by utilizing Mobile-D methodology. The point of view taken in this
ontology development process, as argued in chapter 4.1, puts the artifacts created and used in

this process in a special focus.

The resulting ontology comprises of 152 classes, 12 object properties and 1692 axioms
defined by ALCRIF description logic expressivity sub-language’’. The ALCRIF DL
expressivity states that the ontology uses constructs of (AL) Attributive language atomic
negation, concept intersection, universal restriction, limited existential qualification, (C)
complex concept negation, (R) limited complex role inclusion axioms, reflexivity and

irreflexivity, role disjointness, (I) Inverse properties and (F) functional properties.

Due to their size and complexity, we decided not to put Android and Windows Phone
ontologies as appendixes to this thesis®, but to make the ontologies and their full OWLDoc
documentation available online. Android Case Artifacts Ontology OWLDoc documentation is

available at http://barok.foi.hr/~zstapic/ont/acao/doc/ and ontology in OWL/XML format is

available at http://barok.foi.hr/~zstapic/ont/acao.owl.

The ontology syntax and logical correctness was tested by several reasoners, including
FaCT++, HermiT 1.3.8, Pellet and RacerPro. Additionally, the inferred knowledge was
carefully observed and corrected by the author and the supervisors until we have got errorless

results.

This ontology will, along with Windows Phone Case Artifacts Ontology, be used in the last
step of our research process the goal of which is to define a common ontological description

of multi-platform mobile application development with special focus on artifact reusability.

5.3. Windows Phone artifacts ontology

This chapter presents the development process and the final ontology describing the artifacts
that arose in the development of our prototype application for Windows Phone target platform
by using Mobile-D methodology. The development of this, second, ontology was a straight-
forward task that was performed with a great level of reusability of the existing ontological

description created in the Android case. Although we followed again the same ontology

37 Results are taken from Ontology metrics Protégé plugin.
* Final, upperlevel ontology which aims for methodological interoperability is presented in Appendix E.

182

http://barok.foi.hr/~zstapic/ont/acao/doc/
http://barok.foi.hr/~zstapic/ont/acao.owl

development methodology (OD101), the first two steps were skipped as the domain and the
scope of this ontology are basically the same as described in the first case. In the same
manner, competency questions regarding the development methodology, development
process, artifacts, their classification and categorization, hierarchy, use etc., also remained
unchanged. Finally, the goal of this ontology is also to reason about the mentioned questions,

and to use it in the next research step while defining a common ontological description.

5.3.1. Existing ontology reuse

In contrast to the development of the first ontology from scratch, in the second case we were
able to reuse our existing ontology. Due to the characteristics and the need of a later ontology
merging, the unique ontology element identifiers called Internationalized Resource Identifiers
(IRI) should not be changed unless a described concept is logically different from the existing

concept.

Thus, we imported an existing ontology, and maximally tried to reuse it while developing the
second ontology. Our approach was to change the existing Android elements into applicable
Windows Phone elements rather than deleting the Android and creating a new Windows
Phone element. The changed concepts got new IRIs, while physically unchanged concepts

preserved IRIs created in the Android Case ontology development.

By using Protégé’s tool for ontology comparisons and by comparing the first and the second
ontology, we can see that 10 ontological elements were renamed, 1 element was added, 16
additional were updated and their IRIs were changed which resulted in small changes in 39
additional elements but their IRIs were not changed. These elements are mainly artifacts and

concepts very strictly connected to artifacts.

Having these numbers in mind, we can conclude that 66 concepts out of 165 were changed,
and that the rest were reused. Additionally, the comparison was not performed at the level of
axioms, but a rough analysis shows that about less than 10% of all axioms (1708) were

changed and that the rest were reused.

5.3.2. Classes, properties and hierarchy

The overall asserted class hierarchy defined in the first ontology was not changed in our
second case. Only two sets of classes were updated: ArtifactOrigin and Artifact. As it can be
seen in Figure 42, the context of Artifact did not change (we changed its subclass structure not
visible in this image), while the subclass structure of ArtifactOrigin now includes

WindowsPhoneArtifact class of instances.

183

= createsArifact (Domain=Range)
== hag subclass
* hasArtifactOrigin (Domain=Range)

= haszArtifaciType (Domain=Range)

includesArtifact (Comain=Range} OtherArtifact]

= zCreatedByTask (Domain=Range)

= jzPartOfArtifact (Demain=Range)

<]

= izlpdatedByTask (Domain=Hange) ! " ServiceArtifact |
= jzUsedByTask (Domain=Range) [ArtifactDrigin] S
= pdatesArtifact (Domain=Range) 25t 3 i
= zesArtifact (Domain=Range) MethodologicalA
e rtifact
: ‘ 1l ArtifactType I \
B S WindowsPhoneArt
, Y ifact
_ O . \-'\';C‘ :
A P
P it _<]__ _\:\-\. e

2RIt e Adifact. (A

Figure 42 - ArtifactOrigin and Artifact in WP ontology

The most important changes and updates were created in the class of Artifacts, where all
Android specific classes have been replaced with Windows Phone specific classes. An
interesting point here is that direct mapping between similar concepts in these two platforms
was done in 10 out of 11 cases. Only one completely new artifact was identified in Windows
Phone environment. Table 49 brings an enumeration of all 61 artifacts that were recognized in

WP development case and described in the ontology.

Table 49 - WP case artifacts defined in ontology

Artifact
Acceptance Test Acceptance Test API Documentation Application Description
P Template Sheet PP P
Application Icon Application Screenshot Archltect.ur? Line Architecture Line Plan
Description
Bing Maps Key Class Model Mobile Class Model Web CS Code
Data Model Mobile Data Model Web Defect List Deployment Package

Devs:lopment Development Unrelated DotNet Class Driver
Environment Software Tool

184

Example Code

Initial Requirements

Integration Test

Iteration Backlog

Document
Iteration Plan JSON Standard Measurement Plan Microsoft Phon'e St
Toolkit
. . Mobile-D Process
Mobile Application Library Page CS Page XAML

Page XAML Element PHP Code Product Backlog Product Proposal
Project Management Project Plan Project Plan Checklist Project Plan Checklist

Software Tool Template

Project Plan Gantt Chart

Prototype Functionality

Resource File

Silverlight Map Control

SADD Document Story Card Story Card Template System Test Plan
System Test Report Task Card Task Card Template Test Results
Throwaway Prototype UI Illustrations UML Class Unit Test
Web D.e velopment Web Service Web.SerV}ce WMAppManifest
Environment Specification
XAML Description

I:l Mapping between Android and WP concepts possible |:| New concept in WP

On the other hand, we reused all property definitions and there was no need to change or
update any property (see Table 47 for details on all 12 properties) at this point. This brings us
to the conclusion that basic ontological model describing development process for single
platform is well defined. This also suggests that the model could be easily reused in definition
of development process for other platforms without the need for changing any infrastructural

semantic constructs.

The OWLDoc document containing details on defined classes and on the Windows Phone

Case Artifacts Ontology in general is available at http://barok.foi.hr/~zstapic/ont/wpcao/doc/.

Additionally, figure representing asserted class model along with named DL queries is

available at http://barok.foi.hr/~zstapic/ont/wpcao/asserted/full.png.

5.3.3. Updates in knowledge definition

Except the artifacts marked as completely updated or new there are several other artifacts that
have undergone some semantic changes in this ontology. It is important to have these changes
in mind for the preparation of the ontologies merge and the creation of a common ontology
for multi-platform development, as these could be the most hidden sources of future errors

and misleading logic.

For example, as shown in Code 8, Integration Test artifact (which was classified as Code

artifact in Android case) is now defined as Document Artifact due to the fact that there are no

185

http://barok.foi.hr/~zstapic/ont/wpcao/doc/
http://barok.foi.hr/~zstapic/ont/wpcao/asserted/full.png

available automatic or robotized integration testing tools. Although the artifact name
remained the same, the new definition included changes in other relations as well, including

the Tasks creating, using and updating this artifact and its hierarchy in the artifacts graph.

SubClass Of:
Artifact
hasArtifactOrigin only MethodologicalArtifact
hasArtifactOrigin some MethodologicalArtifact
hasArtifactType only DocumentElement
hasArtifactType some DocumentElement
isCreatedByTask only TestDrivenDevelopmentPractice
isCreatedByTask some TestDrivenDevelopmentPractice
isPartOfArtifact only SystemTestPlan
isPartOfArtifact some SystemTestPlan
isUpdatedByTask only

(ContinuousIntegrationPractice

or PreReleaseTestingTask

or SystemIntegrationTask)
isUpdatedByTask some ContinuousIntegrationPractice
isUpdatedByTask some PreReleaseTestingTask
isUpdatedByTask some SystemIntegrationTask
isUsedByTask only

(ContinuousIntegrationPractice

or PreReleaseTestingTask

or SystemIntegrationTask

or SystemTestTask)
isUsedByTask some ContinuousIntegrationPractice
isUsedByTask some PreReleaseTestingTask
isUsedByTask some SystemIntegrationTask

isUsedByTask some SystemTestTask

Code 8 - Updated Integration Test artifact

Other similar changes include different position in hierarchy of Resource File artifact if
compared to Android artifact with similar purpose (Localization string) and changes in
description of many artifacts. All these changes will have to be properly addressed in

common multi-platform ontology.

All other semantic constructs querying knowledge from the described ontology (as presented
in Table 48) remained the same and the mentioned changes in artifacts definition did not

influence on them.

For example, the DL query on Used and Produced Documents is given in Table 48 and
graphical representation of asserted class description is presented in Figure 43. These
assertions are created to be populated by a reasoner using the ontologically defined

knowledge.

186

[Arifact B

o R — —_—
¢ UsedAndProducedDocuments
el - g
[Inferred W=

Figure 43 - Used and Produced Documents asserted class model

Thus the inferred model (obtained after performing reasoning on the ontology definition and
queries) presented in Figure 44 shows that query named Used And Produced Documents is
classified as Artifact and that it consists of two asserted classes defining documents that are
used as inputs in whole Mobile-D process (Mobile-D Process Library and Product Proposal),
and another query named Final Documentation that is populated by classes defining Mobile-
D produced documents. Asserted classes are light-yellow in presented figures and named DL

queries which aim to extract knowledge from the ontology are colored light-brown.

__(.Ii'\itialRequirementsDocumen‘t_ b

4‘:‘MobiIeDProcessLibrary.:.-- &

pa———
T —, _ — — P
4 Inferred Bt { Aifact b= _UsedAndFroducedDocuments =—%*—— FinalDocumentation T

— — — ~F ——za_ — ‘CM?,,\

A systemTestPlan)
o _’_..SystemTestReport“',-

~—A ProductBacklog)

!-ProductProposal

Niga e e
\\ 1_$_-oﬂwaremchitecture;\ndDesignDescriptionDocumeﬁt_Z-
" —_ R

~—

4 ProjectPlan |

Figure 44 - Used and Produced Documents asserted class model

As the inference in this case, and in all other DL queries, resulted in semantically correct
information, we can conclude that this ontology, although upgraded and updated is still

logically consistent and valid. This proves extensible and updatable design of our ontology.

5.3.4. Final remarks on Windows Phone Case Ontology

In this chapter we presented the specifics of the created Windows Phone Case Artifacts
Ontology. Although we followed OD101 methodology, several steps in ontology definition
process were skipped and the results were reused from similar process performed for the
Android Case. The most important factor in ontology development process was the possibility
of partial reuse of an existing ontology. The basic ontology structure, the properties definition
and knowledge extraction DL queries were completely reused, while some classes were

reused and other were updated or created from scratch.

The resulting ontology comprises 153 classes, 12 object properties and 1708 axioms defined
in the ALCRIF DL expressivity sub-language. Similar to the Android case ontology, due to its
size and complexity, we decided not to put the ontology definition as appendix to this thesis,

but to make the ontology and its full OWLDoc documentation available online. Windows

187

Phone Case Artifacts Ontology OWLDoc documentation is available at
http://barok.foi.hr/~zstapic/ont/wpcao/doc/ and ontology in OWL/XML format is available at

http://barok.foi.hr/~zstapic/ont/wpcao.owl web location.

Another important aspect of this ontology development process is that it proved the validity
and flexibility of the existing Android ontology and thus it validated the conceptual model
that is the base for our ontologies targeting single platforms. As we argued in the previous
chapters, during the update of the existing imported ontology into a new ontology targeting
different mobile platforms, there was no need for us to change or update any properties, basic
ontology structure, defined classes or DL queries. We just had to redefine several primitive
classes and to align the ontology with the artifact use, types and origin. The tests and the
reasoning performed by several reasoners showed that the model is still valid and that the
outputs and the results are as expected. This proves the extensibility and updatability of the

designed ontology.

This ontology will, along with Android Case Artifacts Ontology, be used in the last step of
our research process where we will define a common ontological description of multi-

platform mobile application development with a special focus on artifact reusability.

5.4. Common ontology for methodological interoperability

Having the two ontologies describing the development of the same mobile application for two
target platforms, we can now move forward and define a new upper-level ontology. This
ontology will combine the already described existing knowledge with the new axioms on
reusability and thus result in an ontological specification capable of providing the information

on methodological interoperability achieved through the artifact reuse.

In this sense, this chapter presents the development process and the final ontology describing
the artifacts that arose in the development of our prototype application for two target
platforms by using Mobile-D methodology. The chapter presents two distinct sets of activities
that were performed during this development. First we merged the two existing ontologies
and then created an additional conceptualization related to artifact reusability. In this sense,
we had to enhance the methodology that was used in the development of specific ontologies —
Ontology Development 101 (Noy and McGuiness, 2001) — as it does not include any tasks

related to ontology merging.

In the end of the ontology development process, the ontology was evaluated by seven
different mechanisms, including the execution of the sequence of knowledge acquisition

queries which gave semantically correct results validated by domain experts.

188

http://barok.foi.hr/~zstapic/ont/wpcao/doc/
http://barok.foi.hr/~zstapic/ont/wpcao.owl

5.4.1. The domain and the scope of the ontology

The domain and the scope of the ontology were defined at the beginning of our research
process. We aimed to ontologically describe the elements of methodological interoperability
containing structural and semantic aspects of sets of artifacts created in the development

process of multi-platform mobile application.

By structural aspects we presume the modeling and knowledge of connections and hierarchy
that occur among artifacts (inter-artifact), along with those that occur in relationships of
artifact-task, task-activity and activity-phase in the selected development methodology. By
semantic aspects we imply the conceptualization of knowledge that includes artifact’s
meaning, its content, classification and possibility of reuse. The combined structural and

semantic knowledge should provide solid basis capable of answering competency questions.

We already defined competency questions related to application development targeting any
single platform. Those questions should be answerable with this ontology as well, and they
include:

e What are development phases, activities and tasks in Mobile-D methodology?

e As Mobile-D is iterative process, what are the exact tasks performed in every activity?

e What artifacts arise in the development process of Android mobile application?

e What artifacts originate from used development methodology and what from Android

target platform?

e What are the categories that these artifacts can be categorized into?

e What artifacts are classified in any specific category?

e In what tasks are the specific artifacts created, updated or used?

e How are the artifacts mutually connected?

e What is the hierarchy among the identified artifacts?

e What are the final products in development process?

e What artifacts are only used and not created in the process?

We updated this list with an additional set of questions regarding the artifact reusability
semantics. These new questions that guided us when enhancing the existing merged
ontologies are stated as follows:

e What platform specific artifacts are classified as reusable?

e What artifacts can be reused in any given development phase?

e What artifacts can be reused in any given development activity or task?

e What artifacts are reusable in accordance with their type or origin?

The list of defined questions can be extended if necessary, but for the purpose of this research

and in accordance with our research goals we found it sufficient to include the knowledge

189

regarding the structural aspects of methodological phases, activities and tasks, structural
aspects of the identified artifacts, semantic aspects regarding the origin, type, use and reuse of
artifacts. Although it is not in the scope of this research, we sincerely encourage the analysis
of another semantic aspect — intra-artifact aspect — which should answer questions like
“Which part of any partially reusable artifact can be reused and which does not?” or “How

specific artifact is reusable: by its structure, content, inner logic or their combination?”

5.4.2. Merging the existing ontologies

The development process of the upper-level ontology (namely Multiplatform Case Artifacts
Ontology) was significantly determined by the fact that we had already developed two
platform specific ontologies which should be reused and thus the ontology development
process included two rather distinct tasks: reusing the existing ontologies and semantically

enhancing the new one.

Although the Ontology Development 101 (Noy and McGuiness, 2001) advises the reuse of
existing ontologies, it does not provide any instructions on how to implement existing
ontologies into a new one. The decision is left to the developer, and in general there are two
main approaches that can be taken: existing ontology/ontologies import or existing ontologies
merge. The import is usually a better option if the existing ontologies are distinct (e.g. disjoint
by their constructs) and if there is no need for changing them. In our case, the existing
ontologies overlapped significantly semantically and even physically and additionally, it was
necessary for us to add new knowledge regarding reusability in existing constructs. On top of
that, while developing the Windows Phone Case Artifacts Ontology we put a significant effort
in properly reusing the Android Case Artifacts Ontology in order to make the merging process

easier.

The two mentioned ontologies were merged by Protége’s Ontology merging tool. This tool, as
well as other ontology merging tools, does not provide many merging options. No effort was
done to automatically resolve any conflicts, and no effort was done either to provide the user
with report on these conflicts as well. The tool simply merges concepts with exactly the same

IRI into one concept, and all other concepts are left intact.

However, this lack in ontology merging tools had no significant influence on our merging
process, as all platform independent artifacts had the same (reused) IRI, while other, platform
dependent artifacts had platform specific IRIs, which ensured that all platform specific
artifacts were preserved in the new ontology. An example of automatically merged ontology

is given in Figure 45.

190

Android Case Artifact Ontology Automatically merged ontology WindowsPhone Case Artifact Ont.

/ acao: \ (acao: B (acao: \
ProductBacklog) " ProductBacklog D L ProductBacklog
acao:) > (acao:)
UnitTest) L UnitTest)
(wpcao: \: (wpcao:
L UnitTest) L UnitTest
acao:] > (acao:)
JavaCode J L JavaCode)
(wpcao:) < (wpcao:
K j k CSCode / & CSCode /

acao — IRI prefix of http://www.foi.unizg.hr/ontologies/AndroidCaseArtifactOntology#
wpcao — IRI prefix of http://www.foi.unizg.hr/ontologies/WindowsPhoneCaseArtifactOntology#

C] — reused construct

Figure 45 - Example of automatically merged ontology

As it can be seen from the above Figure, when it comes to merging of the artifacts, we had
three specific cases. First, the most common case represents the merge of the two already
reused constructs, which resulted in a single new construct. This case covers all classes
regarding phases, activities, tasks, inferred knowledge and platform independent artifacts. In
the second and the third case, we had different (but semantically similar) constructs, and in
both cases, all artifacts were preserved, only this time the artifacts were reused representations
of the existing artifacts. We use the word representation to denote that these are new artifacts

in any case.

However, a semantically similar construct was still not connected by any means of class or
property connection. Thus, our first step was to resolve the lack of connection between the
logical pairs of artifacts and to properly describe them. Out of many possible approaches, we
decided to create a super class for every pair of artifacts and to connect them by making them
members of the same class. The resulting ontology, at this point, looked as it is shown in
example Figure 46. Finally, we extracted the existing but common ontological description of
the elements of each pair and we assigned this description to the newly defined super classes.

In total 22 new classes have been created.

191

Automatically merged ontology

/-

N\

Multi-platform Case Artifact Ontology

acao: / acao: \
L ProductBacklog) ProductBacklog
(acao:) mcao:
L UnitTest) UnitTest
(wpcao:) I]I:I acao:
L UnitTest) UnitTest
(acao:) wpcao:
L JavaCode) UnitTest
(wpcao:) mcao:
k CSCode j SourceCode
acao:
JavaCode
wpcao:
\ CSCode /

acao — IRI prefix of http://www.foi.unizg.hr/ontologies/AndroidCaseArtifactOntology#

wpcao — IRI prefix of http://www.foi.unizg.hr/ontologies/ WindowsPhoneCaseArtifactOntology#
mcao — IRI prefix of http://www.foi.unizg.hr/ontologies/MultiplatformCaseArtifacts#

() - reused construct

Figure 46 - Example of merged ontology

This completed our activities of merging the existing ontologies into a single upper-level
ontology. As the single ontology inherited (and will enhance) all conceptualization from the
previously created Android Case and WP Case ontologies, we can say that our ontologies
describing specific cases are now deprecated and should not be used. In favor of this goes the
fact that it is generally much easier to update upper-level ontology with the knowledge on an

additional target platform than to create a new ontology from scratch.

5.4.3. Updating the basic terms

While proceeding to enhance the merged ontology with the semantic information on
reusability, we continued to follow the Ontology Development 101 methodology. This
process (which consists of 7 steps) was described in detail in the previous chapters (see
chapters 5.1.5.2 and 5.2 on pages 162 and 169) and thus we will not discuss it here. Rather,
we will present its results and point out all important aspects of the process itself and of the

created ontology.

The basic terms defined for the Android Case ontology were reused in Windows Phone Case
ontology and thus are included in this ontology as well. As we aim to enhance the ontology
with the conceptualization on artifact reusability, we had to introduce a couple of new
important terms. The final list, containing both, previously stated and the new set of terms is

presented in Table 50.

192

Table 50 - Final list of terms used in Multiplatform ontology

Term Context

Phase Mobile-D phases.

Activity Mobile-D activities structured according to phases.

Task Mobile-D tasks structured according to activities.

Task input Artifacts that are used as input while performing specific tasks.

Task output Artifacts that are produced or updated while performing specific tasks.

Artifact Any piece of software developed and used during software development and
maintenance. It includes models, tools, templates, documents et cetera.

Artifact type Characteristic types of artifacts that could be recognized in order to classify all

identified artifacts.

Artifact origin In terms of reusability, artifacts origin becomes important. It defines the origin of
artifacts such as identifying those artifacts that are defined (or requested) by used

methodology or those that are products specific for target platform.

Artifact usage Term includes knowledge on creation, usage and update of the artifacts in concrete

tasks.

Artifact hierarchy Defines hierarchy among artifacts if it exists.

Reusability Identified artifact reusability levels which denote if artifacts are completely, partially

or not reusable.

Artifact similarity Defines mutual reusability among artifacts.

As we can see, the reusability and artifact similarity are two newly added terms. The first
term relates to the concepts of levels of reusability and as defined in chapter 4.4, we classified
all the artifacts into three reusability levels: partially reusable, completely reusable and not
reusable artifacts. The other concept relates to inter-artifact similarity defining pairs of

similar artifacts.

5.4.4. Final class and properties hierarchy

The new model of top-level classes with the focus on the Artifact class is given in Figure 47.
If compared to Figure 39 there are not many changes at the top level classes of the ontology.
The set of top level concepts remained the same, while the only difference is addition of a
new value partition class ReuseLevel. The figure describing the new ontology shows that
Artifact 1s finally connected with Task, ArtifactOrigin, ArtifactType and ReuseLevel. Among
these relationships, the relationship with Task is the strongest as it is defined with three
properties (each of them having inversed property). Although existing, the relationships
among other top level classes are not presented in this figure in order to make it focus on

artifacts only.

193

= createsArtifact (Domain=Range)

Inferred ‘

=== has individual

=== has subclass
hasArifactOrigin (Domain=Range}

Ar‘tlfactorlgln I =—— hasArtifactType (Domain=Range)

P = hasReusabiltyLevel (Domain=Range}

.
/ includesArtifact (Domain=Range)
s

= jzCreatedByTask (Domain=Range)

igPartO fArtifact (Domain=Range)

ReuselLevel

= izSimilarToArtifact (Domain=Range)

Phase J

/ - — | isUpdatedByTask (Domain=Range)

== iglzedByTask (Domain=Range)

= pdatesArtifact (Domain=-Range)

iy |
/ = |I
—= ‘ AmfaCtT}’pe ‘ A\ = sesArtifact (Domain=Range)

Figure 47 - Top level artifacts

The completed ontology consists of 213 classes, 14 properties and 2213 axioms. Important
classes to mention here are the classes organized under Inferred class. As we have already
discussed in the chapter on the Android Case ontology development, these classes are defined
only by using Description Logic (DL). These classes are populated by their respective
equivalent classes by reasoning tool, and this is one possible approach in extracting
knowledge from the ontology definition. The final version of asserted sub-model of Inferred

class is presented in Figure 48.

Secondly, classes ArtifactOrigin and ArtifactType and ReuseLevel presented in Figure 47 are
created by using the so-called Value Partition pattern. This pattern uses a covering axiom in
order to define a class with a finite number of subclasses. In our case, classes have finite

number of types, origins and levels.

All other classes created and defined in the final ontology, along with class hierarchy are
presented in Table 51. Due to space constraints and table size, we decided not to present the
leafage of the platform specific artifacts and inferred classes as these have already been
presented in the thesis. Instead, we present here in light gray color those artifacts that have

specific subclasses for each platform. The number of subclasses is presented in braces.

194

W:ﬂcingl}i\rlnnlt!ritiunT@

P]) :
—_— A—iza
. DocumentationWrapUpT asks

iz-a UsedAndFroducedDocuments

’i_s;;____fﬂ“';___—' — Onlyl..lsldl)“u_rn_:_nh

|niID==um!ntit|ED
FinalProducts

ExploreActivities

_

Gmfﬁ ctsUsa ge

Initialize Activities

6nferred><]—““—‘ ctl\rltlesEyF‘hasesQ,’F' System T estAndFixActivities
A —

is-a StabilizeActivities

Froduction iz:A:ti\rit@

OtherAnifacts

WindumPh:n!Artif:_:E

53—

.Qrtifacisﬂeusabiliiﬁ”—'} CompletlyResuableAnifacts

- . o

ReusableArifacts

Figure 48 - Asserted subclasses of Inferred class

195

Table 51 - Classes and class hierarchy

Thing Phase Activity Task Artifact Artifact Type Artifact Origin Reuse Level Inferred
Documentation Acceptance Test Acceptance Test Android Activities by
Phase Explore Wrap-up Generation Acceptance Test Template Sheet Code Artifact Completely Phases (5)
APIT
Activity Initialize Planning Day AccepFance Documentation APP Description Document Methodploglcal None A Oiphn
Testing ?) 2) Artifact)
L Planning Day In 0 | Acceptance Test . Document . . Artifact
Task Productionize Tteration Review App Icon (2) App Manifest (2) Element Other Artifact Partially Reusability (4)
. - Project Architecture Line App Prototype . . Artifacts Usage
Artifact Stabilize Establishment Definition st () App Reference (4) Example Service Artifact 6)
Artifact | System Text . Architecture Line App Screenshot . Task by
Type And Fix Project Set-up Planning A KeEmunss (&)) License Activities (11)
Artifact Continuous Architecture Line | Architecture Line
. Release Day) " Model
Origin Integration Description Plan
Customer
Reuse Scope Definition Communication Class Model Class Model Web | Model Element
Level . Mobile
Establishment
Stake Holder Customer Data Model
Inferred Establishment Establishment Mobile Data Model Web Product
Documentation . Deployment
System Test Wrap-up Defect List Package (2) Resource
. Development
Working Day EnVlronlllnent Set- Er]?\/ei‘rlzifn?lgﬁn(;) Unrelated Software
P Software Tool
. Initial
Working Day In 0 Inform Customer | Example Code (2) Requirements Standard
Iteration
Document
Initial Project Integration Test .
Planning 2) Iteration Backlog Template
Initial
Requirements Iteration Plan JSON Standard
Analysis
Initial Measurement
Requirements Maps Key (2)
. Plan
Collection
Iteration Plannin Mobile Mobile-D Process
g Application (2) Library
Pair Programming PHP Code Product Backlog

Practice

196

Number of subclasses is denoted in braces.

Post Iteration Project
Worksho Product Proposal Management
p Software Tool
Pre Release . Project Plan
Testing Project Plan Checklist
Process Pgﬂgg{ﬁgn Project Plan Gantt
Establishment Chart
Template
Pubhsb SADD Document Source Code (2)
Application
Refactoring Story Card
Practice Story Card Template
Release System Test
Ceremonies System Test Plan Report
Requirements Task Card
Analysis Task Card Template
System Test Device
Integration Driver (2) Test Results
Throwaway .
System Test Prototype (2) UI Illustrations
Test Driven
Development UML Class AL, g SIDLS
: 2
Practice
Wrap-up Unit Test (2) View (2)
View C(g;l aigIs View Element (2)
Web
Development Web Service
Environment
Web Service
Specification
Classes having additional sub-classes not presented in this table.

197

The approach in class naming and description defined in development of platform specific
ontologies was also reused in the merged ontology. Thus, the classes are named in CamelCase
style and described with several annotation properties including labeling, commenting and
notes making. Where applicable, description of Mobile-D elements is taken from
(Abrahamsson et al., 2005a), while other classes (especially artifacts) are described as

presented in Chapter 4.

In addition to the 213 classes, the conceptualization is created with 14 object properties. We
already discussed the types of properties and concluded that our ontology does not need
datatype properties, but only object properties which are defined as relationship between two
classes of individuals. The properties defined for platform specific ontologies are reused and
updated with isSimilarToArtifact and hasReusabilityLevel properties. The mentioned two
properties are used to describe the knowledge on artifacts reusability and similarity with other

artifacts. The final list of all the properties created and used in our ontology is presented in

Table 52.

Table 52 - Object properties description

Property Facets Description
consistsOf Domain: Property connecting individual Activities that are performed
Activity or Phase in specific Phases and individual Tasks that are performed
Range: during specific Activities. Logically, this property is inverse
Task or Activity property of isPerformedin, but we explicitly defined it in
order to have the information available even in the original
model.
createsArtifact Inverse Of: Inversed property of isCreatedByTask. It connects Task
isCreatedByTask individuals and created specific Artifact individuals.
Domain: Task
Range: Artifact
hasArtifactOrigin Characteristics: Property connecting individual Artifact and individual in
Functional definite class ArtifactOrigin which defines several possible
Domain: Artifact types of Artifact origin. This property is used to classify
Range: ArtifactOrigin artifacts by types but from different point of view than
property hasArtifactType.
hasArtifactType Characteristics: Property connecting specific Artifact individuals with
Functional ArtifactType individuals. It defines type of the specific
Domain: Artifact Artifact according to defined classification according to
Range: ArtifactType artifact usage.
includesArtifact Characteristics: Inverse property of isPartOfArtifact. It defines individual
Asymmetric Artifacts that are included in observed Artifact.
Inverse Of:
isPartOfArtifact
Domain and Range:
Artifact
hasReusabilityLevel | Characteristics: Property connecting specific Artifact individuals with one of
Functional predefined reusability levels. This property classifies artifacts
Domain: Artifact into completely, partially or unreusable classes.
Range: ReuseLevel
isCreatedByTask Inverse Of: Property connecting the Task individuals that create specific
createsArtifact Artifact individuals. Creating the artifact logically means it
Domain: Artifact usage even if it is not explicitly stated.
Range: Task

198

isPartOfArtifact Characteristics: Property connecting individual Artifacts into hierarchy. This
Asymmetric property is Asymmetric as two individuals cannot be both part
Inverse Of: of each other.
includesArtifact
Domain: Artifact
Range: Artifact

isPerformedIn Domain: Property defines relationship between specific Task
Activity or Task individuals and owning Activity. Logically, this property is
Range: inverse property of consistsOf property, but we defined both
Phase or Activity separate to have the information available even in the original

model.

isSimilarToArtifact Characteristics: Property connecting the individuals of class Artifact with
Symmetric other similar individuals of the same class. Usually, all
Inverse Of: artifacts in the same class, if class is reusable, are reusable,
isSimilarToArtifact but this is not a rule. Sometimes, pairs of artifacts in the same
Domain and Range: class can be mutually reusable, but not reusable with other
Artifact artifacts of pairs.

isUpdatedByTask Inverse Of: Property connecting the Task individuals that update specific
updatesArtifact Artifact individuals.
Domain: Artifact
Range: Task

isUsedByTask Inverse Of: Property connecting the Task individuals that read specific
usesArtifact Artifact individuals.
Domain: Artifact
Range: Task

updatesArtifact Inverse Of: Inversed property of isUpdatedByTask. It connects Task
isUpdatedByTask individuals and updated specific Artifact individuals.
Domain: Task
Range: Artifact

usesArtifact Inverse Of: Inversed property of isUsedByTask. It connects Task
isUsedByTask individuals and used specific Artifact individuals.
Domain: Task
Range: Artifact

As we have argued in the chapter on Android Case ontology, there are some restrictions on
property definitions defined by OWL 2 DL. Each time we broke a restriction on properties,
the reasoners started to behave unexpectedly, sometimes reporting the use of unsupported
logic and sometimes just crashing without any explanation. For instance, querying the
knowledge out of the ontology would be much easier if there was a possibility of defining the
same property to be symmetric and transitive or defining functional property to be transitive
et cetera. However, when needed, we used other approaches and assured that our logical

model is safe and that the ontological description is correct.

The complete ontological definition presented in Manchester OWL Syntax format™ and

containing the details on classes, properties, class and property description and semantics can

% The Manchester syntax is a user-friendly compact syntax for OWL 2 ontologies (Horridge and Patel-
Schneider, 2009). Although it is frame-based, as opposed to the axiom-based other syntaxes for OWL 2, we find
it to be the most compact and human readable syntax that can be easily and automatically converted in other
OWL 2 syntaxes.

199

be found in Appendix E of this document. We also generated a full OWLDoc documentation

on the created ontology and made it available for access and analysis at http://barok.foi.hr/

~gzstapic/ont/mcao/doc/.

5.4.5. Evaluating and testing the ontology

5.4.5.1. Ontology evaluation

Ontology evaluation means to judge the ontologies against a reference framework during each
phase and between phases of its life cycle (Goémez-Pérez, 2001). Examples of reference
frameworks (according to the same author) can be real world, a set of requirements and a set
of competency questions. However, Gomez-Pérez argues, that there are few ontology
development methodologies that have evaluation included throughout the entire lifetime of
the ontology development process. In the terms of classifying the ontologies according to
their formalization level (Uschold and Gruninger, 1996), integrated formal evaluation is
possible only in development process of rigidly formal ontologies, while in all other

ontologies, we need different and other approaches.

According to Brank et al. (2005), most evaluation approaches fall into one of the following
categories:

e evaluation based on comparing the ontology to a “golden standard” which may itself
be an ontology, syntax specification or any other representation that is considered to
be a good representation of the concepts of the problem domain under consideration,

e evaluation based on using the ontology in an application and evaluating the results,

e evaluation involving comparison with a source of data (e.g. a collection of documents
about the domain to be covered by the ontology,

e or evaluation done by humans who try to assess how well the ontology meets a set of

predefined criteria, standards, requirements et cetera.

Performing a review of existing ontology evaluating techniques Brank et al. (2005) concluded
that ontology evaluation is an important open problem with no single best or preferred
approach to ontology evaluation. Additionally, Brank thinks that the choice of a suitable
approach must depend on the purpose of evaluation, the application in which the ontology is
to be used, and on what aspect of the ontology we are trying to evaluate. Finally, Brank stated

that automated ontology evaluation should be the focus of future researches.

This research took place in 2005, but since then not many researches were performed. There
were some tools and techniques developed, but those were developed for specific ontology

development environment or representation languages. In our opinion, Protégé Frames had

200

http://barok.foi.hr/~zstapic/ont/mcao/doc/
http://barok.foi.hr/~zstapic/ont/mcao/doc/

good support for ontology evaluation in several tools, including those created in CO-Ode
project and OntoClean methodology®. On the other hand, current support in automatic
evaluation tools for Protégé OWL is insufficient. CO-Ode project developed OWL Lint"
framework for defining and running tests against a set of OWL ontologies for quality control,
debugging, best practices, and other purposes. Unfortunately, the project is closed and the
resources on this tool are unavailable and not aligned with the current version of Protégé.
Similarly, OntoCheck®, a simple plugin for verifying the ontology naming conventions and
metadata completeness developed at University of Freiburg, is also not aligned with the

current version of Protégé.

However, there are some tools that allow basic syntax checking of the ontology, ontology
alignment with the OWL standard and consistency of the ontology through check of
syntactical ontology elements. In our case, we used two of them: OWL Validator® developed
at the University of Manchester which is used as official W3C OWL validating tool and
Ontology Evaluation®, an open source plug-in developed at Aristotle University of
Thessaloniki which is currently the only evaluation plugin supported by Protégé OWL version

4.3. We will come back to these tools later in this chapter.

Ontology Development 101 methodology (Noy and McGuinness, 2001), that we used in our
development process, also lacks formal ontology evaluation activities and mechanisms.
Instead of formal evaluation tasks, the description of the methodological steps is intertwined
with recommendations and advices on performing the tasks and evaluating their results.
Additionally, the competency questions are used as a background for development process
and for the final evaluation of the results through the ontology application. As the focus
through the whole methodology is placed on (1) utilization of good practices in ontology
development, (2) on human checking of intermittent and final results and (3) on the
assessment of the quality of the final ontology by using it in applications for which it was
designed, it is hard to choose in which of the four categories defined by Brank et al. (2005)
this methodology falls into.

Observing the definition of ontology evaluation again, we can conclude that complete and
automatic evaluation throughout all phases is still not possible. Rather, it is a human-centric
process which is done in every ontology development task with some minor help from the

reasoners and syntax checking tools.

0 http://protege.stanford.edu/ontologies/ontoClean/ontoCleanOntology.html

*! http://protegewiki.stanford.edu/wiki/OWL_Lint

2 http://protegewiki.stanford.edw/wiki/OntoCheck

“ http://www.w3.0rg/2001/sw/wiki/OWL Validator and http://owl.cs.manchester.ac.uk/validator/
* hittp://protegewiki.stanford.edu/wiki/Ontology Evaluation

201

http://protege.stanford.edu/ontologies/ontoClean/ontoCleanOntology.html
http://protegewiki.stanford.edu/wiki/OWL_Lint
http://protegewiki.stanford.edu/wiki/OntoCheck
http://www.w3.org/2001/sw/wiki/OWL_Validator
http://owl.cs.manchester.ac.uk/validator/
http://protegewiki.stanford.edu/wiki/Ontology_Evaluation

However, we should not forget that evaluation actually subsumes the execution of two steps:
verification and validation (Gémez-Pérez, 2004). Ontology verification deals with building
the ontology correctly, that is ensuring that its definitions implement correctly the
requirements, and ontology validation refers to whether the meaning of the definitions really
models the real world for which the ontology was created (Vrandeci¢, 2009). To make the
definitions simpler we will also refer to Vrandeci¢ who says that ontology verification
answers if the ontology was built in the right way, whereas ontology validation answers if the

right ontology was built.

Finally, in this short introduction to the concepts related to ontology evaluation, we have to
point out the role of domain experts. As ontology validation is usually the only way to assure
the correctness of ontologically described knowledge, which usually cannot be performed
automatically, it is an important part of assessing the quality of an ontology to have the

domain experts validating the ontology.

5.4.5.2. Used evaluation mechanisms
In order to verify and validate our ontology, throughout the whole development process

lifecycle, we have performed the following seven verification and validation mechanisms:

Methodologically driven ontology development process
Followed recommendation and advices from other authors
Using reasoning tools to verify the ontology in each iteration
Using W3C OWL validating tool

Using the Ontology evaluation plug-in

Using DL queries to obtain information via inference on ontology knowledge

A

Checking the results by domain experts

The first five evaluating mechanisms are connected with ontology verification and are used to
lower the risks of making any syntactical and basic semantic errors throughout the whole

ontology development process.

The last two mechanisms are connected with ontology validation. These two mechanisms
have been used in the end of development process to check if the created ontology represents

the domain knowledge in semantically correct way.

By performing the methodologically driven ontology development process and utilizing the
Ontology Development 101, we ensured that our approach was systematic and guided by the
experience of researchers who already used it. As we have described and discussed in Chapter
5.2, the whole development process had seven steps which were implemented iteratively
through several iterations. We followed the recommendation from Uschold and Gruninger

(1996) and used middle-out approach in class and class-hierarchy definition. This enabled us

202

to focus on more salient classes first and then to classify them in super or subclasses as
needed. This approach, however, increases the risk of omitting some classes, but we dealt

with it through other verification mechanisms.

Noy and McGuinness (2001) put special focus in tasks related to classes and properties
definition and they gave a set of recommendations and advices that we tried to follow in our
development process. For instance, they gave us advice on measures that should been taken to
ensure that the class hierarchy is correct, on analyzing siblings in a class hierarchy, on taking
care of multiple inheritances, when to introduce a new class or property or instance of a class,
on limiting the scope of the ontology and dealing with disjoint classes. They also gave advice
on properties creation and their relationships through facets and on some general issues
regarding the ontology creation like the choice of naming convention, of using singular or
plural, of using prefixes and suffixes and on use of reserved names and abbreviations. We
also consulted the recommendations presented in (Horridge, 2011) who took practical point of
view and discussed the advantages and disadvantages of different approaches in solving the

most common issues in ontology development.

Throughout the whole incremental development process we used reasoning tool to verify the
newly added concepts and their influence on the already defined concepts. In general,
Description Logic reasoners check the consistency of ontology and automatically compute the
ontology class hierarchy. In this document we referred to computed class hierarchy as to
inferred class hierarchy. Additionally, a reasoner can check whether or not all of the
statements and definitions in the ontology are mutually consistent (Horridge, 2011). If we add
the reasoners’ possibility to detect and report any syntax errors, then we can conclude that a
consistent use of reasoners in development process represents a solid ontology verification

mechanism.

We used FaCT++, HermiT 1.3.8 and Pallet reasoners which are available through Protégé
installation or through standard plug-in installation procedure. All used reasoners classified
our ontology in the same way and returned the same inference results. For the examples

presented in this chapter, we used FaCT++ as native Protégé reasoner.

Figure 49 presents comparison of a part of asserted and a part of inferred class hierarchy. As
we can see on the left hand side of the figure, asserted hierarchy does not group artifacts into
specific super classes regarding their type or usage. However, we used Description Logic to
define a set of Inferred classes (marked with = icon) to access knowledge that is encoded in
the ontology. During the ontology definition, some of these classes were automatically
classified as sub-classes of class Artifact, but as we can see, they are without any child

elements. Same classes, along with the rest of ontological description, were used by the

203

reasoner in order to create a new class hierarchy, as presented on the right hand side of the

mentioned Figure 49.

=]

v

Thing
[23
L

Activity

Artifact
----- AcceptanceTest
----- AcceptanceTestTemplateSheet
----- AndroidArtifacts

p-- & APIDocumentation

p-- @ AppDescription

- AppIcon

p-- 0 AppManifest

p-- 0 AppPrototypeFunctionality
p-- 0 AppReference

- AppResource

p-- 0 AppScreenshot

ArchitectureLineDescription

----- ArchitectureLinePlan

BorrowedArtifacts

- ClassModelMobile

----- ClassModelWeb

----- CompletlyResuableArtifacts

----- DataModelMobile

----- DataModelWeb

----- DefectList

DeploymentPackage

Develop

DevelopmentUnrelatedSoftwareTool

p-- 0 ExampleCode
FinalDocumentation

----- FinalProducts
InitialRequirementsDocument

p-- 0 IntegrationTest

----- IterationBacklog

IterationsPlan

- JsONStandard

P MapsKey

----- MeasurementPlan

----- MethodologicalArtifacts

- (0 MobileApplication

- MobileDProcessLibrary

----- NotreusableArtifacts

----- OnlyUsedDocuments

----- OtherArtifacts

----- PartiallyReusableArtifacts

----- PHPCode

----- ProductBacklog

----- ProductProposal

----- ProjectManagementSoftwareTool

----- ProjectPlan

----- ProjectPlanChecklist

----- ProjectPlanChecklistTemplate

----- ProjectPlanGanttChart

----- ReusableArtifacts

----- SADDDocument

ServiceArtifacts

- SourceCode

----- StoryCard

----- StoryCardTemplate

----- SystemTestPlan

----- SystemTestReport

TaskCard

TaskCardTemplate

TestDeviceDriver

TestResults

p-- © ThrowAwayPrototype

----- UIIllustrations

tEnwvir

----- UMLClass
b UMLClassSDK
p-- @ UnitTest

----- UsedAndProducedDocuments
[Vlew

b @ ViewController

p-- @ ViewElement

""" WebDevelop tEnvir
----- WebService

----- WebServiceSpecification
----- WindowsPhoneArtifacts
ArtifactOrigin
ArtifactType

Inferred

Phase

Reuselevel

Task

[»

-

v

>
v

Thing

Activity

Artifact
p-- & AndroidArtifacts
p-- & BorrowedArtifacts
I
"

FinalProducts
MethodologicalArtifacts
----- AcceptanceTest
----- AcceptanceTestTemplateSheet
----- ArchitectureLineDescription
----- ArchitectureLinePlan
----- ClassModelMobile
----- ClassModelWeb
----- DataModelMobile
----- DataModelWeb
----- DefectList
----- InitialRequirementsDocument
----- IntegrationTest
----- IterationBacklog
----- IterationsPlan
----- MeasurementPlan
----- MobileDProcessLibrary
----- ProductBacklog
----- ProductProposal
----- ProjectPlan
----- ProjectPlanChecklist
----- ProjectPlanChecklistTemplate
----- ProjectPlanGanttChart
----- SADDDocument
----- StoryCard
----- StoryCardTemplate
----- SystemTestPlan
----- SystemTestReport
----- TaskCard
----- TaskCardTemplate
----- TestResults
----- UIIllustrations
----- UMLClass
----- WebServiceSpecification
= & NotreusableArtifacts
OtherArtifacts
ReusableArtifacts
ServiceArtifacts
UsedAndProducedDocuments
= & WindowsPhoneArtifacts
Artlfal:tOrlgln
ArtifactType
Inferred
¥ Al:tlwtlesByPhases
ExploreActivities
InitializeActivities
ProductionizeActivities
StabilizeActivities
SystemTestAndFixActivities
v AI’tIfaCL‘.OrIgIrI
> & AndroidArtifacts
MethodologicalArtifacts
OtherArtifacts
ServiceArtifacts

- & WindowsPhoneArtifacts
- AI’tIfad‘SREUSablllt\!
NotreusableArtifacts
ReusableArtifacts
v Artlfal:tsUsage

- & BorrowedArtifacts

FinalProducts
b & UsedAndProducedDocuments
¥-- 0 TasksByActivities
: DocumentationWrapUpTasks
PlanningDayInOIterationTasks
PlanningDayTasks
ProjectEstablishmentTasks
ProjectSetupTasks
ReleaseDayTasks
ScopeDefinitionTasks
StakeholderEstablish
SystemTestTasks
WorkingDayInOIterationTasks
p-- & WorkingDayTasks
Phase
ReuselLevel
Task

4

4

tTasks

Figure 49 - Comparing asserted and by reasoner inferred class hierarchy

204

Additionally, as it can be seen on the right hand side, all DL defined classes are now
populated with inferred subclasses. In the above example, expanded class
MethodologicalArtifacts is populated with those artifacts that originate in Mobile-D
methodology. Similarly, all other named queries and defined classes are populated with
appropriate sub-classes. The asserted and inferred models were in the end assessed by the

thesis supervisors who agreed on their consistency and semantic correctness.

In order to evaluate the ontology syntax, we also used two different tools that evaluate the
ontology automatically. OWL Validator is developed at the University of Manchester, and it
is currently an official W3C OWL validating tool (Horridge, 2009). Figure 50 shows the
evaluation results stating that the ontology and all of its imports are in the OWL 2 DL profile.

MAN CH_]E;IER

OWL 2 Validation Report

Summary

The ontology and all of its imports are in the OWL 2 DL profile

Imports Closure

Ontology IRI Physical URI

OntologyID(OntologyIRI(<http://www.foi.unizg.hr/ ontologies/Multiplatform CaseArtifacts>)) http:/fbarok.foi.hr/~zstapic/ont/mcac.ow

Figure 50 - OWL 2 Validation report results

The other used tool is Ontology Evaluation® (Tantsis, 2013), a plug-in developed as a Master
Thesis project at Aristotle University of Thessaloniki. Although without technical or any
other formal documentation and support, except information written in the thesis itself, the
plugin is currently, as far as our knowledge reaches, the only evaluation plugin supported by
Protégé OWL version 4.3. Thus, even if the quality of the evaluation engine may be
questionable, it can help in the evaluation of the ontology according to several parameters
including naming conventions, class hierarchy, property hierarchy, property restrictions,
similar concepts, documentation and visualization, domain and range of properties and
restrictions on disjointness. An example of performed tests on class hierarchy and

documentation (see Figure 51) showed that there are no problems with class hierarchy, but

* http://protegewiki.stanford.edu/wiki/Ontology Evaluation

205

http://protegewiki.stanford.edu/wiki/Ontology_Evaluation

some concepts needed improvements in documentation. After additional analysis, it turned

out that some mid-level classes were not documented.

Welcome to the Ontology Evaluation tab

Evaluation Parameters

[Maming Conventions [+ Class Hierarchy [~ Property Hierarchy [Property Restrictions
™ Similar Concepts v Documentation/Visualization ™ Properties Domain and Range [Disjointness Restrictions
Start Evaluation Ontolegy test Select None | | Select All

Evaluation Resultz

~+==Class Hierarchy™
C1: Mumber of named Classes: 213

C2: Mumber of Primitive Classes: 180

C3: Number of Defined Classes: 33

C4: Average Number of Parents: 7.051643192488263

C5: Maximum Number of Parents: 27

CE: Average Mumber of Siblings: 5.694444444444445

C7: Maximum Number of Siblings: 58

C8: Max Depth: 3

C9: Total Number of Nodes: 214

C10: Total Mumber of Roots: 8

C11: Total Mumber of Internal Modes (Parents): 36

C12: Total Number of Children: 205

C13: Total Mumber of External Modes (Leaf). 177
sewsarseD) oy MEntation

D1: The documentation ofthe classes is 83.09859154929575%
D2: The documentation of the properties is 100.0%

View Recommendations | | Save test results |

Figure 51 - Ontology Evaluation plug-in

The mentioned evaluation tool, along with the evaluation results creates a set of
recommendations that could be used to improve the ontology quality. These recommendations
are based on simple evaluation result parameters without any contextual input, and thus
should be taken with significant precaution and placed in the context of every particular
ontology. For example, the tool advised us to create “some datatype properties” just because
we did not have any. In our case, as we argued in Chapter 5.2.5, these properties are not
necessary and by missing them the ontology does not lose any quality. On the other hand, the

advice on possible duplication of concepts was very welcomed.

Finally, in order to validate the ontology against its usage in the future application, we created
a series of DL queries which aimed to extract direct and indirect knowledge out of the
ontology, by using a reasoning engine. The results obtained by these queries have been
validated by the supervisors of this thesis, and one of them (prof. Vjeran Strahonja) is a

domain expert in the field of software engineering methodologies.

The following sections present several queries executed upon our ontology with their

Description Logic representation and the finally obtained results.

206

» What platform specific artifacts are classified as reusable?

In order to get the artifacts that are platform specific we can create several different queries
that would be based on different concepts already built into the ontology. Thus, we can use
only basic classes like Artifact and their properties, or we might use already defined named

queries which would, in our case, be logically connected sub queries.

Query (class expression)

Artifact

and (hasArtifactOrigin some AndroidArtifact)
and ((hasReusabilityLevel some Completely)
or (hasReusabilityLevel some Partially))

Query results
Super classes (2) Super classes
AndroidArtifacts [[] Ancestor classes
ReusableArtifacts [Equivalent classes
Subclasses
Sub elasses (10) [] Descendant classes
AndroidActivity

[individuals
AndroidClass

ApplicationDescription
ApplicationIcon
JavaCode

Layout

LayoutElement
LocalizationString
UnitTest
XMLResources

Figure 52 - Example of defined and executed DL query with reasoning results

DL query obtaining only Android reusable artifacts could look like this:

Artifact
and (hasArtifactOrigin some AndroidArtifact)
and ((hasReusabilityLevel some Completely)

or (hasReusabilityLevel some Partially))

Code 9 - Android reusable artifacts

If using already defined concepts which classify all Android and reusable artifacts, we can use
this query:
Artifact and (AndroidArtifacts) and (ReusableArtifacts)

Code 10 - Android reusable artifacts with already defined named queries

In both cases, the result is the same and it contains the following enumerated artifacts (see
Figure 52).

AndroidActivity, AndroidClass, ApplicationDescription, ApplicationIcon,

JavaCode, Layout, LayoutElement, LocalizationString, UnitTest, XMLResources

In similar manner, we could ask for Windows Phone artifacts only or for reusable artifacts that

originate from Mobile-D methodology et cetera.

207

» What artifacts can be reused in any given development activity or task?

For example, in order to obtain all reusable artifacts that were used, created or updated during
the Iteration Planning task we can use a query like this:
Artifact
and ((isUsedByTask some IterationPlanningTask)
or (isCreatedByTask some IterationPlanningTask)

or (isUpdatedByTask some IterationPlanningTask))
and (ReusableArtifacts)

Code 11 - Reusable artifacts by task

The query result:

AcceptanceTest, IterationBacklog, IterationsPlan, MeasurementPlan,
ProductBacklog, ProjectPlan, ProjectPlanChecklist, ProjectPlanGantChart,
StoryCard, StoryCardTemplate, TaskCard, TaskCardTemplate

On the other hand, if we want to enumerate all artifacts that are an output of any task
performed during the Working Day activity we can use a query like this:
Artifact
and ((isUpdatedByTask some WorkingDayTasks)

or (isCreatedByTask some WorkingDayTasks))
and (ReusableArtifacts)

Code 12 - Reusable artifacts by activity

The query result:

AppResource, ClassModelWeb, DataModelMobile, DataModelWeb, IterationBacklog,
IterationsPlan, MeasurementPlan, PHPCode, ProductBacklog,
ProjectPlanChecklist, SourceCode, StoryCard, TaskCard, UMLClass, UnitTest,

View, ViewController, ViewElement, WebService, WebServiceSpecification

» What artifacts can be reused in any given development phase?

The following query results in a set of artifacts that are reusable and created, updated or used
in Explore phase. The artifacts were additionally filtered with their origin in order to exclude
Other Artifacts that are not connected to development methodology or target platform.
Artifact
and((isCreatedByTask some (isPerformedIn some (isPerformedIn some Explore)))
or (isUpdatedByTask some (isPerformedIn some (isPerformedIn some Explore)))
or (isUsedByTask some (isPerformedIn some (isPerformedIn some Explore))))

and (ReusableArtifacts)
and (not (OtherArtifacts))

Code 13 - Reusable artifacts by phase and origin filter

208

The query result:

InitialRequirementsDocument, MeasurementPlan, ProductProposal, ProjectPlan,

ProjectPlanChecklist, ProjectPlanChecklistTemplate, ProjectPlanGanttChart

In the above example we used nested queries to reach all artifact that are created by some
Task that was performed in some Activity performed in some Phase. Another approach in

ontological modeling of such problems can be the usage of transitive properties.

» What artifacts are reusable in accordance with their type or origin?

The following query enumerates artifacts with specific type of Document that are completely

or partially reusable.

Artifact
and (hasArtifactType some Document)
and ((hasReusabilityLevel some Completely)

or (hasReusabilityLevel some Partially))

Code 14 - Reusable artifacts by their type

The query result:

InitialRequirementsDocument, MobileDProcessLibrary, ProductBacklog,

ProductProposal, ProjectPlan

The artifacts that are completely or partially reusable are recognized as sub class of Reusable

Artifacts, which we used in other examples presented previously.

Except the queries that answer our competency questions stated at the beginning of the
ontology development process, by using the built vocabulary of classes, properties, value
partitions and named queries, we can build any other query in order to obtain other specific
knowledge encoded in the ontology. These queries can be specific focusing on any particular

artifact, or general and focus on groups of artifacts.
For example, the following query asks for any reusable artifact that is used in creation of
Software Architecture and Design Description Document.

Artifact
and (isPartOfArtifact some SADDDocument)
and (ReusableArtifacts)

Code 15 - Reusable artifacts used in specific document

The query result:

AppDescription, ArchitectureLinePlan, ClassModelWeb, DataModelMobile,

DataModelWeb, WebServiceSpecification

209

By answering all competency questions defined at the beginning of our ontology development
process, we proved the completeness of the created ontology. As presented in previous
examples, DL queries are flexible and the ontology is capable of answering a wide range of
questions regarding any concept that is used in its creation. Additionally, queries and results
were observed by domain experts who finally validated the ontology and agreed on its

completeness.

Such an ontology represents a solid basis for creation of information system that can guide the
development team or development teams in achieving methodological interoperability by

reusing artifacts created in multi-platform mobile application development process.

5.4.6. Final remarks on proposed ontology for methodological interoperability

The development process of development of an ontology for methodological interoperability,
namely Multi-platform Case Artifacts Ontology, was performed in two phases. First, we
created two specific ontologies targeting Android and Windows Phone application
development and secondly, we merged these two ontologies into a new ontology which we

enhanced with multi-platform and reusability conceptualization.

The created ontology comprises 213 classes, 14 object properties and 2213 axioms defined in
ALCRIF DL expression sub-language. Generated in Manchester OWL Syntax format it can be
found in Appendix E of this document. Also, the ontology in native OWL/XML format can
be downloaded from http://barok.foi.hr/~zstapic/ont/mcao.owl, while full OWLDoc ontology

documentation can be accessed and analyzed at http://barok.foi.hr/~zstapic/ont/mcao/doc/.

The whole development process was guided by Ontology Development 101 methodology and
recommendations in ontology development given by Noy and McGuinness (2001) and
Horridge (2011). We also put special focus in reusing the existing knowledge while building
the second and the third (i.e. the final) ontology, and the proof of the ontology’s quality was
the possibility of reusing the Android ontology without the need to change any infrastructural
elements while building a Windows Phone ontology. Additionally, after merging the two
ontologies, we had no redundancy to deal with, and had no problems in updating the ontology

with a new conceptualization. This proves that the ontology is both reusable and extendable.

A special focus was put on the ontology evaluation through its development and final testing.
We used seven evaluation mechanisms, and as the most important one, we tested the ontology
with series of Description Logic queries which asked different questions including all
competency questions stated at the beginning of the ontology development. The results were
then analyzed by the two thesis supervisors, and one of them is a domain expert. The use of
evaluation mechanisms throughout the development process and positive validation are the

proof of ontology’s quality and completeness.

210

http://barok.foi.hr/~zstapic/ont/mcao.owl
http://barok.foi.hr/~zstapic/ont/mcao/doc/

This brings us to the final conclusion that developed Multi-platform Case Artifacts Ontology
represents a knowledge base that can be used in development of information system aiming to
guide development teams in achieving methodological interoperability by reusing artifacts

created in the process of multi-platform mobile application development.

5.5. Relevance of the chapter

This chapter presented the results and the approach taken in our last research phase —

Ontology Development Phase.

As development of ontologies is not a trivial task, first we introduced the concepts of the
ontologies by looking into the origins of the term in Philosophy, and then by defining it in
Computer Science. Finally we agreed to use the definition of ontology saying that ontology is
an explicit formal conceptualization of a shared understanding of the domain of interest
which includes the vocabulary of terms in order to describe the domain elements, semantics
in order to define the relationships of the domain elements and pragmatics in order to define

possible usages of these elements.

After discussing different types of ontologies, their possible usages and presenting in detail
several the most commonly used and the most important ontology development
methodologies, tools and languages, we decided to create a domain ontology in order to
semantically describe concepts belonging to the domain of development of mobile application
for specific target platforms. Additionally, we argued the reasons for using the Noy and
McGuiness’ Ontology Development 101 methodology, as the best option suitable in our case,
and finally, we decided to use Protégé ontology development tool and OWL2 DL as the most

appropriate ontology language in our case.

The chapter also presents in detail the usage of Ontology Development 101 methodology
while developing Android Case Artifacts Ontology. We have put focus on reusability when
developing WindowsPhone Case Artifacts Ontology, and finally, on ontology merging,
updating and evaluation when developing Multi-platform Case Artifacts Ontology.

The results showed that our ontologies are reusable, extensible and updatable as we
performed all these tasks without the need of changing any existing infrastructural elements.
The final ontology is additionally verified and validated with several automatic and manual
evaluation mechanisms including the validation by domain experts who analyzed the results
of the executed DL queries. The validation results showed that ontology is valid and complete

and thus can be used in future development of an information system that would help

211

development teams to achieve methodological interoperability by reusing the artifacts created

in the process of multi-platform mobile application development.

This concludes our three phase research process which resulted in (1) Systematic Literature
Review performed in order to identify and choose a mobile development methodology
applicable in multi-platform development, (2) the implementation of a prototype application
by utilizing the selected methodology performed in order to identify all artifacts that arose in
the development process, and (3) ontology development in order to ontologically describe the
empirical and theoretical knowledge and thus make it usable for future development of
information systems targeting the increase of methodological interoperability in the

development of mobile application for multiple platforms.

212

6. DISCUSSION OF RESULTS

This multidisciplinary research composed of systematic literature review, analysis of artifacts
created in methodologically driven mobile application development, and development of an
ontological description of artifacts reusability is presented in the previous chapters. Through
every research phase we gave an overview and analysis of the existing body of knowledge,

performed a research and reported on the results that were obtained in it.

In this chapter we would like to review, assess and recapitulate the results that were produced
during the presented research process. This discussion includes review of the results on
performing Systematic Literature Review in the field of software engineering with special
focus on the aspects regarding the execution of this method by doctoral students.
Additionally, we discuss the identified development methodologies and approaches with
special focus on multi-platform development. The artifacts that arise in the development
process targeting multiple-platforms are identified during the second phase of the research as
a result of performed two development cases. These artifacts are analyzed and finally

ontologically described in the last research phase.

All these results are argued and assessed in this chapter where we put special focus on the
research motivation, results, contributions, rigor and evaluation. By research motivation we
would like to emphasize the reasons for performing the research activities. By results and
contribution we aim to systematize the obtained results and the contribution to knowledge.
Discussing the research rigor we would like to point out our approach and its main
characteristics, and discussing the evaluation we would like to underline the evaluation
mechanisms that are used in order to verify and validate the used approach and the obtained

results.

Finally, we encompass the discussion with evidence on testing the stated research hypothesis.

6.1. Methodologies for development of mobile applications

In Chapter 2.1 of this thesis we gave a detailed analysis of Systematic Literature Review
(SLR) methodology as it is proposed by Kitchenham and Charters (2007). We presented the

methodology and gave summary of all phases and activities that should be performed while

213

conducting the SLR in the field of software engineering. Later, in Chapters 2.2 and 2.3 we

reported our literature review on methodologies for development of mobile applications.

In this chapter we would like to emphasize several characteristics of this research phase, with

the focus on mentioned views: motivation, results, contributions, rigor and evaluation.

6.1.1. Performing systematic literature review in SE

Motivation: The method of SLR is a well-known method of assessing and summarizing the
existing body of knowledge on a particular research question or questions. Although the
origins of SLR can be traced back to the beginning of the 20"™ century, it emerged in the field
of software engineering (SE) during last several years. As there are important differences in
performing the SLR in SE and performing it in other fields, the authors who performed the
method generally agree that this field is still an area of investigation that remains to be
explored and that could well bring many benefits (Biolchini et al., 2005). The guidelines
presented by Kitchenham and Charters (2007) are created by adaptation of several existing
guidelines from other disciplines, mainly medicine, and thus are partially inappropriate for the
field of SE. Several authors, including Biolchini et al. (2005), Mian et al. (2005) and Staples
and Niazi, (2007) criticized the mentioned guidelines as explained above. As the methodology
of SLR as described in the guidelines is comprehensive, but time consuming, risky and
inappropriate for conduction by a single researcher, we decided to perform the analysis of the
reports and recommendations given by other authors and to enhance the guidelines in this
manner. Specifically, we focused on possible approaches that could be taken by PhD students
in order to overcome the most important obstacles they usually run on during the execution of
this method.

Results: As presented in Chapter 2.1, three phases of SLR are discussed in detail and
recommendations from other authors are given. In the review planning phase, the most
important tasks are concerned with specification of research questions and development of
review protocol. PhD students will usually define such research questions that aim to identify
the scope of future research activities. Additionally, PhD students will usually break-down the
research question into sub-questions by utilizing the PICOC model, i.e. defining the
population, intervention, comparison, outcomes and context. On the other hand, the
development of review protocol is not a trivial task, which according to some authors (e.g.
Staples and Niazi (2007)) is a subject of constant changes throughout the whole SLR process.
In this context, we found the template proposed by Biolchini et al. (2005) as an important
artifact which defines structure of the protocol along with the explanation of its elements.
Some protocol elements should be defined upon execution of pilot studies, and thus this task

can be time consuming. Subsequently, evaluation of review protocol is a key activity that

214

should be done by field experts or in the case of doctoral students, at least by thesis

supervisors. Other often used evaluation method is test of protocol execution.

In the conducting the review phase predefined protocol should be followed. This is the most
time-consuming phase which ends up with data extracted, summarized and ready for
dissemination. PhD students should use appropriate tools like appropriate reference manager
software in order to keep record on all of the identified studies through all review phases. One
of the key quality criteria is the transparency and the replicability of the review. In order to
identify relevant studies, doctoral students should strictly use predefined inclusion and
exclusion criteria, and lists of relevant sources for the field of software engineering can be
adopted from other authors, like for example from (Hannay et al., 2007) or (Kitchenham and
Charters, 2007). Depending on the number of initially obtained studies, different approaches
can be taken in their filtering. Less strict approach would be to, in the first step, exclude some
studies only by reading their title. This is sometimes the only approach as the number of
initial studies could be more than 10.000. On the other hand, Brereton et al. (2007) advocate a
more strict approach where exclusion by title should be avoided and used only if exclusion is
obvious. Reliability of inclusion and exclusion decisions is important, and doctoral students
can use several methods to increase it. Consultations with the advisor, the expert panel or
other researchers, re-evaluation of a random sample of the primary studies by test-retest
approach or re-evaluation by other researcher are some of the methods recommended for PhD
students. The study quality assessment procedures mainly depend on the type of the study, but
one method is particularly often used in SE — the use of checklists with defined quality
criteria. Finally, data extraction and synthesis are the last activities of this phase. The most
usual approach in data extraction is the usage of extraction forms. Examples of extraction
form can be found in (Kitchenham and Charters, 2007) and (Jergensen, 2007), or in Table 4

of this document.

The mentioned data synthesis can be qualitative and quantitative, but in both cases, results
presented in an appropriate (e.g. table, graph or figure) manner should be narratively
explained. Doctoral students will probably report their findings in their dissertation, but prior
to that, proper evaluation of the results should be carried out. In this evaluation, help from a
supervisor, prior to submitting the dissertation to be evaluated by committee is welcomed. On

the other hand, the evaluation of scientific papers is done by scientific peer review.

Contributions: The body of knowledge on performing the systematic literature review in the
field of software engineering as proposed by Kitchenham and Charters (2007) is presented
and enhanced with a discussion, observation and recommendations synthetized from other
influential authors in the field. The three-phase-process along with stages and tasks is

analyzed in detail, and special focus is put on making the execution of this comprehensive

215

method easier for single researchers, like PhD students. Enhanced guidelines that can be used

while performing the systematic literature review are the main result of this research activity.

Rigor: A comprehensive analysis of available papers on how to perform SLR in the field of
SE was performed. The results showed that one document, the guidelines from Kitchenham
from (2004) which were updated by Kitchenham and Charters in (2007) is used as the
knowledge base on how to perform the method in all other reported reviews. However, we
carefully analyzed and compared the mentioned document with the reports and
recommendations from other influencing authors in the field. Each recommendation given in

our report has theoretical or practical proof that is found in the cited literature.

Evaluation: A short paper on the results presented in this chapter is already published at the
Central European Conference on Information and Intelligent Systems (Stapi¢ et al., 2012),
while the full paper is currently under the review. Additionally, the presented enhanced
guidelines were evaluated by the thesis supervisors and were used in the SLR process

performed in this research.

6.1.2. Mobile development methodologies and approaches: SLR

Motivation: In Chapter 2.2, we defined the basic concepts that are connected with the
software development methodologies, and also we gave an overview of methodologies
targeting the development of mobile applications and concluded that it differs from the
standard development, that the agile approach is widely used in methodologies for mobile
devices and that all presented methodologies should be more fine grained and suitable for
specific development environment. Thus, even there are some attempts to create a specific
software development methodology that would be suitable for development of mobile
applications, these attempts are relatively rare and they are not aligned with the current mobile
development demands. So, many companies choose to use the existing and familiar
development methodologies in while developing mobile applications. These methodologies
are often adapted and changed, and a proper analysis of all of these possibilities was needed.
We also performed a research in order to identify the existing SLR from the domain of
interest and found that there are no existing SLRs targeting mobile application development

methodologies, which makes the need for such a review even bigger.

Results: In our systematic literature review, we aimed to answer two research questions. First,
we wanted to know what development methodologies and approaches are reported in
literature as defined in theory or used in practice for mobile application development, and
second, we aimed to analyze if these methodologies and approaches are applicable for multi-
platform mobile applications development. After having the review protocol developed and

validated by the thesis supervisors, we performed automatic and manual search on the

216

selected sources and obtained 6761 initial studies which were then analyzed through several
phases by applying strictly defined exclusion and inclusion criteria (see Table 14). The review
resulted in 49 relevant studies that were analyzed and data extraction was performed on them.
We finally identified 22 development methodologies and 7 development approaches that can
be used in the development of mobile applications (see Table 17 and Table 18). On the other
hand, only one methodology was not eligible according to the second research question, as it
targeted specific platform capabilities. After analyzing the obtained results and comparing the
reported use and available documentation on identified methodologies, Mobile-D
methodology along with Test Driven Development emerged as the most suitable (although
still not fully applicable without changes) methodology-approach pair to be used in the

following research phases.

Contributions: During the time of writing this thesis and to our knowledge, there are no
Systematic Literature Reviews performed in the field of Software Engineering that assess the
software development methodologies in general or specifically for mobile applications
development. Thus, in our research we performed SLR in order to identify development
methodologies and approaches that are reported to be used in mobile applications
development. Specific focus is placed on the assessment of included studies quality. Although
the average study quality is not very good, the results showed that 22 methodologies and 7

approaches are reported to be used in development of mobile applications.

Rigor: The method of Systematic Literature Review is performed by consistently following
the guidelines which are usually used in the process of SLR implementation in the field of
Software engineering. The mentioned guidelines are additionally enforced with the
recommendations from influential authors in the field. Every step is taken upon strictly
defined and evaluated procedure and with explicitly defined criteria. Where applicable,
references to the theoretical or practical background of all used artifacts are provided. All
included studies have undergone quality assessment, which resulted in elimination of 18 (out
of 67) studies. The remaining 49 studies were analyzed and data was extracted in accordance
with template specifically developed to provide sufficient information regarding the research
questions. All performed activities along with the results are reported as requested by SLR

methodology.

Evaluation: The SLR process is by its nature sequential. But, having the evaluation
procedures at every milestone, it can be considered as iterative process as well. By following
the methodology requirements and systematized recommendations from other authors, strict
evaluation mechanisms were applied at this research phase. Thus, the review questions,
created protocol, created search string, selected sources and other elements were evaluated

during or at the end of the planning phase. During the execution phase, the inclusion and

217

exclusion criteria were applied by the main researcher and then evaluated either by test-retest
method or by evaluation of the results by the research supervisors. Finally, the report results

were again evaluated in accordance with dissemination mechanisms and media.

6.2. Mobile-D implementation

The first part of the second research phase is presented in Chapter 3. First we gave an
overview of the chosen development methodology and then we utilized the methodology in
two development cases. The results contain documented development process for two target
platforms with the focus on the used and created artifacts. These results were used in

subsequent research phases.

Motivation: The identification of artifacts that arise in the development process for two or
more target platforms could be done either by analyzing some existing data on development
processes performed in practice (e.g. in company, or by individual developers), or by
performing a development in a laboratory environment. Although both approaches have their
advantages and disadvantages, we had to choose the second option, as it proves to be more
flexible and fully controlled by the researcher himself. The development of fully functional
application for two target platforms is a time consuming work, but it brings the benefits of
executing the process with careful analysis of all performed phases, activities and tasks along

with all artifacts that were created in the process.

Results: After almost 160 working days, two versions of the same application were created.
During the development process we put special focus on the artifacts that were created in the
process and on their reusability. Specifically, while developing the mobile application for the
first target platform, the artifacts were observed from methodological point of view. The
methodological approach along with the connected artifacts was reported in detail. On the
other hand, while developing for the second target platform, artifacts were observed from the
reusability point of view. Although we had some implementation problems which made some
phases in the second development case unexpectedly long, the reusability at methodological
level resulted in a development process shortened for 18.4% (see Table 37). If we remove the

technology related issues, the time saved with this approach would be even bigger.

Contributions: The performed process faithfully demonstrates the development process that
would be performed by any small company. The finished product with all planned
functionality implemented and tested is a proof of completeness of our approach. The
empirical evidence collected during such development represents valuable scientific
knowledge base which we used in the rest of this research and which can be used for different

additional analyzes in the future.

218

Rigor: The Mobile-D methodology as described in (Abrahamsson et al., 2005a) was strictly
followed in both development cases. All activities were carefully noted and the development

process is made transparent and reported in this document.

Evaluation: Test Driven Development represents continuous evaluation of created project
throughout the whole development process. This product evaluation includes execution of
unit tests on units of code, integration tests on integrated components of the system, system
test on final product and acceptance test on required functionality. On the other hand, the
alignment of development process with Mobile-D methodology is evaluated according to
methodology implementation instructions given in (Abrahamsson et al., 2005a). The final
evaluation was performed by the thesis supervisors who are experts in the field of software

engineering and development.

6.3. Identification of artifacts

Chapter 4 represents the second part of second research phase where we analyze and compare
the artifacts that arose in methodologically driven process mobile application development for
two target platforms. This chapter uses the empirical evidence and created artifacts collected
during the implementation phase and identifies Android development case artifacts and
Windows Phone development case artifacts, and the analysis shows a great level of

reusability.

Motivation: We consider Mobile-D as being a well-documented methodology for
development of mobile applications. We used several documents describing the methodology,
but the most important one is definitely a guide presented in (Abrahamsson et al., 2005a)
which in detail describes the whole development process, and it also enumerates all artifacts
that arise in such methodologically driven process. However, the overall picture on the use of
these artifacts by phases and tasks is hard to read from the mentioned document. Additionally,
these are not the only artifacts that we are interested in. From the point of view taken in this
research, platform specific artifacts and development unrelated artifacts could also be reusable
in different ways and on different reusability levels. Thus, comprehensive analysis of all
artifacts that arise in such development process is needed. Additionally, once identified, such
artifacts should be analyzed, compared, cross-platform compared and connected to the

development phases, activities and tasks.

Results: In order to perform straight format and unbiased analysis, first we defined the
analysis setting (see Chapter 4.1) which includes the definition of artifacts, the relations with
other methodological concepts that will be observed and the template that is to be used for

artifact description. As the artifacts are observed as “any piece of software developed and

219

used during software development and maintenance” we found the list of Mobile-D artifacts
(see Table 38) related to process tasks not sufficient and thus we performed our own analysis.
During the analysis, we observed the development process for each target platform separately
and we identified 71 different artifacts that we initially grouped in 12 categories (see chapters
4.2 and 4.3). After performing a cross-platform analysis we found that more than 70% of all
identified artifacts are common to both platforms and 66% of them are partially or completely

reusable (see chapter 4.4).

Contributions: Our analysis included artifacts that originate from the selected methodology,
from the specific target platform or are necessary as supportive in performing other
development unrelated tasks like communicating, reporting or project management. Another
important contribution of this research phase are the results of cross-platform analysis
showing high level of reusability among artifacts created during the development for two
target platforms. These results are very encouraging and we can conclude that they create a

strong basis and motivation for additional research and analyses.

Rigor: This research phase is performed by a careful analysis of empirical evidence collected
during the research process and by systematic analysis of the Mobile-D documentation. In
cross-platform analysis, three levels of reusability were created and all artifacts were
evaluated according to the same criteria in order to be placed in ‘completely’, ‘partially’ or

‘none’ level.

Evaluation: Three different evaluation mechanisms were used in this phase. First, we
compared our matrixes showing the Android and Windows Phone artifacts (Table 40 and
Table 42) with the Mobile-D artifacts matrix (Table 38). Although not all artifacts are present
in both matrixes, we could evaluate our results at least for methodological artifacts. Secondly,
the cross-platform analysis results were compared against the development notes that had
been created during the implementation process. In the end, as usual, the results were

additionally evaluated by the two thesis supervisors.

6.4. Ontology for methodological interoperability

The last research phase is presented in Chapter 5. This chapter presents a background for
ontology development (see chapter 5.1) by defining: the ontology, its types and usages,
connections with our proposed methodological interoperability, ontology development
methodologies, tools and languages. Having the background established first we developed
Android Case Artifacts Ontology (see 5.2), then we reused it in the development of
WindowsPhone Case Artifacts Ontology (see 5.3), and finally we merged these two ontologies

220

and enhanced the resulting ontology into Multiplatform Case Artifacts Ontology which

focuses on artifacts reusability (see 5.4).

Motivation: The main goal of this research was to ontologically describe artifacts that arise in
a methodologically managed process of mobile application development targeting two or
more mobile platforms, and to create the basis for more efficient and interoperable process of
multi-platform mobile applications development. As we argued in the Chapter 1.1 of this
thesis, the development for mobile devices brings different new challenges, and although
there are several rather different approaches that scientists and experts are taking to solve
these problems, their common characteristic is also their main disadvantage: all of them are
based on paradigm “code once — run anywhere” which is unachievable and which takes away
a native development environment possibilities. This motivated us to propose a novel
approach by enhancing the interoperability among teams working on the same application
targeting different platforms by moving the focus to the methodological interoperability that
would be achieved through the reuse of artifacts created in such process. Having this in mind,
and as described in Chapter 5.1.3, ontologies are a natural solution and tool in achieving

semantic interoperability.

Results: First, we tried to give a short overview of several concepts that are related to
ontologies and ontology development (see Chapter 5.1). For the purpose of this research we
defined ontology as an explicit formal conceptualization of a shared understanding of the
domain of interest which includes the vocabulary of terms in order to describe the domain
elements, semantics in order to define the relationships of the domain elements and
pragmatics in order to define possible usages of these elements. We also presented the most
common reasons for ontology usages and we argued about their classification in accordance
with different points of view. As important result of this research, we created a connection
between ontologies and methodological interoperability that is proposed by this thesis.
Additionally, we gave a short overview of several influencing ontology development
methodologies which are either commonly used today or had a great influence on the
development of other methodologies. Finally, we argued about the possibilities of using

different ontology development tools and ontology development languages.

By implementation of Ontology Development 101 methodology (Noy and McGuinness,
2001) we created two platform specific ontologies and one upper level common ontology for
multi-platform development. The development of the first ontology was performed from
scratch and the focus in the report presented in Chapter 5.2 was put on the ontology
development process. During the development of the second platform specific ontology (see
Chapter 5.3), we focused on the reusability and ontology update. The results showed that no

infrastructural changes on the existing ontology were necessary while converting it into an

221

ontology targeting a different platform. On the other hand, the development of the final
ontology targeting multi-platform development and reusability focused on the ontology
merging, enhancing, evaluating and testing concepts. Two existing ontologies were merged
and again there was no need for any infrastructural changes or conflict resolutions (see
Chapter 5.4.2). The merged ontology was finally enhanced with a conceptualization regarding

the artifacts reusability.

The final ontological description encodes the information on 213 classes (see Table 51), 14
properties (see Table 52) and 2213 axioms. A full ontological description is available in
Appendix E of this document, in OWL/XML format at http://barok.foi.hr/~zstapic/ont/

mcao.owl and as OWLDoc documentation at http://barok.foi.hr/~zstapic/ont/mcao/doc/.

Special focus in this chapter is placed on ontology testing and evaluation. The ontology is
tested with series of Description Logic queries which aimed to answer all competency
questions stated at the beginning of development process. More on testing and evaluation is

given in subsequent evaluation paragraph.

Contributions: This chapter contributes to knowledge in several aspects. First we presented
the most important concepts in ontology development. Although these are not new concepts,
the use of ontologies in achieving a methodological interoperability is a novel approach
in solving the mobile platform and device fragmentation problem. Additionally, we
argued about the use of specific methodologies, tools, languages and approaches in ontology
development. Such discussion along with the in detail presented ontology development
process that was taken in this research, could be useful in future ontology development
projects. The Multi-platform Case Artifacts Ontology represents a unique ontological
description which is created to be a knowledge base for any information system that
aims to help development teams in increasing interoperability at methodological level by

reusing the artifacts that arise in multi-platform development process.

Rigor: In the development of all three ontologies we followed the OD101 methodology (Noy
and McGuinness, 2001), the recommendations given in (Horridge, 2011) and middle-out
approach in class development as proposed by Uschold and Gruninger (1996). Additionally,
during the whole development we kept the ontology in consistent logical, syntactic and
semantic state by performing the continuous evaluation by several mechanisms presented in
the following paragraph. As it can be seen from the obtained results, the created ontologies

are flexible, reusable and updatable.

Evaluation: As created ontology is one of the main contributions of this thesis, the special
focus was put in its verification and validation throughout the whole development process

(see Chapter 5.4.5). We used seven different automatic and manual evaluation mechanisms

222

http://barok.foi.hr/~zstapic/ont/mcao.owl
http://barok.foi.hr/~zstapic/ont/mcao.owl
http://barok.foi.hr/~zstapic/ont/mcao/doc/

that aimed to verify that the ontology was built correctly and to validate its content quality

and completeness.

First, the ontologies were built by following methodological development process which
ensured that our approach was systematic. We also followed the recommendations given in
(Noy and McGuinness, 2001) and in (Horridge, 2011) in order to avoid mistakes that are often
made and to solve the most common issues in ontology development. Third, throughout the
whole incremental development process we used reasoning tools to verify the newly added
concepts and their influence on the already defined concepts. Reasoners detect any syntax
errors, check the consistency of the ontology and automatically compute the inferred class

hierarchy model and as such are strong evaluation tool.

Additionally, we used two different tools that automatically evaluate the created ontologies:
OWL Validator (Horridge, 2009) which formally validated the ontology syntax and Ontology
evaluation plugin (Tantsis, 2013) which automatically evaluated the ontology according to
eight properties and gave us some insights and recommendations in possible inconsistencies

in the created ontology.

As the sixth and probably the most important evaluation mechanism, in order to validate the
ontology against its usage in future application, we created a series of Description Logic
queries which aimed to extract direct and indirect knowledge out of the ontology, by using a
reasoning engine. We created queries to test the ontology against all competency questions
that were created at the beginning of ontology development process and that were used as a
ontology guiding thread. The results obtained by these queries have been validated by thesis
supervisors - prof. Strahonja who is a domain expert in the field of Software Engineering

Methodologies, and dr. de-Marcos as an expert in Artificial Intelligence.

The created ontology is successfully verified and positively validated, and as such it

represents a solid basis for creation of an appropriate information system.

6.5. Summary of the results

Taking into consideration all what was said in the previous chapters we can conclude that the
research process was performed in the planned scope and within the planned research

framework defined at the beginning of the research process (see Chapter 1.3).

Following this framework we identified the methodologies that could be used for
development of mobile applications; we implemented the chosen methodology and approach
and created a mobile application targeting two target platforms; we identified and analyzed

the artifacts that were created in this development process, and we created the ontological

223

definition that describes the artifacts in accordance with Mobile-D methodology and from the

reusability point of view.

According to the results that were obtained during the ontology evaluation and testing, we can
conclude that such ontological description, that encodes the knowledge with OWL 2 and
Description Logic defined axioms and queries, represents a solid basis that can be used in
development of information system aiming to guide the development teams in achieving the
methodological interoperability by reusing artifacts created in the process of multi-platform
mobile application development. Additionally, we proved that our ontological description is
highly flexible and extensible, which allows us to update it with information on new platform
specific or platform independent artifacts without the need of changing the underling
infrastructure defined by the main class hierarchy elements, defined value partitions or
properties. Finally, the model allows the creation of Description Logic queries which can be
used to acquire direct or indirect information encoded in ontology knowledge. We showed the
examples of such queries which among other aimed to reach the information regarding the

competency questions stated at the beginning of the ontology development.

Therefore, we can conclude that it is possible to create ontological description of elements
of methodological interoperability containing structural and semantic aspects of sets of
artifacts created in the development process of a mobile application for two or more

target platforms, which makes our H; hypothesis confirmed.

This opens different possibilities for further research in this field — starting from building
additional ontological descriptions, building the different information systems that would
utilize such knowledge, designing and creating the integrated systems that would not only
guide the developers, but also provide them with interoperable artifacts management

environment.

224

7. CONCLUSION

7.1. Research objectives revisited

As we described in the introductory chapters of this thesis, this research focuses on the
analysis of the problem of multi-platform mobile applications development, and on the

proposal of a novel solution in the domain of ontology-based methodological interoperability.

Thus the stated goals included the acquisition of answers to the following questions: (1) what
methodologies and development approaches can be used in multi-platform mobile
applications development; (2) what artifacts (required inputs and outputs of methodologically
and methodically defined development steps) emerge during mobile applications
development, (3) whether and to what extent there are similarities between these artifacts, (4)
whether it is possible to ontologically describe these artifacts, and create a basis for

developing a system that would support the methodological interoperability.

Thus, the main goal of the research is connected to the last stated question, and it was to
ontologically describe artifacts that arise in the methodologically managed process of mobile
application development targeting two or more mobile platforms, and to create the basis for a

more efficient and interoperable process of multi-platform mobile applications development.

In this chapter we would like to have a glance look back on the performed research and to
emphasize its results by answering the stated questions and by aligning the results with the

main goal of this research.

» What methodologies and development approaches can be used in multi-platform

mobile applications development?

After creating a comprehensive analysis of how to perform a Systematic Literature Review in
the field of Software Engineering (Chapter 2.1) we performed an SLR with the goal to answer
the stated research question (Chapters 2.2 and 2.3). Reviewing more than 6700 initially
obtained studies through a set of predefined phases, we identified a total of 49 studies that are
found to be relevant to our question. Finally, we identified 22 development methodologies
and 7 development approaches that can be used in multi-platform mobile applications
development (see Table 17 and Table 18).

225

» What artifacts (required inputs and outputs of methodologically and methodically

defined development steps) emerge during mobile applications development?

Out of 22 identified methodologies, we argued and choose Mobile-D methodology to be the
most suitable for development of our mobile application for two target platforms (see Chapter
2.4). In the next research phase, we performed the development in order to identify the
artifacts that arise in such development process (see Chapters 3 and 4). After analyzing the
empirical and theoretical evidence we identified a total of 71 artifacts (60 in Android case and
61 in WP case) that were used or created in the mentioned development process. The artifacts

are enumerated and described in Table 40 and Table 42.

» Whether and to what extent are there similarities between these artifacts?

The cross-platform analysis of the identified artifacts showed significant similarities between
the artifacts used in the two development cases (see Chapter 4.4). After performing a cross-
platform analysis we found that more than 70% of all identified artifacts are common to both
development cases, that 66% of these common artifacts are completely or partially reusable,

and that the remaining platform specific artifacts also have some similarities.

» Whether it is possible to ontologically describe these artifacts, and create a basis for

developing a system that would support the methodological interoperability

Having the artifacts identified, we moved to the process of their ontological description. First
we created an ontological description of artifacts targeting Android development (see Chapter
5.2), then we created an ontological description targeting Windows Phone development (see
Chapter 5.3), and finally we merged these two in a common ontological description that is
additionally enhanced with the conceptualization of artifacts reusability (see Chapter 5.4). The
whole process of creation was methodologically driven and evaluated with several evaluation

mechanisms (see Chapter 5.4.5) which proved its correctness, validity and completeness.

With all this, we can conclude that we ontologically described the artifacts that arise in a
methodologically managed process of mobile application development targeting two or
more mobile platforms. Having this ontology proved to be correct and valid, flexible,
reusable and extensible we created the basis for development of an information system
to guide the development teams in a more efficient and interoperable process of multi-
platform mobile applications development, and thus the main research goal is

accomplished.

226

7.2. Limitations of the research

In this research several limitations can be identified. For example, the biggest challenge that
we faced in the first research phase was the execution of a complicated and time-consuming
scientific method of Systematic Literature Review by a single researcher. The SLR is
originally created and defined to be performed by a team of researchers, and the execution by
a single researcher (a doctoral student) makes the process of eliminating the research bias
more complicated and, of course, very time-consuming. In order to deal with this limitation
we defined very narrow research questions strictly focusing on the necessities of this thesis,
and we tried to strictly follow the recommendations on performing the Light SLR that are
given by the methodology creators and other influential authors. Finally, the role of the thesis
supervisors in elimination of research bias was the most important as they evaluated the

research results at every reached milestone.

The institutional subscriptions to the available scientific sources are very poor in Croatia and
somewhat better in Spain. However, the restrictions on accessing several databases (including
the newest volumes from Springer, some volumes from Wiley and the whole EI Compendex
database) are also identified as limitations in this research. In the end, we believe that the lack
of several sources did not significantly influence the overall literature review results as in
some cases we contacted the authors of the studies who gladly sent us their findings. I would

like to take this opportunity to thank all of them for this.

In the second research phase, the most important limitation was the lack of information on
performed projects of development of mobile application in development companies that are
targeting two or more target platforms. Our attempts to get such information for scientific
purposes were politely refused and we had to turn to laboratory development environment in
order to acquire empirical evidence that would be used in the later research phases. Although
we performed a rigorous development process that was evaluated by several different
mechanisms we find such approach as a possible limitation of this research. The main
difference from the development process in a company is lack of organization hierarchy and
roles, along with the lack of standard organizational processes that are intertwined with
development processes. However, we had this in mind while defining the requirements of the
mobile application and we tried to require the development of an application that would
represent a vast majority of today’s mobile applications developed by software companies. In
this manner, we could talk about other differences that could be found when comparing a
development performed by a single developer and development performed by a company that
has a history, with its legacy systems, specific organization culture et cetera. Although, the

development of a mobile application with or without a legacy system only influences the

227

development process and not the methodological aspects, we believe that other mentioned

differences could be taken as additional limitation of this research.

Regarding the third research phase we are aware that the proposed ontology presents only the
development of one application for two target platforms, and that the identified set of artifacts
in general could include many other platform specific artifacts and even some methodology
specific artifacts. Additionally, as stated in our scope definition (Chapter 1.3.1) we covered
only one development methodology supported by one development approach and targeting for
two mobile platforms. All mentioned issues can be recognized as the limitations of this
research, but we have to keep in mind that this research process had the main goal of
proposing a new framework or approach that can be used in solving the mobile platform

fragmentation problem. As argued in the previous chapter, this goal is fully achieved.

In the next chapter we will elaborate on the possible future research directions that could be
taken in order to overcome some of the above mentioned limitations or/and to enhance the

framework and make it usable in a concrete information system.

7.3. Possible future research

This research presents a comprehensive set of activities which resulted in a final product that
is usable in its current state. However, by extending the contexts of using such ontology we

can identify other possible research activities or even research directions that could be taken.

Even though throughout the whole research, including the section on research limitations, we
have pointed out the possible additional approaches that could be taken in order to enhance
the results, or to take a different point of view in analyzing some concept of interest, in this

chapter we would like to emphasize some of these possibilities.

In general, we recognize two main fields where this research sets the basis for future scientific
and professional activities. Those fields are Software Engineering with particular focus on
mobile engineering and, secondly, Knowledge Engineering with particular focus on ontology

development.

Let us start with the second one. The created ontology defines the basic infrastructure and
elements in the proposed framework of methodological interoperability, but currently it
covers only one development methodology and one development approach and it targets two
mobile platforms. As we have already discussed, the ontology is reusable and updatable but
with limits on adding new artifacts targeting different mobile platforms. If we want to move
to a completely new methodology, few of the existing classes would be reusable. Thus we

think that some improvements in this sense could be achieved with different ontology

228

structure. Perhaps, building parts for the ontology should not be specific ontologies targeting
specific platform, but rather distinct ontologies describing the methodology on one side and
the target platform on the other side. This would raise the level of reusability and it definitely

needs more scientific attention.

In addition to knowledge regarding the structural aspects of methodological phases, activities
and tasks, structural aspects of the identified artifacts, semantic aspects regarding the origin,
type, use and reuse of artifacts, only the inter-artifact relationships were described in the
approach taken in this research. To get more fine grained results would include also an intra-
artifact description describing its content in detail. Such analysis should answer questions like
“Which part of any partially reusable artifact could be reused and which does not?” or “How
specific artifact is reusable: by its structure, content, inner logic or their combination?”
Having this information on artifact inner content, the proposed framework would have
additional useful functionalities which would enable development teams to even better reuse

existing outputs and to additionally reduce development time.

An interesting research activity could be to compare the existing methodologies for the
development of mobile applications and to ontologically describe such acquired knowledge.
Such ontological description could be used in creation of ontologies in our framework, but
would also provide many different possibilities that are connected with mobile application
development, like how to choose proper methodology in a specific context, or how to

implement a new methodology that is unfamiliar to the team members.

On the other side, when talking about research activities in the field of software engineering,
we have already mentioned the necessity of moving this research to a new phase where a
proper information system for guiding the artifacts reuse would be developed. The
development of such a novel system is not a trivial task and it gives many research
possibilities in the domain of its design, functionality, relationship with the ontological
knowledge base et cetera. We also mentioned other systems that could be developed and that
are connected with artifacts management or even automatic transformation. Both these topics

open a set of new research fields and possibilities.

Finally, there are different research activities that could be connected to the performed
systematic literature review. As our research questions were rather narrow, similar review
could be performed in order to identify the methodologies and compare their main activities,
phases and tasks. Also, the data extraction forms, used in our research, contain some
information that we currently did not need, but we extracted it as we presumed it would be
useful for additional analysis. Such information, for example, relates to details on identified
methodology, its organizational or project management aspects et cetera. The analysis of this

information, along with the analysis of assessed studies quality could give new and interesting

229

results in this domain. As the SLR still emerges in the field of software engineering, an
analysis of the performed researches along with recommendations and conclusions is also

very welcomed.

In this short look into possible research directions in the future we presented only the most
important research activities that could be performed, but as we have already said, many
different and small enhancements of our research are possible and they are discussed

throughout the dissertation text.

7.4. Conclusion

This doctoral research tried to propose a different approach in solving the mobile platform
fragmentation problem with particular focus on multi-platform mobile application
development. It is a multidisciplinary research positioned inside the intersection of Software
and Knowledge Engineering fields. By utilizing ontologies, we proved that such formal
specification of conceptualization represents a solid basis for the development of an
information system that could guide development teams in a more efficient and
methodologically interoperable process of multi-platform mobile application development by

reusing the already created artifacts.

Three research phases were performed in order to identify the methodologies that are used for
multi-platform mobile application development, to identify the artifacts that arise in such
development process and to semantically describe those artifacts into a correct and valid
ontological description. Thus, the overall scientific contributions of this research can be

described as:

» Systematization of recommendations in performing the Systematic Literature Review
process in the field of Software Engineering with special focus given to the execution

of SLR by a single researcher (like doctoral students).

» Identification of available development methodologies and development approaches
that are reported in literature as created or used for mobile applications development.

The identification is performed by means of Systematic Literature Review.

» Systematization of knowledge and concepts in the field of application development for
mobile devices, identifying artifacts created and used while developing for mobile

devices with the consistent implementation of the selected development methodology.

» Classification of identified artifacts according to their reusability level, type and

origin. This classification implies semantic description of the artifacts, description of

230

the connection between the artifact and development tasks, activities and phases along

with description of inter-artifact relationships.

» A new ontological description of the artifacts that can be used as a knowledge basis
for developing a system that would support methodological interoperability and
therefore make development of applications for multiple mobile platforms more

efficient.

» Guidelines and recommendations for improving the development of multi-platform
applications for mobile devices through the utilization of an ontology-based

framework proposed by this research.

Although there are ontologies defined to provide interoperability at different levels of an
application development process, this novel approach aims to define interoperability at, until
now unexplored, methodological level. Semantic descriptions created and evaluated in this
thesis proved that the proposed approach and the supporting framework represent a solid basis
for performing additional research in this field. However, developing this ontology is only the
first step in the chain of activities to be implemented in order to develop a semantically

supported system for methodological interoperability.

231

REFERENCES

Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jdilinoja, J., Korkala, M., Koskela, J.,
Kyllonen, P., Salo, O., 2004. Mobile-D: an agile approach for mobile application
development, in: Companion to the 19th Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems, Languages, and Applications, OOPSLA ’04.
ACM, New York, NY, USA, pp. 174-175.

Abrahamsson, P., Hanhineva, A., Hulkko, H., Jailinoja, J., Komulainen, K., Korkala, M.,
Koskela, J., Kyllénen, P., Eporwei, O.T., 2005a. Agile Development of Embedded
Systems: Mobile-D (Agile Deliverable No. D.2.3). ITEA.

Abrahamsson, P., Hanhineva, A., Jéilinoja, J., 2005b. Improving business agility through
technical solutions: A case study on test-driven development in mobile software
development, in: Business Agility and Information Technology Diffusion. Presented
at the IFIP TC8 WG 8.6 International Working Conference.

Abrahamsson, P., Thme, T., Kolehmainen, K., Kyllonen, P., Salo, O., 2009. Mobile-D for
Mobile Software: How to Use Agile Approaches for the Efficient Development of
Mobile Applications.

Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J., 2003. New directions on agile
methods: a comparative analysis. IEEE, pp. 244-254.

Adobe Corporation, 2011. Adobe Announces Agreement to Acquire Nitobi, Creator of
PhoneGap [WWW Document]. Adobe.com - Press releases. URL
http://www.adobe.com/aboutadobe/pressroom/pressreleases/201110/AdobeAcquiresN
itobi.html (accessed 18-May-12).

Agarwal, V., Goyal, S., Mittal, S., Mukherjea, S., 2009. MobiVine: a middleware layer to
handle fragmentation of platform interfaces for mobile applications, in: Proceedings of
the 10th ACM/IFIP/USENIX International Conference on Middleware, Middleware
’09. Springer-Verlag New York, Inc., New York, NY, USA, pp. 24:1-24:10.

Ahtinen, A., Nurminen, J.K., Hakkild, J., 2007. Developing a mobile reporting system for
road maintenance: user research perspective, in: Proceedings of the 4th International
Conference on Mobile Technology, Applications, and Systems and the 1st
International Symposium on Computer Human Interaction in Mobile Technology,
Mobility ’07. ACM, New York, NY, USA, pp. 1-7.

Alyani, N., Shirzad, S., 2011. Learning to innovate in distributed mobile application
development: Learning episodes from Tehran and London, in: 2011 Federated
Conference on Computer Science and Information Systems (FedCSIS). Presented at
the 2011 Federated Conference on Computer Science and Information Systems
(FedCSIS). IEEE., Piscataway, NJ, USA, pp. 497-504.

Amanquah, N., Eporwei, O.T., 2009. Rapid application development for mobile terminals, in:
2nd International Conference on Adaptive Science & Technology (ICAST). Presented
at the Technology (ICAST), Accra, Ghana, pp. 410-417.

Android Developers, 2013. Platform Versions [WWW Document]. Dashboards | Android
Developers. URL http://developer.android.com/about/dashboards/index.html
(accessed 3-Jul-13).

233

Avison, D.E., Fitzgerald, G., 1988. Information systems development: methodologies,
techniques, and tools, Information systems series. Blackwell Scientific Publications,
Oxford [England] ; Boston.

Avison, D.E., Fitzgerald, G., 2003. Where now for development methodologies?
Communications of the ACM 46, 78-82.

Balagtas-Fernandez, F.T., Hussmann, H., 2008. Model-Driven Development of Mobile
Applications, in: Proceedings of the 2008 23rd IEEE/ACM International Conference
on Automated Software Engineering, ASE ’08. IEEE Computer Society, Washington,
DC, USA, pp. 509-512.

Barnawi, A., Qureshi, M., Khan, A.I., 2012. A Framework for Next Generation Mobile and
Wireless Networks Application Development using Hybrid Component Based
Development Model. Arxiv preprint arXiv:1202.2515.

Beck, K., 2002. Test-driven development: by example, The Addison-Wesley signature series.
Addison-Wesley, Boston.

Bektesevic, E., Rysa, E., 2008. JSR 248: Mobile Service Architecture [WWW Document].
The Java Community Process(SM) Program - JSRs: Java Specification Requests. URL
http://jcp.org/en/jsr/detail7id=248 (accessed 17-May-12).

Belcar, T., Lovrenci¢, S., 2012. Use of Description Logics Expressive Power in Ontologies,
in: Proceedings of 23rd Central European Conference on Information and Intelligent
Systems. Presented at the CECIIS 2012, Varazdin, pp. 23-28.

Bergstrom, F., Engvall, G., 2011. Development of handheld mobile applications for the public
sector in Android and 10S using agile Kanban process tool.

Binsaleh, M., Hassan, S., 2011. Systems Development Methodology for Mobile Commerce
Applications: Agile vs. Traditional. International Journal of Online Marketing (IJOM)
1,33-47.

Biolchini, J., Gomes Mian, P., Candida Cruz Natali, A., Horta Travassos, G., 2005.
Systematic Review in Software Engineering (Technical report No. RT - ES 679 / 05).
PESC, Rio de Janeiro.

Biswas, A., Donaldson, T., Singh, J., Diamond, S., Gauthier, D., Longford, M., 2006.
Assessment of mobile experience engine, the development toolkit for context aware
mobile applications, in: Proceedings of the 2006 ACM SIGCHI International
Conference on Advances in Computer Entertainment Technology, ACE °06. ACM,
New York, NY, USA.

Bowen, J., Hinze, A., 2011. Supporting Mobile Application Development with Model-Driven
Emulation. Electronic Communications of the EASST 45.

Brank, J., Grobelnik, M., Mladeni¢, D., 2005. A survey of ontology evaluation techniques, in:
In In Proceedings of the Conference on Data Mining and Data Warehouses (SiKDD
2005.

Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M., 2007. Lessons from
applying the systematic literature review process within the software engineering
domain. Journal of Systems and Software 80, 571-583.

Brusilovsky, P., Sosnovsky, S., Yudelson, M., 2005. Ontology-based Framework for User
Model Interoperability in Distributed Learning Environments, in: World Conference
on ELearning, E-Learn 2005. AACE, pp. 2851-2855.

234

Centers for Medicare and Medicaid Services (CMS), Office of information Services, 2008.
Selecting a development approach.

Centre for Reviews and Dissemination, University of York, 2009. Systematic reviews: CRD’s
guidance for undertaking reviews in health care. Centre for Reviews and
Dissemination, York.

Charaf, H., 2011. Developing Mobile Applications for Multiple Platforms, in: Engineering of
Computer Based Systems (ECBS-EERC), 2011 2nd Eastern European Regional
Conference on The. p. 2.

Chen, M., 2004. A methodology for building mobile computing applications. International
journal of electronic business 2, 229-243.

Cohen, J., 1968. Weighted kappa: Nominal scale agreement provision for scaled disagreement
or partial credit. Psychological Bulletin 70, 213-220.

Conradi, R., 2004. Software engineering mini glossary [WWW Document]. URL
http://www.idi.ntnu.no/grupper/su/publ/ese/se-defs.html (accessed 5-May-12).

Corcho, O., Fernandez-Lopez, M., Gomez-Perez, A., 2003. Methodologies, tools and
languages for building ontologies. Where is their meeting point? Data & Knowledge
Engineering 46, 41-64.

Cristani, M., Cuel, R., 2004. A Comprehensive Guideline for Building a Domain Ontology
from Scratch, in: Proceedings of [-KNOW ’04. Presented at the [-lKNOW °’04, Graz,
Austria.

Crockford, D., 2006. The application/json Media Type for JavaScript Object Notation (JSON)
(IEEE Standard No. RFC4627). Network Working Group.

Cuccurullo, S., Francese, R., Risi, M., Tortora, G., 2011. A Visual Approach supporting the
Development of MicroApps on Mobile Phones, in: Proc. of 3rd International
Symposium on End-User Development. Presented at the 3rd International Symposium
on End-User Development, Brindisi, Italy, pp. 289-294.

Dahlem, N., 2011. OntoClippy: A User-Friendly Ontology Design and Creation
Methodology. International Journal of Intelligent Information Technologies 7, 15-32.

De Nicola, A., Missikoff, M., Navigli, R., 2005. A proposal for a Unified Process for
ONtology building: UPON, in: In Proceedings of 16th International Conference on
Database and Expert Systems Applications (DEXA.

DeviceAnywhere, 2011. DeviceAnywhere - Test Center Enterprise Automation [WWW
Document]. Automated Testing on Smartphones and Tablets. URL
http://tiny.cc/DeviceAnywhere (accessed 27-Aug-11).

Dyba, T., Dingseyr, T., 2008a. Strength of evidence in systematic reviews in software
engineering. ACM Press, pp. 178—187.

Dyb4, T., Dingseyr, T., 2008b. Empirical studies of agile software development: A systematic
review. Information and Software Technology 50, 833-859.

Dyck, S., Majchrzak, T.A., 2012. Identifying Common Characteristics in Fundamental,
Integrated, and Agile Software Development Methodologies. IEEE, pp. 5299-5308.

Ejlersen, A., Knudsen, M.S., Laovgaard, J., Serensen, M.B., 2008. Using Design Science to
Develop a Mobile Application.

235

Elliott, G., 2004. Global business information technology: an integrated systems approach.
Pearson Addison Wesley, Harlow, England; New York.

European Commission, 2010. European Interoperability Framework (EIF 2.0) (COM(2010)
744 final).

Fernandez-Lopez, M., Gomez-Perez, A., Juristo, N., 1997. METHONTOLOGY: from
Ontological Art towards Ontological Engineering, in: Proceedings of the AAAI97
Spring Symposium. Stanford, USA, pp. 33—40.

Fielding, R.T., 2000. Architectural styles and the design of network-based software
architectures. University of California, Irvine.

Fjellheim, T., Milliner, S., Dumas, M., Vayssi¢re, J., 2007. A process-based methodology for
designing event-based mobile composite applications. Data & Knowledge
Engineering 61, 6 — 22.

Forstner, B., Lengyel, L., Kelenyi, 1., Levendovszky, T., Charaf, H., 2005. Supporting Rapid
Application Development on Symbian Platform, in: Computer as a Tool, 2005.
EUROCON 2005.The International Conference On. pp. 72 —75.

Forstner, B., Lengyel, L., Levendovszky, T., Mezei, G., Kelenyi, 1., Charaf, H., 2006. Model-
based system development for embedded mobile platforms, in: Model-Based
Development of Computer-Based Systems and Model-Based Methodologies for
Pervasive and Embedded Software, 2006. MBD/MOMPES 2006. Fourth and Third
International Workshop On. p. 10—pp.

Gal, V., Topol, A., 2005. Experimentation of a Game Design Methodology for Mobile Phones
Games.

Gasson, S., 1995. The role of methodologies in IT-related organisational change, in:
Proceedings of BCS Specialist Group on IS Methodologies, 3rd Annual Conference,
The Application of Methodologies in Industrial and Business Change. Presented at the
3rd Annual Conference, The Application of Methodologies in Industrial and Business
Change, North East Wales Institute, Wrexham.

Gomez-Pérez, A., 2001. Evaluation of ontologies. International Journal of Intelligent Systems
16, 391-4009.

Gomez-Pérez, A., 2004. Ontological engineering: with examples from the areas of knowledge
management, e-commerce and the Semantic Web, Advanced information and
knowledge processing. Springer, London ; New York.

Gomez-Pérez, A., 2004. Ontology Evaluation, in: Handbook on Ontologies, International
Handbooks on Information Systems. Springer, pp. 251-274.

Gong, R., Li, Q., Ning, K., Chen, Y., O’Sullivan, D., 2006. Business process collaboration
using semantic interoperability: Review and framework, in: Mizoguchi, R., Shi, Z.,
Giunchiglia, F. (Eds.), SEMANTIC WEB - ASWC 2006, PROCEEDINGS,
LECTURE NOTES IN COMPUTER SCIENCE. pp. 191-204.

Gruber, T.R., 1993a. A translation approach to portable ontology specifications.
KNOWLEDGE ACQUISITION 5, 199-220.

Gruber, T.R., 1993b. Toward principles for the design of ontologies used for knowledge
sharing (Technical report No. KSL-93-04). Stanford University, Stanford.

236

Griininger, M., Fox, M.S., 1995. Methodology for the Design and Evaluation of Ontologies,
in: Workshop on Basic Ontological Issues in Knowledge Sharing. Presented at the
Workshop on Basic Ontological Issues in Knowledge Sharing, Montreal.

Guarino, N., 1998. Formal Ontology and Information Systems, in: Proceedings of the Ist
International Conference on Formal Ontology in Information Systems. Trento, Italy,
pp. 3—15.

Guide to the software engineering body of knowledge (SWEBOK V3) - Software engineering
models and methods (Chapter 10 - Unpublished - In Review) (Technical report No. ?),
2012.

Guide to the software engineering body of knowledge 2004 version: SWEBOK (Technical
report No. ISO/IEC TR 19759), 2004. . Los Alamitos, CA.

Hammond, S., Umphress, D., 2012. Test driven development. ACM Press, p. 158.

Hannay, J., Sjoberg, D., Dyba, T., 2007. A Systematic Review of Theory Use in Software
Engineering Experiments. IEEE Transactions on Software Engineering 33, 87-107.

Hedberg, H., lisakka, J., 2006. Technical Reviews in Agile Development: Case Mobile-D, in:
Quality Software, 2006. QSIC 2006. Sixth International Conference On. pp. 347-353.

Higgins, J.P.., Green, S. (Eds.), 2011. Cochrane Handbook for Systematic Reviews of
Interventions. Version 5.1.0 [updated March 2011]. The Cochrane Collaboration.
Available from http://www.cochrane-handbook.org/.

Hilera, J.R., Pages, C., Martinez, J.J., Gutierrez, J.A., de-Marcos, L., 2010. An evolutive
process to convert glossaries into ontologies. Information Technology and Libraries
29, 195-204.

Hilpinen, R., 2011. Artifact [WWW Document]. Stanford Encyclopedia of Philosophy. URL
http://plato.stanford.edu/entries/artifact/ (accessed 5-May-12).

Holler, R., 2006. Mobile Application Development: A Natural Fit with Agile Methodologies.

Horridge, M., 2009. OWL 2 Validator [WWW Document]. University of Manchester. URL
http://owl.cs.manchester.ac.uk/validator/ (accessed 20-Jun-13).

Horridge, M., 2011. A Practical Guide To Building OWL Ontologies Using Protégé 4 and
CO-ODE Tools.

Horridge, M., Patel-Schneider, P.F., 2009. Manchester Syntax - OWL (W3C Document).
W3C.

Hosbond, J.H., 2005. Mobile Systems Development: Challenges, Implications and Issues, in:
Krogstie, J., Kautz, K., Allen, D. (Eds.), Mobile Information Systems II, IFIP
International Federation for Information Processing. Springer Boston, pp. 279-286.

Hosbond, J.H., Nielsen, P.A., 2005. Mobile Systems Development - A literature review, in:
Proceedings of IFIP 8.2 Annual Conference.

Humphrey, W.S., 1989. Managing the software process. Addison-Wesley, Reading, Mass.

IEEE Computer Society, 1991. IEEE Standard Computer Dictionary. A Compilation of IEEE
Standard Computer Glossaries (610-1991) (IEEE Std No. 610-1991).

IEEE Computer Society., 1990. IEEE standard computer dictionary : a compilation of IEEE
standard computer glossaries, 610. Institute of Electrical and Electronics Engineers,
New York NY USA.

237

IThme, T., Abrahamsson, P., 2005. The Use of Architectural Patterns in the Agile Software
Development of Mobile Applications.

Jeong, Y.-J., Lee, J.-H., Shin, G.-S., 2008. Development Process of Mobile Application SW
Based on Agile Methodology, in: Proceedings of 10th International Conference on
Advanced Communication Technology, (ICACT 2008). IEEE, Gangwon-Do, pp.
362-366.

Jorgensen, M., 2007. Estimation of Software Development Work Effort:Evidence on Expert
Judgment and Formal Models. International Journal of Forecasting 23, 449—462.

Kaariainen, J., Koskela, J., Abrahamsson, P., Takalo, J., 2004. Improving requirements
management in extreme programming with tool support - an improvement attempt that
failed, in: Euromicro Conference, 2004. Proceedings. 30th. pp. 342 — 351.

Kabilan, V., 2007. Ontology for information systems (04IS) design methodology:
conceptualizing, designing and representing domain ontologies. Data- och
systemvetenskap, Kungliga Tekniska hogskolan, Kista.

Kangas, E., Kinnunen, T., 2005. Applying user-centered design to mobile application
development. Communications of the ACM 48, 55-59.

Khambati, A., Grundy, J., Warren, J., Hosking, J., 2008. Model-Driven Development of
Mobile Personal Health Care Applications, in: Proceedings of the 2008 23rd
IEEE/ACM International Conference on Automated Software Engineering, ASE ’08.
IEEE Computer Society, Washington, DC, USA, pp. 467-470.

Khan, U.A., 2008. Improved Iterative Software Development Method for Game Design.

Khondoker, R.M., Mueller, P., 2010. Comparing Ontology Development Tools Based on an
Online Survey, in: Proceedings of the World Congress on Engineering. Presented at
the WCE 2010, London.

Kim, H., Choi, B., Yoon, S., 2009. Performance testing based on test-driven development for
mobile applications, in: Proceedings of the 3rd International Conference on
Ubiquitous Information Management and Communication, ICUIMC °09. ACM, New
York, NY, USA, pp. 612-617.

Kim, H.K., 2008. Frameworks of Process Improvement for Mobile Applications. Engineering
Letters 16.

Kim, W.Y., Son, H.S., Kim, J.S., Kim, R.Y., 2010. Development of Windows Mobile
Applications using Model Transformation Techniques. Journal of KISS: Computing
Practices 16, 1091-5.

Kitchenham, B., 2004. Procedures for Performing Systematic Reviews (Technical report No.
Keele University Technical Report TR/SE-0401; NICTA Technical Report
0400011T.1). Software Engineering Group; National ICT Australia Ltd., Keele;
Eversleigh.

Kitchenham, Barbara, Brereton, P., Turner, M., Niazi, M., Linkman, S., Pretorius, R.,
Budgen, D., 2009. The impact of limited search procedures for systematic literature
reviews - A participant-observer case study. IEEE, pp. 336-345.

Kitchenham, B., Charters, S., 2007. Guidelines for performing Systematic Literature reviews
in Software Engineering Version 2.3 (Technical report No. EBSE-2007-01). Keele
University and University of Durham.

238

Kitchenham, B, Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., Linkman, S., 2009.
Systematic literature reviews in software engineering — A systematic literature review.
Information and Software Technology 51, 7—15.

Kitchenham, B., Pretorius, R., Budgen, D., Pearl Brereton, O., Turner, M., Niazi, M.,
Linkman, S., 2010. Systematic literature reviews in software engineering - A tertiary
study. Information and Software Technology 52, 792—805.

Kno.e.sis Research Group, 2011. Welcome to Kno.e.sis [WWW Document]. URL
http://knoesis.wright.edu/ (accessed 27-Aug-11).

Korkala, M., Abrahamsson, P., 2004. Extreme programming: Reassessing the requirements
management process for an offsite customer. Software Process Improvement 12-22.

Kurschl, W., Mitsch, S., Prokop, R., Schonbock, J., 2007. Gulliver - a framework for building
smart speech-based applications, in: Proceedings of the 40th Annual Hawaii
International Conference on System Sciences. Waikoloa, HI, USA.

Kynkdinniemi, T., Komulainen, K., 2006. Agile Documentation in Mobile-D Projects (Agile
Deliverable No. D.2.10), Agile Software Development of Embedded Systems.

La, H.J., Kim, S.D., 2009. A service-based approach to developing Android Mobile Internet
Device (MID) applications. 2009 IEEE International Conference on Service-Oriented
Computing and Applications (SOCA) 00, 1-7.

La, H.J., Lee, H.J., Kim, S.D., 2011. An efficiency-centric design methodology for mobile
application architectures, in: Wireless and Mobile Computing, Networking and
Communications (WiMob), 2011 IEEE 7th International Conference On. pp. 272-279.

Lovrenc¢i¢, S., 2007. Formalna ontologija sveuciliSnih studija (Doctoral dissertation).
University of Zagreb, Varazdin, Croatia.

Lumsden, J., Hall, H., Cruickshank, P., 2011. Ontology definition and construction, and
epistemological adequacy for systems interoperability: A practitioner analysis. Journal
of Information Science 37, 246-253.

Lunny, A., 2011. Phonegap beginner’s guide: build cross-platform mobile applications with
the PhoneGap open source development framework. Packt Publishing Limited,
Birmingham, UK.

Madiraju, P., Malladi, S., Balasooriya, J., Hariharan, A., Prasad, S.K., Bourgeois, A., 2010. A
methodology for engineering collaborative and ad-hoc mobile applications using SyD
middleware. Journal of Network and Computer Applications 33, 542 — 555.

Maharmeh, M., Unhelkar, B., 2009. A Composite Software Framework Approach for Mobile
Application Development. Handbook of research in mobile business: technical,
methodological, and social perspectives 194.

Maia, M.E.F., Celes, C., Castro, R., Andrade, R.M.C., 2010. Considerations on developing
mobile applications based on the Capuchin project, in: Proceedings of the 2010 ACM
Symposium on Applied Computing, SAC 10. ACM, New York, NY, USA, pp. 575—
579.

Makunga, L., Church, K., 2002. Software Development in Mobile Computing Applications.
INFORMATION TECHNOLOGY ON THE MOVE 257.

Manjunatha, A., Ranabahu, A., Sheth, A., Thirunarayan, K., 2010. Power of Clouds in Your
Pocket: An Efficient Approach for Cloud Mobile Hybrid Application Development,

239

in: 2010 IEEE Second International Conference on Cloud Computing Technology and
Science. pp. 496-503.

Marinho, F.G., Andrade, R.M.C., Werner, C., Viana, W., Maia, M.E.F., Rocha, L.S.,
Teixeira, E., Filho, J.B.F., Dantas, V.L.L., Lima, F., Aguiar, S., 2012. MobiLine: A
Nested Software Product Line for the domain of mobile and context-aware
applications. Science of Computer Programming -.

Martin, J., 1986. Information Engineering. Savant Research Studies, Lancashire.

Mian, P., Conte, T., Natali, A., Biolchini, J., Travassos, G., 2005. A Systematic Review
Process for Software Engineering, in: ESELAW °05: 2nd Experimental Software
Engineering Latin American Workshop.

Miller, J., 2008. Cohesion And Coupling. MSDN Magazine - The Microsoft Journal for
Developers 23.

Mitchell, J.C., 2003. Concepts in programming languages. Cambridge University Press,
Cambridge, UK ; New York.

Niemela, P., 2009. JSR 256: Mobile Sensor API [WWW Document]. The Java Community
Process(SM) Program - JSRs: Java Specification = Requests. =~ URL
http://jcp.org/en/jsr/detail7id=248 (accessed 17-May-12).

Noblit, G.W., Hare, R.D., 1988. Meta-ethnography: synthesizing qualitative studies. SAGE,
London.

Noy, N.F., McGuinness, D.L., 2001. Ontology Development 101: AGuide to Creating Your
First Ontology (Technical report No. KSL-01-05; SMI-2001-0880), Stanford
Knowledge Systems Laboratory and Stanfrod Medical Informatics Technical Report.
Stanford University, Stanfrod.

Nystrom, A., 2011. Agile Solo - Defining and Evaluating an Agile Software Development
Process for a Single Software Developer.

Olle, T.W., Hagelstein, J., Macdonald, 1.G., Rolland, C., Sol, H.G., Van Assche, F.J.M.,
Verrijn-Stuart, A.A., 1988. Information systems methodologies: a framework for
understanding. Addison-Wesley Pub. Co, Wokingham, England ; Reading, Mass.

Olle, T.W., Sol, H.G., Tully, C.J. (Eds.), 1983. Information systems design methodologies: a
feature analysis: Proceedings of the IFIP WG 8.1 Working Conference on Feature
Analysis of Information Systems Design Methodologies, York, U.K., 5-7 July, 1983.
North-Holland ; Sole distributors for the U.S.A. and Canada, Elsevier Science Pub.
Co, Amsterdam ; New York : New York, N.Y.

Olle, T.W., Sol, H.G., Verrijn Stuart, A.A. (Eds.), 1982. Information systems design
methodologies: a comparative review: proceedings of the IFIP WG 8.1 Working
Conference on Comparative Review of Information Systems Design Methodologies,
Noordwijkerhout, The Netherlands, 10-14 May 1982. North-Holland Pub. Co. ; Sole
distributors for the U.S.A. and Canada, Elsevier Science Pub. Co, Amsterdam ; New
York : New York, N.Y.

Olle, T.W., Sol, H.G., Verrijn Stuart, A.A. (Eds.), 1986. Information systems design
methodologies: improving the practice: proceedings of the IFIP WG 8.1 Working
Conference on Comparative Review of Information Systems Design Methodologies,
Improving the Practice, Noordwijkerhout, The Netherlands, 5-7 May, 1986, Post-
conference ed. ed. North-Holland Pub. Co.; Sole distributors for the U.S.A. and
Canada, Elsevier Science Pub. Co, Amsterdam ; New York : New York, N.Y.

240

Ortiz, G., Prado, A.G.D., 2010. Improving device-aware Web services and their mobile
clients through an aspect-oriented, model-driven approach. Information and Software
Technology 52, 1080 — 1093.

Papageorgiou, A., Leferink, B., Eckert, J., Repp, N., Steinmetz, R., 2009. Bridging the gaps
towards structured mobile SOA. ACM Press, p. 288.

Park, J., Ram, S., 2004. Information systems interoperability: What lies beneath? ACM
TRANSACTIONS ON INFORMATION SYSTEMS 22, 595-632.

Parker, P.M., 2011. Definition of artifact [WWW Document]. Webster’s Online Dictionary.
Url http://www.websters-online-dictionary.org/definitions/artifact (accessed 5-Jul-11).

Paspallis, N., Papadopoulos, G.A., 2006. An approach for developing adaptive, mobile
applications with separation of concerns, in: Computer Software and Applications
Conference, 2006. COMPSAC’06. 30th Annual International. pp. 299-306.

Pauca, V.P., Guy, R.T., 2012. Mobile apps for the greater good: a socially relevant approach
to software engineering, in: Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education, SIGCSE ’12. ACM, New York, NY, USA, pp. 535-
540.

Paulheim, H., Probst, F., 2010. Application integration on the user interface level: An
ontology-based approach. DATA & KNOWLEDGE ENGINEERING 69, 1103-1116.

Petticrew, M., Roberts, H., 2005. Systematic reviews in the social sciences: a practical guide.
Blackwell Pub., Malden, MA.

PhoneGap, 2011. Take the pain out of compiling mobile apps for multiple platforms [WWW
Document]. PhoneGap Build. URL https://build.phonegap.com (accessed 27-Aug-11).

Rahimian, V., Ramsin, R., 2008. Designing an agile methodology for mobile software
development: A hybrid method engineering approach, in: Proceedings of Second
International Conference on Research Challenges in Information Science, RCIS
(2008). IEEE, Marrakech, pp. 337-342.

Ramsin, R., Paige, R.F., 2008. Process-centered review of object oriented software
development methodologies. ACM Computing Surveys 40, 1-89.

Ranabahu, A.H., Maximilien, E.M., Sheth, A.P., Thirunarayan, K., 2011. A domain specific
language for enterprise grade cloud-mobile hybrid applications, in: Proceedings of the
Compilation of the Co-located Workshops on DSM’11, TMC’11, AGERE!"11,
AOOPES’11, NEAT’11, & VMIL’11, SPLASH ’11 Workshops. ACM, New
York, NY, USA, pp. 77-84.

Reda, R., 2012. Robotium - The world’s leading Android™ test automation framework
[WWW Document]. URL http://code.google.com/p/robotium/ (accessed 6-Jun-12).

Rhomobile, Inc., 2011. Smartphone Enterprise Application Integration, White paper [WWW
Document]. URL http://tiny.cc/thomobile (accessed 20-Aug-11).

Ridene, Y., Belloir, N., Barbier, F., Couture, N., 2010. A DSML For Mobile Phone
Applications Testing, in: Proceedings of 10th Workshop on Domain-Specific
Modeling in SPLASH. France.

Rosa, R.E.V.S., Lucena,Jr., V.F., 2011. Smart composition of reusable software components
in mobile application product lines, in: Proceedings of the 2nd International Workshop
on Product Line Approaches in Software Engineering, PLEASE ’11. ACM, New
York, NY, USA, pp. 45-49.

241

Rossi, M., Tuunanen, T., 2010. A method and tool for rapid consumer application
development. International Journal of Organisational Design and Engineering 1, 109—
125.

Rupnik, R., 2009. Mobile Applications Development Methodology, in: Unhelkar, B. (Ed.),
Handbook of Research in Mobile Business: Technical, Methodological, and Social
Perspectives. IGI Global Snippet.

Saifudin, A.W.S.N., Salam, B.S., Abdullah, C.M.H.L., 2011. MMCD Framework and
Methodology for Developing m-Learning Applications. Presented at the International
conference on Teaching & Learning in Higher Education (ICTLHE 2011).

Salo, O., 2004. Improving software process in agile software development projects: results
from two XP case studies, in: Euromicro Conference, 2004. Proceedings. 30th. pp.
310-317.

Salo, O., Koskela, J., 2004. Mobile-D Glossary, VIT Technical Research Centre of Finland,
Available at: http://agile.vtt.fi/mobile-d.zip.

Scharff, C., 2010. The Software Engineering of Mobile Application Development.

Scharff, C., 2011. Guiding global software development projects using Scrum and Agile with
quality assurance, in: Software Engineering Education and Training (CSEE&T), 2011
24th IEEE-CS Conference On. pp. 274-283.

Scharff, C., Verma, R., 2010. Scrum to support mobile application development projects in a
just-in-time learning context, in: Proceedings of the 2010 ICSE Workshop on
Cooperative and Human Aspects of Software Engineering, CHASE ’10. ACM, New
York, NY, USA, pp. 25-31.

Schwieren, J., Vossen, G., 2009. A design and development methodology for mobile RFID
applications based on the ID-Services middleware architecture, in: Mobile Data
Management: Systems, Services and Middleware, 2009. MDM’09. Tenth International
Conference On. pp. 260-266.

Services Research Lab, Metadata and Languages Lab, 2011. Cloud-Mobile Hybrid
Application Generator [WWW Document]. MobiCloud. URL http://mobicloud-
classic.knoesis.org/ (accessed 27-Aug-11).

Shah, M., Mears, B., Chakrabarti, C., Spanias, A., Center, S., Tempe, A., 2012. A Top-Down
Design Methodology Using Virtual Platforms for Concept Development.

Shiratuddin, N., Sarif, S.M., 2008. m d-Matrix: Mobile Application Development Tool.
Proceedings of the International MultiConference of Engineers and Computer
Scientists 1.

Shiratuddin, N., Sarif, S.M., 2009. Construction of Matrix and eMatrix for Mobile
Development Methodologies, in: Handbook of Research in Mobile Business:
Technical, Methodological, and Social Perspectives. IGI Global, pp. 113—-126.

Simonsen, A., 2004. Developing mobile applications.

Spataru, A.C., 2010. Agile Development Methods for Mobile Applications (PhD Thesis,
University of Edinburgh). The University of Edinburgh, Edinburgh.

Stapi¢, Z., Lopez, E.G., Cabot, A.G., de Marcos Ortega, L., Strahonja, V., 2012. Performing
Systematic Literature Review in Software Engineering, in: Proceedings of 23rd
Central European Conference on Information and Intelligent Systems. Presented at the

242

Central European Conference on Information and Intelligent Systems - CECIIS,
Faculty of Organization and Informatics, Varazdin, pp. 441-447.

Staples, M., Niazi, M., 2007. Experiences using systematic review guidelines. Journal of
Systems and Software 80, 1425-1437.

Staples, M., Niazi, M., 2008. Systematic review of organizational motivations for adopting
CMM-based SPI. Information and Software Technology 50, 605-620.

Studer, R., Benjamins, V.R., Fensel, D., 1998. Knowledge engineering: Principles and
methods. Data & Knowledge Engineering 25, 161-197.

Su, S.H., Scharff, C., 2010. Know Yourself and Beyond: A Global Software Development
Project Experience with Agile Methodology, in: Proceedings of Student-Faculty
Research Day, CSIS. Pace University.

Supan, D., Tekovi¢, K., Skalec, J., Stapi¢, Z., 2013. Using Mobile-D methodology in
development of mobile applications: challenges and issues, in: Razvoj Poslovnih i
Informatickih Sustava CASE 25. Presented at the Razvoj poslovnih i informatic¢kih
sustava CASE 25, CASE d.o.o, Rijeka, pp. 91-98.

Tantsis, G., 2013. Ontology evaluation plug-in for the Protege software (Master Thesis).
Aristotle University of Thessaloniki, Thessaloniki.

Terani, N.S., 2012. IPhone Application Development Challenges and Solutions.
CALIFORNIA STATE UNIVERSITY.

Thompson, C., White, J., Dougherty, B., Turner, H., Campbell, S., Zienkiewicz, K., Schmidt,
D.C., 2010. Model-Driven Architectures for Optimizing Mobile Application
Performance.

Um, J., Hong, S., Kim, Y.T., Chung, E., Choi, K.M., Kong, J.T., Eo, S.K., 2005. ViP: A
Practical Approach to Platform-based System Modeling Methodology. Journal of
Semiconductor Technology and Science 5, 89.

Unterkalmsteiner, M., Gorschek, T., Islam, A.K.M.M., Cheng, C.K., Permadi, R.B., Feldt, R.,
2012. Evaluation and Measurement of Software Process Improvement - A Systematic
Literature Review. IEEE Transactions on Software Engineering.

Uschold, M., Gruninger, M., 1996. Ontologies: Principles, methods and applications.
Knowledge Engineering Review 11, 93—136.

Uschold, M., King, M., 1995. Towards a Methodology for Building Ontologies, in: In
Workshop on Basic Ontological Issues in Knowledge Sharing, Held in Conjunction
with [JCAI-95.

Vrandeci¢, D., 2009. Ontology Evaluation, in: Handbook on Ontologies, International
Handbooks on Information Systems. Springer, pp. 293-313.

VTT Technical Research Centre of Finland, 2004. Mobile-D Product Description [WWW
Document]. AGILE Software Technologies Research Programme. URL
http://agile.vtt.fi/prodserv.html (accessed 16-May-12).

VTT Technical Research Centre of Finland, 2006a. Mobile-D Online Presentation (Web
Application) [WWW Document]. AGILE Software Technologies Research
Programme. URL http://agile.vtt.fi/mobiled.html (accessed 16-May-12).

VTT Technical Research Centre of Finland, 2006b. Mobile-D Description and Templates
(ZIP Archive Document), Available at: http://agile.vtt.fi/mobile-d.zip.

243

W3C OWL Working Group, 2012. OWL 2 Web Ontology Language Document Overview
(Second Edition) (W3C Recommendation No. REC-owl2-overview-20121211).

W3C Web Ontology Working Group, 2004. OWL Web Ontology Language Guide (W3C
Recommendation No. REC-owl-guide-20040210).

WAC Application Services Ltd, 2012a. WAC Apps [WWW Document]. WAC Apps -
Developer Website. URL http://www.wacapps.net/wac-apps (accessed 18-May-12).

WAC Application Services Ltd, 2012b. WAC APIs [WWW Document]. WAC APIs -
Developer Website. URL http://www.wacapps.net/wac-apis (accessed 18-May-12).

WAC Application Services Ltd, 2012c. WAC Payment API SDKs [WWW Document]. WAC
Payment API Resources - Developer Website. URL http://www.wacapps.net/sdks
(accessed 18-May-12).

Walkerdine, J., Phillips, P., Lock, S., 2009. A Tool Supported Methodology For Developing
Secure Mobile P2P Systems, in: Mobile Peer-to-peer Computing for Next Generation
Distributed Environments: Advancing Conceptual and Algorithmic Applications. pp.
283-301.

Wang, H.H., Noy, N.F., Rector, A., Musen, M., Redmond, T., Rubin, D., Tu, S., Tudorache,
T., Drummond, N., Horridge, M., Seidenberg, J., 2006. Frames and OWL Side by
Side. Presented at the The Ninth International Protégé Conference, Stanford
University, Stanford.

Wasserman, A.L., 2010. Software engineering issues for mobile application development, in:
Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research,
FoSER ’10. ACM, New York, NY, USA, pp. 397-400.

Williams, B.J., Carver, J.C., 2010. Characterizing software architecture changes: A systematic
review. Information and Software Technology 52, 31-51.

Wolkerstorfer, P., Tscheligi, M., Sefelin, R., Milchrahm, H., Hussain, Z., Lechner, M.,
Shahzad, S., 2008. Probing an agile usability process, in: CHI 08 Extended Abstracts
on Human Factors in Computing Systems, CHI EA ’08. ACM, New York, NY, USA,
pp- 2151-2158.

Xiong, Y., Wang, A., 2010. A new combined method for UCD and software development and
case study, in: Information Science and Engineering (ICISE), 2010 2nd International
Conference On. pp. 1-4.

Yee, K.Y., Tiong, A.W., Tsai, F.S., Kanagasabai, R., 2009. OntoMobilLe: A Generic
Ontology-Centric Service-Oriented Architecture for Mobile Learning. IEEE, pp. 631—
636.

Youn, S., McLeod, D., 2006. Ontology Development Tools for Ontology Based Knowledge
Management (CREATE Reserach Archive. Non-published Research Reports No.
Paper 100).

Zakal, D., Lengyel, L., Charaf, H., 2011. Software Product Lines-based development, in:
Applied Machine Intelligence and Informatics (SAMI), 2011 IEEE 9th International
Symposium On. pp. 79-81.

Zeidler, C., Kittl, C., Petrovic, O., 2008. An integrated product development process for
mobile software. International Journal of Mobile Communications 6, 345-356.

244

APPENDIXES

Appendix A — Papers selected for the SLR Phase 2 analysis

S1.

S2.

S3.

S4.

S5.

S6.

S7.

S8.

S9.

Abrahamsson P, Salo O, Ronkainen J, Warsta J, 2002.
Agile software development methods - Review and
Analysis (Report No. VTT Publ. 478). VTT Technical
Research Centre of Finland.

Abrahamsson, P., Hanhineva, A., Hulkko, H., lhme, T.,
Jaalinoja, J., Korkala, M., Koskela, J., Kyllénen, P., Salo,
0., 2004. Mobile-D: an agile approach for mobile
application development, in: Companion to the 19th
Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications,
OOPSLA '04. ACM, New York, NY, USA, pp. 174-175.

Abrahamsson, P., Hanhineva, A., Jaalinoja, J., 2005.
Improving business agility through technical solutions:
A case study on test-driven development in mobile
software development, in: Business Agility and
Information Technology Diffusion. Presented at the
IFIP TC8 WG 8.6 International Working Conference.

Abrahamsson, P., lhme, T., Kolehmainen, K., Kyllonen,
P., Salo, 0., 2009. Mobile-D for Mobile Software: How
to Use Agile Approaches for the Efficient
Development of Mobile Applications.

Abrahamsson, P., Still, J.,, 2007. Agile software
development: theoretical and practical outlook.
Product-Focused Software Process Improvement
410-411.

Abrahamsson, P., Warsta, J., Siponen, M.T.,
Ronkainen, J., 2003. New directions on agile methods:
a comparative analysis, in: Software Engineering,
2003. Proceedings. 25th International Conference On.
pp. 244-254.

Acharya, S., Mohanty, H., Shyamasundar, R., 2003.
MOBICHARTS: a notation to specify mobile computing
applications, in: System Sciences, 2003. Proceedings
of the 36th Annual Hawaii International Conference
On. p. 11-pp.

Ahlgren, R., Markkula, J., 2005. Design patterns and
organisational memory in mobile application
development. Product Focused Software Process
Improvement 1-35.

Ahtinen, A., Nurminen, J.K.,, Hakkila, J., 2007.
Developing a mobile reporting system for road
maintenance: user research perspective, in:
Proceedings of the 4th International Conference on
Mobile Technology, Applications, and Systems and
the 1st International Symposium on Computer
Human Interaction in Mobile Technology, Mobility
'07. ACM, New York, NY, USA, pp. 1-7.

S10.

S11.

S12.

S13.

S14.

S15.

S16.

S17.

S18.

S19.

S20.

245

Aini, Q., La Katjong, B., dan Kartika Sari Puteri, E.R.,
2011. Application development of mobile
Transjakarta route map: (case study: Jakarta
Indonesia), in: Proceedings of the 9th International
Conference on Advances in Mobile Computing and
Multimedia, MoMM ’11. ACM, New York, NY, USA,
pp. 264-267.

Al Bar, A., Mohamed, E., Akhtar, M.K., Abuhashish, F.,
2011. A preliminary review of implementing
Enterprise Mobile Application in ERP environment.

Alahuhta, P., Lothman, H., Helaakoski, H., Koskela, A.,
Roning, J., 2006. Experiences in developing mobile
applications using the Apricot Agent Platform.
Personal and Ubiquitous Computing 11, 1-10.

Alatalo, P., Jarvenoja, J., Karvonen, J., Keronen, A.,
Kuvajal, P., 2002. Mobile application architectures.
Product Focused Software Process Improvement 572—
586.

Algan, F., Tuglular, T., 2005. Test Driven Software
Development.

Ali, N., Ramos, 1., Solis, C., 2010. Ambient-PRISMA:
Ambients in mobile aspect-oriented software
architecture. Journal of Systems and Software 83, 937
—958.

Ali, N.N., Mansoor, H., 2011. Cross Platform Mobile
Application Development Framework.

Al-Maharmeh, M., Unhelkar, B., 2009. Applying a
Composite Process Framework (CPF) in Real Life
Software Development Project, in: Information
Technology: New Generations, 2009. ITNG’09. Sixth
International Conference On. pp. 1384—-1389.

Alyani, N., Shirzad, S., 2011. Learning to innovate in
distributed mobile application development: Learning
episodes from Tehran and London, in: 2011
Federated Conference on Computer Science and
Information Systems (FedCSIS). Presented at the 2011
Federated Conference on Computer Science and
Information Systems (FedCSIS). IEEE., Piscataway, NJ,
USA, pp. 497-504.

Amanquah, N., Eporwei, O.T., 2009. Rapid application
development for mobile terminals, in: Adaptive
Science Technology, 2009. ICAST 2009. 2nd
International Conference On. pp. 410-417.

Amoroso, D.L.,, Ogawa, M., 2011. Japan’s Model of
Mobile Ecosystem Success: The Case of NTT DoCoMo.
Journal of Emerging Knowledge on Emerging Markets
3,27.

S21.

S22.

$23.

S24.

S25.

S26.

S27.

S28.

S29.

S30.

S31.

Andersson, B., Henningsson, S., 2010. Developing
Mobile Information Systems: Managing Additional
Aspects.

Andes, D., Cremer, J., Draxler, B., Dudley, N.,
Haldeman, L., Hsieh, H., Likarish, P., Nguyen, D.T.,
Sarnelli, C., Winet, J., 2011. UCOL — lowa City UNESCO
City of Literature: mobile application research &
development, in: Proceedings of the 2011
iConference, iConference ’11. ACM, New York, NY,
USA, pp. 636—637.

Aslan, I., Leichtenstern, K., Holleis, P., Wasinger, R.,
Stahl, C., 2010. Tool-support for mobile and pervasive
application development - issues and challenges, in:
Proceedings of the 12th International Conference on
Human Computer Interaction with Mobile Devices
and Services, MobileHCI ’10. ACM, New York, NY,
USA, pp. 499-502.

Ayob, N., Hussin, A.R.C., Dahlan, H.M., 2009. Three
layers design guideline for mobile application, in:
Information Management and Engineering, 2009.
ICIME’09. International Conference On. pp. 427-431.

Azhari, S., Wardoyo, R., Hartati, S., 2008.
Development of distribution application using
intelligent mobile agent approach for accessing the
progress status of enterprise projects. Proceeding The
4th International Conference on Information &
Communication Technology and System (ICTS).

B’far, R., 2005. Mobile Computing Principles:
designing and developing mobile applications with
UML and XML. Cambridge Univ Pr.

Balagtas-Fernandez, F., Hussmann, H., 2009. A
Methodology and Framework to Simplify Usability
Analysis of Mobile Applications, in: Proceedings of the
2009 |IEEE/ACM International Conference on
Automated Software Engineering, ASE '09. IEEE
Computer Society, Washington, DC, USA, pp. 520-
524.

Balagtas-Fernandez, F., Tafelmayer, M., Hussmann,
H., 2010. Mobia Modeler: easing the creation process
of mobile applications for non-technical users, in:
Proceedings of the 15th International Conference on
Intelligent User Interfaces, IUI “10. ACM, New York,
NY, USA, pp. 269-272.

Balagtas-Fernandez, F.T., Hussmann, H., 2008. Model-
Driven Development of Mobile Applications, in:
Proceedings of the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering, ASE
’08. IEEE Computer Society, Washington, DC, USA, pp.
509-512.

Ballagas, R., Memon, F., Reiners, R., Borchers, J.,
2007. iStuff mobile: rapidly prototyping new mobile
phone interfaces for ubiquitous computing, in:
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’07. ACM, New
York, NY, USA, pp. 1107-1116.

Baloian, N., Zurita, G., Antunez, P., Baytelman, F.,
2007. A Flexible, Lightweight Middleware Supporting
the Development of Distributed Applications across

S32.

S33.

S34.

S35.

S36.

S37.

S38.

S39.

$40.

S41.

S42.

S43.

246

Platforms, in: Computer Supported Cooperative Work
in Design, 2007. CSCWD 2007. 11th International
Conference On. pp. 92-97.

Bareiss, R., Sedano, T., 2011. Improving Mobile
Application Development, in: Proceedings of 2nd
Annual Workshop on Software Engineering for Mobile
Applications Development. Presented at the 2nd
Annual Workshop on Software Engineering for Mobile
Applications Development, Santa Monica, CA, USA,
pp. 5-8.

Barnawi, A., Al-Talhi, A.H., Qureshi, M., Khan, A.l,
2012. Novel Component Based Development Model
For Sip-Based Mobile Application. Arxiv preprint
arXiv:1202.2516.

Barnawi, A., Qureshi, M., Khan, A.l, 2012. A
Framework for Next Generation Mobile and Wireless
Networks Application Development using Hybrid
Component Based Development Model. Arxiv
preprint arXiv:1202.2515.

Behrens, H., 2010. MDSD for the iPhone: developing a
domain-specific language and IDE tooling to produce
real world applications for mobile devices, in:
Proceedings of the ACM International Conference
Companion on Object Oriented Programming Systems
Languages and Applications Companion, SPLASH ’10.
ACM, New York, NY, USA, pp. 123-128.

Bellotti, F., Berta, R., Gloria, A.D., Margarone, M.,
2003. MADE: developing edutainment applications on
mobile computers. Computers & Graphics 27,
617 — 634.

Bellotti, F., Berta, R., Margarone, M., De Gloria, A,,
2008. oDect: an RFID-based object detection API to
support applications development on mobile devices.
Software: Practice and Experience 38, 1241-1259.

Benou, P., Bitos, V., 2009. Developing mobile
commerce applications. Selected readings on
electronic commerce technologies: contemporary
applications.

Bergstrom, F., Engvall, G., 2011. Development of
handheld mobile applications for the public sector in
Android and iOS using agile Kanban process tool.

Bertolli, C., Buono, D., Mencagli, G., Vanneschi, M.,
2010. An Approach to Mobile Grid Platforms for the
Development and Support of Complex Ubiquitous
Applications. International Journal of Advanced
Pervasive and Ubiquitous Computing (IJAPUC) 2, 24—
38.

Bhattacharyya, S., 2003. Framework for Developing
Adaptable Applications in Pervasive Environments.

Binsaleh, M., Hassan, S., 2011. Systems Development
Methodology for Mobile Commerce Applications:
Agile vs. Traditional. International Journal of Online
Marketing (JOM) 1, 33-47.

Biswas, A., Donaldson, T., Singh, J., Diamond, S.,
Gauthier, D., Longford, M., 2006. Assessment of
mobile experience engine, the development toolkit
for context aware mobile applications, in:

S44.

$45.

S46.

S47.

$48.

$49.

S50.
S51.

S52.

S53.

S54.

S55.

S56.

Proceedings of the 2006 ACM SIGCHI International
Conference on Advances in Computer Entertainment
Technology, ACE '06. ACM, New York, NY, USA.

Blanco, P., Camarero, J., Fumero, A., Werterski, A.,
Rodriguez, P., 2009. Metodologia de desarrollo agil
para sistemas moviles Introduccidon al desarrollo con
Android y el iPhone.

Blom, S., Book, M., Gruhn, V., Hrushchak, R., Kohler,
A., 2008. Write Once, Run Anywhere A Survey of
Mobile Runtime Environments, in: Grid and Pervasive
Computing Workshops, 2008. GPC Workshops’ 08.
The 3rd International Conference On. pp. 132-137.

Boonma, P., Suzuki, J., 2011. Model-driven
performance engineering for wireless sensor
networks with feature modeling and event calculus,
in: Proceedings of the 3rd Workshop on Biologically
Inspired Algorithms for Distributed Systems, BADS
’11. ACM, New York, NY, USA, pp. 17-24.

Bowen, J.,, Hinze, A., 2011. Supporting Mobile
Application Development with Model-Driven
Emulation. Electronic Communications of the EASST
45,

Braun, P., Eckhaus, R., 2008. Experiences on model-
driven software development for mobile applications,
in: Engineering of Computer Based Systems, 2008.
ECBS 2008. 15th Annual IEEE International
Conference and Workshop on The. pp. 490-493.

Breivold, H.P., Sundmark, D., Wallin, P., Larsson, S.,
2010. What Does Research Say about Agile and
Architecture?, in: Software Engineering Advances
(ICSEA), 2010 Fifth International Conference On. pp.
32-37.

Bungert, A., 2009. Developing for Mobile Platforms.

Burke, S., Hatfield, A., Mosunov, A., Sajwani, F.,
Shalaby, A., 2012. Open-Source Software
Development.

Burton, B., 2011. Mobile App Development with
Corona: Getting Started. Burtons Media Group.

Carbon, R., Hess, S., 2011. Mobile Business
Applications must be thoroughly engineered!, in: 2nd
Annual Workshop on Software Engineering for Mobile
Application Development.

Carlson, D., Schrader, A., 2011. A wide-area context-
awareness approach for Android, in: Proceedings of
the 13th International Conference on Information
Integration and Web-based Applications and Services,
iiWAS '11. ACM, New York, NY, USA, pp. 383-386.

Carter, S.A., Mankoff, J., 2005. Momento: Early-Stage
Prototyping and Evaluation for Mobile Applications
(in submission) (Technical report No. UCB/CSD-05-
1380). EECS Department University of California,
Berkeley.

Cha, S., Kurz, J.B., Du, W., 2009. Toward a unified
framework for mobile applications, in:
Communication Networks and Services Research

S57.

S58.

S59.

S60.

S61.

S62.

S63.

S64.

S65.

S66.

S67.

S68.

S69.

S70.

247

Conference, 2009. CNSR’09. Seventh Annual. pp. 209—
216.

Chapter, X., 2009. Mobile Applications Development
Methodology. Handbook of research in mobile
business: technical, methodological, and social
perspectives 160.

Charaf, H., 2011. Developing Mobile Applications for
Multiple Platforms, in: Engineering of Computer
Based Systems (ECBS-EERC), 2011 2nd Eastern
European Regional Conference on The. p. 2.

Charland, A., Leroux, B., 2011. Mobile application
development: web vs. native. Communications of the
ACM 54, 49-53.

Chaudhary, A,
Based Software
Development.

Bharathan, K.,
Reuse in

2011. Component
Mobile Application

Chen, G., Kotz, D., 2005. Solar: An open platform for
context-aware mobile applications. DTIC Document.

Chen, M., 2004. A methodology for building mobile
computing applications. International journal of
electronic business 2, 229-243.

Cheng, M.C., Yuan, S.M., 2005. An adaptive mobile
application development framework. Embedded and
Ubiquitous Computing—EUC 2005 765-774.

Cheng, M.C., Yuan, S.M., 2007. An Adaptive and
Unified Mobile Application Development Framework
for Java. Journal of Information Science and
Engineering 23, 1391.

Cheung, A., Grandison, T., Johnson, C., Schénauer, S.,
2007. infinity: a generic platform for application
development and information sharing on mobile
devices, in: Sixth International ACM Workshop on
Data Engineering for Wireless and Mobile Access
(MobiDE), MobiDE '07. ACM, New York, NY, USA, pp.
25-32.

Choi, M., 2012. A Platform-Independent Smartphone
Application Development Framework. Computer
Science and Convergence 787-794.

Choi, Y., Yang, J.S., Jeong, J., 2009. Application
framework for multi platform mobile application
software development, in: Advanced Communication
Technology, 2009. ICACT 2009. 11th International
Conference On. pp. 208-213.

Chowdhary, V., 2011a. Mobile Web Application
Development [WWW Document]. Refulz, Web
Developer’s Blog. URL http://php.refulz.com/mobile-
web-application-development/

Chowdhary, V., 2011b. XUI-Mobile Application
Development Library [WWW Document]. Refulz, Web
Developer’s Blog. URL http://php.refulz.com/xui-
mobile-application-development-library/

Christensen, J.H., 2009. Using RESTful web-services
and cloud computing to create next generation
mobile applications, in: Proceedings of the 24th ACM
SIGPLAN Conference Companion on Object Oriented

S71.

S72.

S73.

S74.

S75.

S76.

S77.

S78.

S79.

S80.

S81.

Programming Systems Languages and Applications,
OOPSLA '09. ACM, New York, NY, USA, pp. 627-634.

Coelho, H.A. de O., Anido, R. de O., Drummond, R.,
2006. QuickFrame - A Fast Development Tool for
Mobile Applications, in: Innovations in Information
Technology, 2006. pp. 1 5.

Corral, L., Sillitti, A., Succi, G., 2011. Preparing Mobile
Software Development Processes to Meet Mission-
Critical Requirements, in: 2nd Annual Workshop on
Software Engineering for Mobile Application
Development.

Corral, L., Sillitti, A., Succi, G., Garibbo, A., Ramella, P.,
2011. Evolution of Mobile Software Development
from Platform-Specific to Web-Based Multiplatform
Paradigm, in: Proceedings of the 10th SIGPLAN
Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, ONWARD
’11. ACM, New York, NY, USA, pp. 181-183.

Cota, E., Carro, L., Duarte, L., Ribeiro, L., Wagner, F.,
2011. XModel: an Unified Effort Towards the
Development of High-Quality Mobile Applications, in:
2nd Annual Workshop on Software Engineering for
Mobile Application Development. Presented at the
2nd Annual Workshop on Software Engineering for
Mobile Application Development, Santa Monica, CA,
USA, p. 1.

Cuccurullo, S., Francese, R., Risi, M., Tortora, G., 2011.
A Visual Approach supporting the Development of
MicroApps on Mobile Phones, in: Proc. of 3rd
International Symposium on End-User Development.
Presented at the 3rd International Symposium on
End-User Development, Brindisi, Italy, pp. 289-294.

Cunha, T.F.V., Dantas, V.L.L., Andrade, R., 2011.
SLeSS: a Scrum and Lean Six Sigma integration
approach for the development of sofware
customization for mobile phones, in: Software
Engineering (SBES), 2011 25th Brazilian Symposium
On. pp. 283-292.

Dagtas, S., Natchetoi, Y., Wu, H., Hamdi, L., 2008. An
Integrated Lightweight Software Architecture for
Mobile Business Applications, in: Software
Architecture, 2008. WICSA 2008. Seventh Working
IEEE/IFIP Conference On. pp. 41-50.

Dastani, M., El Fallah, S.A., Hubner, J., Leite, J. (Eds.),
2011. Languages, Methodologies, and Development
Tools for Multi-Agent Systems. Third International
Workshop, LADS. Revised Selected Papers.

Davis, V., Gray, J., Jones, J.,, 2005. Generative
approaches for application tailoring of mobile
devices, in: Proceedings of the 43rd Annual Southeast
Regional Conference - Volume 2, ACM-SE 43. ACM,
New York, NY, USA, pp. 237-241.

De Florio, V., Blondia, C., 2008. On the requirements
of new software development. International Journal
of Business Intelligence and Data Mining 3, 330-349.

de S&, M., Carrigo, L., 2006. Low-fi prototyping for
mobile devices, in: CHI ‘06 Extended Abstracts on

S82.

S83.

584.

S85.

S86.

S87.

S88.

$89.

$90.

S91.

S92.

S93.

S94.

248

Human Factors in Computing Systems, CHI EA ’06.

ACM, New York, NY, USA, pp. 694-699.

de Souza, C.R.B., Redmiles, D.F., 2009. On The Roles
of APIs in the Coordination of Collaborative Software
Development. Computer Supported Cooperative
Work (CSCW) 18, 445—-475.

Degrandsart, S., Demeyer, S., Van den Bergh, J.,
Mens, T., 2012. A transformation-based approach to
context-aware modelling. Software and Systems
Modeling 1-18.

Dehlinger, J., Dixon, J., 2011. Mobile Application
Software Engineering: Challenges and Research
Directions, in: 2nd Annual Workshop on Software
Engineering for Mobile Application Development.

Desruelle, H., Blomme, D., Gielen, F., 2011. Adaptive
mobile web applications: a quantitative evaluation
approach. Web Engineering 375-378.

Di Capua, M., Costagliola, G., De Rosa, M., Fuccella,
V., 2011. Rapid prototyping of mobile applications for
augumented reality interactions, in: Visual Languages
and Human-Centric Computing (VL/HCC), 2011 IEEE
Symposium On. pp. 249-250.

Dickson, P.E., 2012. Cabana: a cross-platform mobile
development system, in: Proceedings of the 43rd
ACM Technical Symposium on Computer Science
Education, SIGCSE ’12. ACM, New York, NY, USA, pp.
529-534.

Diewald, S., Roalter, L., Modller, A., Kranz, M., 2011.
Towards a holistic approach for mobile application
development in intelligent environments, in:
Proceedings of the 10th International Conference on
Mobile and Ubiquitous Multimedia, MUM ’11. ACM,
New York, NY, USA, pp. 73-80.

Dingsgyr, T., Dyba, T., Moe, N.B. (Eds.), 2010. Agile
software development: Current research and future
directions. Springer-Verlag New York Inc.

Dodda, S.R., 2010. The Use of SCRUM in Global
Software Development: An Exploratory Study (Master
thesis).

Doherty, G., McKnight, J., Luz, S., 2010. Fieldwork for
requirements: Frameworks for mobile healthcare
applications. International Journal of Human-
Computer Studies 68, 760 — 776.

Dombroviak, K.M., Ramnath, R., 2007. A taxonomy of
mobile and pervasive applications, in: Proceedings of
the 2007 ACM Symposium on Applied Computing,
SAC '07. ACM, New York, NY, USA, pp. 1609-1615.

Dorflinger, J., Friedland, C., Merz, C., de Louw, R.,
2009. Requirements of a mobile procurement
framework for rural South Africa, in: Proceedings of
the 6th International Conference on Mobile
Technology, Application & Systems, Mobility ’09.
ACM, New York, NY, USA, pp. 3:1-3:4.

Driver, C., Clarke, S., 2008. An application framework
for mobile, context-aware trails. Pervasive and Mobile
Computing 4, 719 - 736.

S95.

S96.

S97.

S98.

S99.

$100.

$101.

$102.
$103.

5104.

$105.

S106.

$107.

$108.

$109.

Dulipala, J., Ramachandran, V., 2009. SCA for context-
aware mobile applications.

Dunkel, J., Bruns, R., 2007. Model-driven architecture
for mobile applications, in: Business Information
Systems. pp. 464—-477.

Dustdar, S., Gall, H., 2003. Architectural concerns in
distributed and mobile collaborative systems. Journal
of Systems Architecture 49, 457 — 473.

Dwomoh-Tweneboah, M., 2004. Building applications
for mobile devices with microsoft visual Studio.NET:
tutorial presentation. J. Comput. Sci. Coll. 20, 179—-
180.

Ejlersen, A., Knudsen, M.S., Lgvgaard, J., Sgrensen,
M.B., 2008. Using Design Science to Develop a Mobile
Application.

Emmanouilidis, C., Koutsiamanis, R.-A., Tasidou, A.,
2012. Mobile guides: Taxonomy of architectures,
context awareness, technologies and applications.
Journal of Network and Computer Applications -.

Esfahani, H.C., Cabot, J., Yu, E., 2010. Adopting Agile
Methods: Can Goal-Oriented Social Modeling Help, in:
4th International Conference on Research Challenges
in Information Science (RCIS). IEEE, France.

Feigin, B., 2009. Mobile Application Development.

Feijoo, C., Gbmez-Barroso, J.L., Ramos, S., 2010. An
analysis of mobile gaming development, in:
Intelligence in Next Generation Networks (ICIN), 2010
14th International Conference On. pp. 1-7.

Felker, C., Slamova, R., Davis, J., 2012. Integrating UX
with scrum in an undergraduate software
development project, in: Proceedings of the 43rd
ACM Technical Symposium on Computer Science
Education, SIGCSE '12. ACM, New York, NY, USA, pp.
301-306.

Fernando, N., Loke, S.W., Rahayu, W., 2012. Mobile
cloud computing: A survey. Future Generation
Computer Systems -.

Ferscha, A., Hechinger, M., Mayrhofer, R,
Oberhauser, R., 2004. A light-weight component
model for peer-to-peer applications, in: Distributed
Computing Systems Workshops, 2004. Proceedings.
24th International Conference On. pp. 520-527.

Fjellheim, T., Milliner, S., Dumas, M., Vayssiere, J.,
2007. A process-based methodology for designing
event-based mobile composite applications. Data
& Knowledge Engineering 61, 6 — 22.

Forgue, M.-C., Hazaél-Massieux, D., 2012. Mobile web
applications: bringing mobile apps and web together,
in: Proceedings of the 21st International Conference
Companion on World Wide Web, WWW ’12
Companion. ACM, New York, NY, USA, pp. 255-258.

Forstner, B., Lengyel, L., Kelenyi, I., Levendovszky, T.,
Charaf, H., 2005. Supporting Rapid Application
Development on Symbian Platform, in: Computer as a
Tool, 2005. EUROCON 2005.The International
Conference On. pp. 72 -75.

S110.

S111.

S112.

S113.

S114.

S115.

S11e.

S117.

$118.

S119.

$120.

S121.

249

Forstner, B., Lengyel, L., Levendovszky, T., Mezei, G.,
Kelenyi, |., Charaf, H., 2006. Model-based system
development for embedded mobile platforms, in:

Model-Based Development of Computer-Based
Systems and Model-Based Methodologies for
Pervasive and Embedded Software, 2006.

MBD/MOMPES 2006. Fourth and Third International
Workshop On. p. 10—pp.

Franke, D., Elsemann, C., Kowalewski, S., Weise, C.,
2011. Reverse Engineering of Mobile Application
Lifecycles, in: Reverse Engineering (WCRE), 2011 18th
Working Conference On. pp. 283—-292.

Frantz, C., Nowostawski, M., Purvis, M.K., 2012.
Augmenting android with AOSE principles for
enhanced functionality reuse in mobile applications,
in: Proceedings of the 10th International Conference
on Advanced Agent Technology, AAMAS’11. Springer-
Verlag, Berlin, Heidelberg, pp. 187-211.

Fraunholz, B., Hoffman, J., Jung, J., 2003. Evaluation
of mobile frameworks-conceptual and technological
aspects, in: Proceedings of the 10th European
Conference on Information Technology Evaluation-
2003. p. 245.

Gaffar, A., 2009. Enumerating mobile enterprise
complexity 21 complexity factors to enhance the
design process, in: Proceedings of the 2009
Conference of the Center for Advanced Studies on
Collaborative Research, CASCON ‘09. ACM, New York,
NY, USA, pp. 270-282.

Gal, V., Topol, A., 2005. Experimentation of a Game
Design Methodology for Mobile Phones Games.

Gao, J., Koronios, A., 2010. Mobile Application
Development for Senior Citizens, in: Proceedings of
PACIS 2010, 14th Pacific Asia Conference on
Information Systems, 9-12 July 2010; Taipei, Taiwan.
pp. 214-223.

Gasimov, A., Tan, C.H., Phang, C.W., Sutanto, J., 2010.
Visiting mobile application development: What, how
and where, in: Mobile Business and 2010 Ninth Global
Mobility Roundtable (ICMB-GMR), 2010 Ninth
International Conference On. pp. 74-81.

Gavalas, D., Bellavista, P., Cao, J., Issarny, V., 2011.
Mobile applications: Status and trends. Journal of
Systems and Software 84, 1823 — 1826.

Gavrilovska, A., 2009. Methodology for mobile
application product development: A Case Study for
Wemlin. Presented at the ICT Innovations 2009,
Association for Information and Communication
Technologies ICT-ACT, Ohrid, Macedonia.

Gestwicki, P., Ahmad, K., 2011. App inventor for
Android with studio-based learning. J. Comput. Sci.
Coll. 27, 55-63.

Grassi, V., Mirandola, R., Sabetta, A., 2004. UML
based modeling and performance analysis of mobile
systems, in: Proceedings of the 7th ACM International
Symposium on Modeling, Analysis and Simulation of

$122.

$123.

$124.

$125.

S126.

$127.

$128.

$129.

$130.

$131.

S$132.

S$133.

S134.

Wireless and Mobile Systems, MSWiM ’'04. ACM,
New York, NY, USA, pp. 95-104.
Green, R., Mazzuchi, T., Sarkani, S., 2010.

Communication and Quality in Distributed Agile
Development: An Empirical Case Study. Proceeding in
World Academy of Science, Engineering and
Technology 61, 322-328.

Grgnli, T.-M., Hansen, J., Ghinea, G., 2011. A cloud on
the horizon: the challenge of developing applications
for Android and iPhone, in: Proceedings of the 4th
International Conference on PErvasive Technologies
Related to Assistive Environments, PETRA ’11. ACM,
New York, NY, USA, pp. 64:1-64:2.

Guha, P., Shah, K., Shukla, S.S.P., Singh, S., 2011.
Incorporating Agile with MDA Case Study: Online
Polling System. Arxiv preprint arXiv:1110.6879.

Guo, B., Zhang, D., Imai, M., 2010. Enabling user-
oriented management for ubiquitous computing: The

meta-design approach. Computer Networks 54,
2840-2855.
Guthery, S.B., Cronin, M.J., 2002. Mobile Application

Development with SMS and the SIM Toolkit. McGraw-
Hill.

HALSE, S., PATIL, S., 2011. Paper on Aspect-Oriented
Software Development and its Usage. Journal of
Computer and Mathematical Sciences Vol 2, 581-692.

Hammershoj, A., Sapuppo, A., Tadayoni, R., 2010.
Challenges for mobile application development, in:
Intelligence in Next Generation Networks (ICIN), 2010
14th International Conference On. pp. 1-8.

Harjula, E., Ylianttila, M., Ala-Kurikka, J., Riekki, J.,
Sauvola, J., 2004. Plug-and-play application platform:
towards mobile peer-to-peer, in: Proceedings of the
3rd International Conference on Mobile and
Ubiquitous Multimedia, MUM ’‘04. ACM, New York,
NY, USA, pp. 63—-69.

Hartmann, G., Stead, G., DeGani, A., 2011. Cross-
platform mobile development.

Harun, H., Jailani, N., Bakar, M.A., Zakaria, M.S.,
Abdullah, S., 2009. A generic framework for
developing map-based mobile application, in:
Electrical Engineering and Informatics, 2009. ICEEI
’09. International Conference On. pp. 434 —440.

Hashim, A.S., Ahmad, W.F.W., Rohiza, A., 2010. A
study of design principles and requirements for the
m-learning application development, in: User Science
and Engineering (i-USEr), 2010 International
Conference On. pp. 226-231.

Hedberg, H., lisakka, J., 2006. Technical Reviews in
Agile Development: Case Mobile-D, in: Quality
Software, 2006. QSIC 2006. Sixth International
Conference On. pp. 347-353.

Hemel, Z., Visser, E., 2011. Declaratively programming
the mobile web with Mobl, in: Proceedings of the
2011 ACM International Conference on Object
Oriented Programming Systems Languages and

$135.
S136.

$137.

$138.

S139.

$140.

S141.

S142.

S143.

S144.

S145.

S146.

S147.

$148.

$149.

$150.

250

Applications, OOPSLA ’“11. ACM, New York, NY, USA,
pp. 695-712.

Ho, H.K., 2004. Mobile application using J2ME.

Holleis, P., 2009. Integrating usability models into
pervasive application development.

Holleis, P., Schmidt, A., 2008. Makeit: Integrate user
interaction times in the design process of mobile
applications. Pervasive Computing 56—74.

Holzer, A., Ondrus, J.,, 2009. Trends in mobile
application development, in: Mobile Wireless
Middleware, Operating Systems, and Applications-
Workshops. pp. 55-64.

Honda, S., Tomiyama, H., Takada, H., 2007. RTOS and
Codesign Toolkit for Multiprocessor Systems-on-Chip,
in: Proceedings of the 2007 Asia and South Pacific
Design Automation Conference, ASP-DAC ’07. IEEE
Computer Society, Washington, DC, USA, pp. 336—
341.

Hosalkar, A., 2002. Building Mobile Applications with
J2EE, J2EE-J2ME and J2EE Extended Application
Servers. Proc. of MASPLAS 2.

Hosbond, J., Nielsen, P., 2005. Mobile systems
development: a literature review. Designing
Ubiquitous Information Environments: Socio-
Technical Issues and Challenges 215-232.

Houssos, N., Alonistioti, N., Merakos, L., 2005.
Specification and dynamic introduction of 3rd party,
service-specific adaptation policies for mobile
applications. Mob. Netw. Appl. 10, 405-421.

Hu, X., Du, W., Spencer, B., 2011. A Multi-Agent
Framework for Ambient Systems Development.
Procedia Computer Science 5, 82 — 89.

Huang, J., Luo, Z., 2010. Research on the Architecture
of Mobile Application Development. Computer 11.

Huang, W.C.D., 2007. Design and implementation of a
mobile wiki: mobile RikWik.

Huopaniemi, A., 2005. Software Lifecycle

Management in Java Environments.

Hussain, Z., Lechner, M., Milchrahm, H., Shahzad, S.,
Slany, W., Umgeher, M., VIk, T., Wolkerstorfer, P.,
2008. User Interface Design for a Mobile Multimedia
Application: An Iterative Approach. IEEE, pp. 189-194.

Hussain, Z., Lechner, M., Milchrahm, H., Shahzad, S.,
Slany, W., Umgeher, M., Wolkerstorfer, P., 2008. Agile
user-centered design applied to a mobile multimedia
streaming application. HCI and Usability for Education
and Work 313-330.

lhme, T., Abrahamsson, 2005. The Use of
Architectural Patterns in the Agile Software
Development of Mobile Applications.

P.,

Im, T.S., Guimaraes, M., Kennesaw, G., 2004.
Component based programming in mobile devices:
The future of mobile device development? Inst
Informatics &Systemic 255-259.

S151.

$152.

$153.

5154.

S$155.

$156.

$157.

$158.

$159.

$160.

S161.

$162.

$163.

5164.

S165.

Jackson, S., Ellis, H., Postner, L., Kurkovsky, S.,
Mustafaraj, E., 2012. Mobile application development
in computing curricula. J. Comput. Sci. Coll. 27, 110-
112.

Jacob, J.T.P.N., Coelho, A.F., 2011. Geo Wars—The
development of a location-based game. Revista
Prisma. Com.

Jadhav, A., Anand, S., Dhangare, N., Wagh, K., 2012.
Universal Mobile Application Development (UMAD)
On Home Automation. Network and Complex Systems
2, 38-45.

Jang, S., Lee, E., 2009. Reliable Mobile Application
Modeling Based on Open API. Advances in Software
Engineering 168-175.

Jeong, Y.J., Lee, J.H., Shin, G.S., 2008. Development
Process of Mobile Application SW Based on Agile
Methodology, in: Advanced Communication
Technology, 2008. ICACT 2008. 10th International
Conference On. pp. 362—-366.

Jiang, M., Yang, Z., 2007. A Model-Driven Approach
for Dependable Software Systems, in: Quality
Software, 2007. QSIC'07. Seventh International
Conference On. pp. 100-106.

Jong-Won Ko, Sung-Ho Sim, Young-Jae Song, 2011.
Test Based Model Transformation Framework for
Mobile Application. IEEE, pp. 1-7.

Joseph, A.D., Kaashoek, M.F., 1997. Building reliable
mobile-aware applications using the Rover toolkit.
Wirel. Netw. 3, 405-419.

Juell, M.A., Nordhaug, G.L., 2011. An approach to
rapid development of modern ubiquitous Internet
applications.

Jugel, U., Preulner, A., 2011. A case study on API
generation, in: Proceedings of the 6th International
Conference on System Analysis and Modeling: About
Models, SAM’10. Springer-Verlag, Berlin, Heidelberg,
pp. 156-172.

Julien, C., Roman, G.C., 2006. Egospaces: Facilitating
rapid development of context-aware mobile
applications. Software Engineering, IEEE Transactions
on 32, 281-298.

Julien, C., Roman, G.C., Huang, Q., 2004. Network
abstractions for simplifying mobile application
development. Technical Report WUCSE-04-37,
Washington University.

Kaariainen, J., Koskela, J., Abrahamsson, P., Takalo, J.,

2004. Improving requirements management in
extreme programming with tool support - an
improvement attempt that failed, in: Euromicro

Conference, 2004. Proceedings. 30th. pp. 342 — 351.

Kadyté, V., Tétard, F., 2004. The role of usability
evaluation and usability testing techniques in the
development of a mobile system.

Kdhkonen, T., 2011. The effect of service oriented
architecture and cloud computing on software testing
(Master thesis).

S166.

S167.

5168.

$169.

$170.

S171.

$172.

S173.

S174.

S175.

S176.

S177.

S178.

251

Kangas, E., Kinnunen, T., 2005. Applying user-
centered design to mobile application development.
Communications of the ACM 48, 55-59.

Kantee, A., Vuolteenaho, H., 2006. Experiences in
Portable Mobile Application Development. Advanced
Software Engineering: Expanding the Frontiers of
Software Technology 138—-152.

Karvonen, J., Warsta, J., 2004. Mobile multimedia
services development: value chain perspective, in:
Proceedings of the 3rd International Conference on
Mobile and Ubiquitous Multimedia, MUM ‘04. ACM,
New York, NY, USA, pp. 171-178.

Kaufmann, B., Buechley, L., 2010. Amarino: a toolkit
for the rapid prototyping of mobile ubiquitous
computing, in: Proceedings of the 12th International
Conference on Human Computer Interaction with
Mobile Devices and Services, MobileHCI ’10. ACM,
New York, NY, USA, pp. 291-298.

Kemper, H.G., Wolf, E., 2002. Iterative process models
for mobile application systems: A framework, in:
Proceedings of the 23th International Conference on
Information System. pp. 401-413.

Keranen, H., Abrahamsson, P., 2005. Naked objects
versus traditional mobile platform development: a
comparative case study, in: Software Engineering and
Advanced Applications, 2005. 31st EUROMICRO
Conference On. pp. 274 —281.

Khambati, A., Grundy, J., Warren, J., Hosking, J., 2008.
Model-Driven Development of Mobile Personal
Health Care Applications, in: Proceedings of the 2008
23rd IEEE/ACM International Conference on
Automated Software Engineering, ASE '08. IEEE
Computer Society, Washington, DC, USA, pp. 467-
470.

Khan, F.H., Khan, Z.H., 2010. A Systematic Approach
for Developing Mobile Information System based on
Location Based Services. Network Protocols and
Algorithms 2, 54—65.

Khan, U.A., 2008. Improved Iterative Software
Development Method for Game Design.

Kim, H., Choi, B., Yoon, S., 2009. Performance testing
based on test-driven development for mobile
applications, in: Proceedings of the 3rd International
Conference on Ubiquitous Information Management
and Communication, ICUIMC ’‘09. ACM, New York,
NY, USA, pp. 612-617.

Kim, H.K., 2008. Frameworks of Process Improvement
for Mobile Applications. Engineering Letters 16.

Kim, M., Jeong, J., Park, S., 2005. From product lines
to self-managed systems: an architecture-based
runtime reconfiguration framework, in: Proceedings
of the 2005 Workshop on Design and Evolution of
Autonomic Application Software, DEAS ’'05. ACM,
New York, NY, USA, pp. 1-7.

Kim, W.Y., Son, H.S., Kim, J.S., Kim, R.Y., 2010.
Development of Windows Mobile Applications using

$179.

$180.

$181.

$182.

$183.

$184.

$185.

5186.

$187.

$188.

$189.

$190.

Model Transformation Techniques. Journal of KISS:
Computing Practices 16, 1091-5.

Kinzel, J., 2010. A model driven approach to build high
effective and ergonomic mobile business applications,
in: Consumer Electronics (ISCE), 2010 I|EEE 14th
International Symposium On. pp. 1-5.

Koch, F., 2005. Towards a Framework for Intelligent
Mobile Service Applications. INFOCOMP Journal of
Computer Science 4, 1-10.

Kokkoniemi, J.K., 2008. Gathering Experience
Knowledge from Iterative Software Development
Processes, in: Hawaii International Conference on
System Sciences, Proceedings of the 41st Annual. pp.
333-333.

Kolko, B., Putnam, C., Rose, E., Johnson, E., 2011.
Reflection on research methodologies for ubicomp in
developing contexts. Personal Ubiquitous Comput.
15, 575-583.

Konig-Ries, B., 2009. Challenges in mobile application
development. it-Information Technology 51, 69-71.

Korkala, M., Abrahamsson, P., 2004. Extreme
programming: Reassessing the requirements
management process for an offsite customer.

Software Process Improvement 12-22.

Kouici, N., Sabri, N., Conan, D., Bernard, G., 2004.
MADA, a mobile application development approach,
in: Proceedings of the 1st French-speaking
Conference on Mobility and Ubiquity Computing,
UbiMob ’'04. ACM, New York, NY, USA, pp. 78-85.

Kraemer, F.A., 2011. Engineering android applications
based on UML activities, in: Proceedings of the 14th
International Conference on Model Driven
Engineering Languages and Systems, MODELS'11.
Springer-Verlag, Berlin, Heidelberg, pp. 183-197.

Kramer, D., Clark, T., Oussena, S., 2010. MobDSL: A
Domain Specific Language for multiple mobile
platform deployment, in: Networked Embedded
Systems for Enterprise Applications (NESEA), 2010
IEEE International Conference On. pp. 1-7.

Krevl, A., Vidmar, T., Pancur, M., Ciglaric, M., Tomazic,
S., Zavec, A., Ciglaric, S., 2006. A Framework for
Developing Mobile Location Based Applications. DTIC
Document.

Kulkarni, H., Dascalu, S.M., Harris, F.C., 2009.
Software Development Aspects of a Mobile Food
Ordering System, in: Proceedings of the ISCA 18th
International Conference on Software Engineering
and Data Engineering (SEDE ’'09). Las Vegas, Nevada,
pp. 67-72.

Kurschl, W., Mitsch, S., Prokop, R., Schonbock, J.,
2007. Gulliver - a framework for building smart
speech-based applications, in: Proceedings of the
40th Annual Hawaii International Conference on
System Sciences. Waikoloa, HI, USA.

S191.

$192.

$193.

$194.

$195.

$196.

$197.

$198.

$199.

$200.

S201.

S202.

S203.

S204.

S205.

S206.

252

Kynkdanniemi, T., Komulainen, K., 2006. Agile
Software Development of Embedded Systems
Version: 1.0 Date: 2006.03. 09.

La, H.J., Kim, S.D., 2010. Balanced MVC Architecture
for Developing Service-based Mobile Applications, in:
e-Business Engineering (ICEBE), 2010 IEEE 7th
International Conference On. pp. 292-299.

La, H.J.,, Lee, H.J.,, Kim, S.D., 2011. An efficiency-centric
design methodology for mobile application
architectures, in: Wireless and Mobile Computing,
Networking and Communications (WiMob), 2011 IEEE
7th International Conference On. pp. 272-279.

La, H.J., Lee, H.M., Lee, H.J,, Kim, S.D., 2010. Technical
issues and lessons learned in developing service-
based mobile applications. IEEE, pp. 1-4.

Laakko, T., Leppanen, J., Lahteenmaki, J., Nummiaho,
A., 2008. Mobile health and wellness application
framework. Methods of Information in Medicine 47,
217-22.

Laitinen, M., Nuckchady, V., Nelimarkka, M., 2008.
MUPE as a Rapid Development Architecture — Case
Wireless Educational Platform. Presented at the The
Nordic Conference of Serious Games.

Lee, S., 2010. Mobile agent based framework for
mobile ubiquitous application development, in:
Information Science and Applications (ICISA), 2010
International Conference On. pp. 1-5.

Lee, V., Schneider, H., Schell, R., 2004. Mobile
applications: Architecture, design, and development.
Prentice Hall PTR.

Leichtenstern, K., André, E., 2010. MoPeDT: features
and evaluation of a user-centred prototyping tool, in:
Proceedings of the 2nd ACM SIGCHI Symposium on
Engineering Interactive Computing Systems, EICS ’10.
ACM, New York, NY, USA, pp. 93-102.

Lengyel, L., Levendovszky, T., Charaf, H., 2008.
Validated model transformation-driven software
development. International Journal of Computer
Applications in Technology 31, 106—-119.

Li, Z., Steenkamp, A.L, 2010. Mobile Enterprise
Architecture Framework. International Journal of
Information Technologies and Systems Approach
(JITSA) 3, 1-20.

Lim, W.M., 2005. Towards More Usable Mobile
Application Development. IEEE, pp. 1-6.

Lin, H.F.,, 2012. Design and implementation of a
mobile application for personal learning analytics.

Liu, J.J., 2002. Mobile map: A case study in the design
& implementation of a mobile application.

Love, S., 2005. Design issues for mobile systems, in:
Understanding Mobile Human-Computer Interaction.
Butterworth-Heinemann, Oxford, pp. 75 — 98.

Lunn, K., Gidlow, J., Heelas, C., 2002. Mobile
application development, a case study in order
capture. ICWI 669-672.

$207.

S208.

S209.

S210.

S211.

S212.

S213.

S214.

S215.

S216.

S217.

S218.

S219.

Lutes, K., 2004. Software development for mobile
computers. Pervasive Computing, IEEE 3, 10-14.

Maalge, L., Wiboe, M., 2011. A Platform-Independent
Framework for Application Development for Smart
Phones.

MacVittie, D., 2004. Crossfire targets multiplatform
development. Network Computing 15, 32—-4.

Madiraju, P., Malladi, S., Balasooriya, J., Hariharan, A.,
Prasad, S.K., Bourgeois, A., 2010. A methodology for
engineering collaborative and ad-hoc mobile
applications using SyD middleware. Journal of
Network and Computer Applications 33, 542 — 555.

Magdaleno, A.M., Werner, C.M.L., Araujo, R.M. de,
2012. Reconciling software development models: A
quasi-systematic review. Journal of Systems and
Software 85, 351 — 369.

Maharmeh, M., Unhelkar, B., 2009. A Composite
Software Framework Approach for Mobile Application
Development. Handbook of research in mobile
business: technical, methodological, and social
perspectives 194.

Maia, M.E.F., Celes, C., Castro, R., Andrade, R.M.C,,
2010. Considerations on developing mobile
applications based on the Capuchin project, in:
Proceedings of the 2010 ACM Symposium on Applied
Computing, SAC ’10. ACM, New York, NY, USA, pp.
575-579.

Makunga, L., Church, K., 2002. Software Development
in Mobile Computing Applications. INFORMATION
TECHNOLOGY ON THE MOVE 257.

Malek, S., Edwards, G., Brun, Y., Tajalli, H., Garcia, J.,
Krka, 1., Medvidovic, N., Mikic-Rakic, M., Sukhatme,
G.S., 2010. An architecture-driven software mobility
framework. Journal of Systems and Software 83, 972—
989.

Manninen, T., 2002. Contextual Virtual Interaction as
Part of Ubiquitous Game Design and Development.
Personal Ubiquitous Comput. 6, 390-406.

Manjunatha, A., Ranabahu, A., Sheth, A,
Thirunarayan, K., 2010. Power of clouds in your
pocket: An efficient approach for cloud mobile hybrid
application development, in: Cloud Computing
Technology and Science (CloudCom), 2010 IEEE
Second International Conference On. pp. 496-503.

March, V., Gu, Y., Leonardi, E., Goh, G., Kirchberg, M.,
Lee, B.S., 2011. pCloud: Towards a New Paradigm of
Rich Mobile Applications. Procedia Computer Science
5,618 —624.

Marinho, F.G., Andrade, R.M.C., Werner, C., Viana,
W., Maia, M.E.F., Rocha, L.S., Teixeira, E., Filho, J.B.F.,
Dantas, V.L.L, Lima, F., Aguiar, S., 2012. Mobiline: A
Nested Software Product Line for the domain of
mobile and context-aware applications. Science of
Computer Programming -.

$220.

S221.

S222.

S223.

S224.

S225.

S226.

S227.

$228.

S229.

$230.

S231.

253

Marius, P., 2010. Audit Process during Projects for
Development of New Mobile IT Application.
Informatica Economica 14, 34-46.

Martin, S., Diaz, G., Plaza, |., Ruiz, E., Castro, M., Peire,
J., 2011. State of the art of frameworks and
middleware for facilitating mobile and ubiquitous
learning development. Journal of Systems and
Software 84, 1883 — 1891.

Martin, S., Diaz, G., Sancristobal, E., Gil, R., Castro, M.,
Peire, J., Boticki, I., 2010. M2Learn Open Framework:
Developing Mobile Collaborative and Social
Applications, in: UBICOMM 2010, The Fourth
International Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologies. pp.
59-62.

Mathew, J., 2010. Cross-Platform Application
Development on Symbian.

Matthews, M., Doherty, G., Coyle, D., Sharry, J., 2008.
Designing mobile applications to support mental
health interventions. Handbook of Research on User
Interface Design and Evaluation for Mobile
Technology 635-656.

Mayuk, O., Torabi, T., 2006. Framework for Mobile
Application Development and Content Integration, in:
Wireless, Mobile and Ubiquitous Technology in
Education, 2006. WMUTE '06. Fourth |EEE
International Workshop On. pp. 69-73.

Mazhelis, O., Markkula, J., Jakobsson, M., 2005.
Specifying patterns for mobile application domain
using general architectural components, in: Product
Focused Software Process Improvement. 6th
International Conference, PROFES 2005. Proceedings
(Lecture Notes in Computer Science Vol. 3547).

Meads, A., Warren, I., 2011. OdinTools—Model-Driven
Development of Intelligent Mobile Services, in:
Services Computing (SCC), 2011 IEEE International
Conference On. pp. 448—455.

Medvidovic, N., Edwards, G., 2010. Software
architecture and mobility: A roadmap. Journal of
Systems and Software 83, 885 — 898.

Meijles, E., Rip, F., Bakker, M., Epema, G., 2005. Do
we speak each others’ language? A methodology for
developing generic Gl-competencies, in: 8th AGILE
Conference on Gl Science. F. Toppen and M. Painho.
Estoril, Portugal, Universidade Nova De Lisboa,
Lisboa, Portugal.

Miravet, P., Marin, |., Ortin, F., Rionda, A., 2009.
DIMAG: a framework for automatic generation of
mobile applications for multiple platforms, in:
Proceedings of the 6th International Conference on
Mobile Technology, Application & Systems,
Mobility ‘09. ACM, New York, NY, USA, pp. 23:1-23:8.

Mishra, J., Dash, S.K., Dash, S., 2012. Mobile-Cloud: A
Framework of Cloud Computing for Mobile
Application. Advances in Computer Science and
Information Technology. Computer Science and
Information Technology 347-356.

$232.

$233.

S234.

S235.

S236.

$237.

S238.

S239.

S240.

S241.

S242.

S243.

S244.

S245.

Mnaouer, A.B., Shekhar, A., Liang, Z.Y., 2004. A
generic framework for rapid application development
of mobile Web services with dynamic workflow
management, in: Services Computing, 2004.(SCC
2004). Proceedings. 2004 IEEE International
Conference On. pp. 165-171.

Morales-Aranda, A.H., Mayora-lbarra, O., Negrete-
Yankelevich, S., 2004. M-Modeler: a framework
implementation for modeling m-commerce
applications, in: Proceedings of the 6th International
Conference on Electronic Commerce. pp. 596-602.

Motes, G., 2011. US Army Mobile Application
Development: A Coder’s Perspective. DTIC Document.

Munson, J.P.,, Dewan, P., 1997. Sync: a Java
framework for mobile collaborative applications.
Computer 30, 59-66.

Murthy, V.K., 2001. Seamless mobile transaction
processing: Models, protocols and software tools, in:
Parallel and Distributed Systems, 2001. ICPADS 2001.
Proceedings. Eighth International Conference On. pp.
147-154.

Naevdal, S., 2007. Agile development methodologies
introduced to Norwegian ICT companies. (No.

TDT4520). Norwegian University of Science and
Technology.
Natchetoi, Y., Kaufman, V., Shapiro, A., 2008. Service-

oriented architecture for mobile applications, in:
Proceedings of the 1st International Workshop on
Software Architectures and Mobility, SAM ’08. ACM,
New York, NY, USA, pp. 27-32.

Nguyen, N.T., 2010. How software process
improvement standards and agile methods co-exist in
software organisations?

Northern, C., Mayfield, K., Benito, R., Casagni, M.,
2011. Handbook for Implementing Agile in
Department of Defense Information Technology
Acquisition.

Nugroho, L.E., 2001a. A context-based approach for
mobile application development.

Nugroho, L.E., 2001b. A specification language for
mobile application development, in: Proceedings of
3rd International Conference on Information
Integration and Web Based Applications and Services.
(IIWAS 2001). Presented at the Third International
Conference on Information Integration and Web-
based Applications and Services., pp. 357-64.

Nystrém, A., 2011. Agile Solo-Defining and Evaluating
an Agile Software Development Process for a Single
Software Developer.

O’Leary, P., Thiel, S., Botterweck, G., Richardson, I.,
2008. Towards a product derivation process
framework.

ObjectGraph, L., 2010. Creating Mapping Applications

for the iPhone. Cartographic Perspectives 71.

S246.

S247.

S248.

$249.

S250.

S251.

$252.

S253.

S254.

$255.

S256.

$257.

S258.

254

Ocampo, A., Bella, F.,, MJ" nch, J.,, 2006. Software
Development Processes. Developing Services for the
Wireless Internet 9-32.

Ogunleye, S., 2009. MobiNET: A framework for

supporting Java mobile application developers
through contextual inquiry.
Olaniyi, 0., Ajose, S., Adegoke, M., 2010.

Development of a mobile airline reservation and
payment system. International Journal of Electronic
Finance 4, 372—-389.

Olivé, A., Cabot, J., 2007. A research agenda for
conceptual schema-centric development. Conceptual
Modelling in Information Systems Engineering 3, 319.

Omar, S.H., 2000. A mobile code toolkit for adaptive
mobile applications.

Ortiz, G., Prado, A.G.D., 2010. Improving device-
aware Web services and their mobile clients through
an aspect-oriented, model-driven approach.
Information and Software Technology 52, 1080 —
1093.

Palviainen, M., Laakko, T., 2005. Using modular and
generative approaches for implementing adaptable
mobile browser applications, in: Proceedings of the
IADIS International Conference WWW/Internet 2005.
pp. 101-109.

Papageorgiou, A., Leferink, B., Eckert, J., Repp, N.,
Steinmetz, R., 2009. Bridging the gaps towards
structured mobile SOA, in: Proceedings of the 7th
International Conference on Advances in Mobile
Computing and Multimedia, MoMM ’09. ACM, New
York, NY, USA, pp. 288-294.

Paspallis, N., Papadopoulos, G.A., 2006. An approach
for developing adaptive, mobile applications with
separation of concerns, in: Computer Software and
Applications Conference, 2006. COMPSAC’'06. 30th
Annual International. pp. 299-306.

Patel, C., Ramachandran, M., 2010. Best Practices
Guidelines for Agile Requirements Engineering
Practices.

Pauca, V.P., Guy, R.T., 2012. Mobile apps for the
greater good: a socially relevant approach to software
engineering, in: Proceedings of the 43rd ACM
Technical Symposium on Computer Science
Education, SIGCSE ’12. ACM, New York, NY, USA, pp.
535-540.

Pfleging, B., Valderrama Bahamondez, E. del C,,
Schmidt, A., Hermes, M., Nolte, J., 2010. MobiDev: a
mobile development kit for combined paper-based
and in-situ programming on the mobile phone, in:
Proceedings of the 28th of the International
Conference Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’10. ACM, New York, NY,
USA, pp. 3733-3738.

Picco, G.P., Murphy, A.L, Roman, G.-C., 2000.
Developing mobile computing applications with LIME,
in: Proceedings of the 22nd International Conference

$259.

S260.

S261.

$262.

S263.

S264.

S265.

S266.

S267.

S268.

S269.

$270.

on Software Engineering, ICSE ’00. ACM, New York,
NY, USA, pp. 766—769.

Pikkarainen, M., 2005. Agile Software Development of
Embedded Systems Version: 1.0 Date: 2005.06. 13.

Pikkarainen, M., Passoja, U., 2005. An approach for
assessing suitability of agile solutions: A case study.
Extreme Programming and Agile Processes in
Software Engineering 1202-1206.

Pikkarainen, M., Salo, O., Kuusela, R., Abrahamsson,
P., 2011. Strengths and barriers behind the successful
agile deployment—insights from the three software
intensive companies in Finland. Empirical Software
Engineering 1-28.

Platzer, E., Petrovic, O., 2011. A learning environment
for developers of mobile apps, in: Global Engineering
Education Conference (EDUCON), 2011 IEEE. pp. 14—
19.

Pocatilu, P., Doinea, M., Ciurea, C., 2010.
Development of distributed mobile learning systems,
in: The 9th WSEAS International Conference on
Circuits, Systems, Electronics, Control & Signal
Processing (CSECS’10), Vouliagmeni, Athens, Greece.

Pohl, T., Kothandaraman, R., Seshasai, V.S., 2007.
Developing Mobile Applications Using SAP NetWever
Mobile. SAP Press.

Pokraeyv, S., Koolwaaij, J., van Setten, M., Broens, T.,
Costa, P.D., Wibbels, M., Ebben, P., Strating, P., 2005.
Service platform for rapid development and
deployment of context-Aware, mobile applications,
in: Web Services, 2005. ICWS 2005. Proceedings. 2005
IEEE International Conference On.

Polo, J., Delgado, J., 2005. An easy way to develop
mobile and wireless applications. Presented at the
The 7th IFIP International Conference on Mobile and

Wireless Communications Networks, Marrakech,
Marocco.
Pulli, K., Vaarala, J., Miettinen, V., Aarnio, T., Callow,

M., 2005. Developing mobile 3D applications with
OpenGL ES and M3G, in: ACM SIGGRAPH 2005
Courses, SIGGRAPH ’'05. ACM, New York, NY, USA.

Qin, Z., Zhang, J., Zhang, X., 2012. An Effective
Partition Approach for Elastic Application
Development on Mobile Cloud Computing. Advances
in Grid and Pervasive Computing 46-53.

Quinton, C., Mosser, S., Parra, C., Duchien, L., 2011.
Using multiple feature models to design applications
for mobile phones, in: Proceedings of the 15th
International Software Product Line Conference,
Volume 2, SPLC ’11. ACM, New York, NY, USA, pp.
23:1-23:8.

Rahimian, V., Ramsin, R., 2008. Designing an agile
methodology for mobile software development: A
hybrid method engineering approach, in: Research
Challenges in Information Science, 2008. RCIS 2008.
Second International Conference On. pp. 337-342.

S271.

S272.

S273.

S274.

S275.

S276.

S277.

S278.

S279.

$280.

$281.

S282.

$283.

255

Ranabahu, A., Sheth, A., Manjunatha, A,
Thirunarayan, K., 2010. Towards Cloud Mobile Hybrid
Application Generation using Semantically Enriched

Domain Specific Languages, in: International
Workshop on Mobile Computing and Clouds
(MobiCloud 2010).

Ranabahu, A.H., Maximilien, E.M., Sheth, A.P,

Thirunarayan, K., 2011. A domain specific language
for enterprise grade cloud-mobile hybrid applications,
in: Proceedings of the Compilation of the Co-located
Workshops on DSM’11, TMC'11, AGERE!11,
AOOPES’11, NEAT'11, & VMIL'11, SPLASH ‘11
Workshops. ACM, New York, NY, USA, pp. 77-84.

Rashid, O., Thompson, R., Coulton, P., Edwards, R.,
2004. A comparative study of mobile application
development in symbian and J2ME using example of a
live football results service operating over GPRS, in:

Consumer Electronics, 2004 IEEE International
Symposium On. pp. 203 —207.
Reinhartz-Berger, 1., 2003. Developing web

applications with object-oriented approaches and
object-process methodology.

Ren, H., Duan, Z., 2012. The Study on Device
Application Development and DataSynchonization.
Procedia Engineering 29, 415-419.

Rizvi, S., Hussain, S.Z., Hassan, S.l., 2011. Simplifying
Mobile Application Development with Model-View-
Controller, in: Proceedings of the 5th National
Conference; INDIACom-2011. Bharati Vidyapeeth’s
Institute of Computer Applications and Management,
New Delhi, India.

Rodger, R., 2011. Beginning Building Mobile
Application Development in the Cloud. Wrox.

Rogers, R., 2010. Developing portable mobile web
applications. Linux J. 2010.

Rogov, P., Borisov, N., 2007. Developing a Mobile
Distance Learning System.

Roman, G.C., Picco, G.P., Murphy, A.L, 2000.
Software engineering for mobility: a roadmap, in:
Proceedings of the Conference on the Future of
Software Engineering. pp. 241-258.

Rosa, R.E.V.S.,, LucenaJr., V.F.,, 2011. Smart
composition of reusable software components in
mobile application product lines, in: Proceedings of
the 2nd International Workshop on Product Line

Approaches in Software Engineering, PLEASE ’11.
ACM, New York, NY, USA, pp. 45—-49.
Rosado, D.G., Fernandez-Medina, E., Loépez, I,

Piattini, M., 2011. Systematic design of secure Mobile
Grid systems. Journal of Network and Computer
Applications 34, 1168 — 1183.

Rossi, M., Tuunanen, T., 2010. A method and tool for
rapid consumer application development.
International Journal of Organisational Design and
Engineering 1, 109-125.

5284.

5285.

5286.

5287.

5288.

$289.

$290.

S291.

$292.

S293.

S294.

S295.

S296.

Roth, J., 2005. The resource framework for mobile
applications. Enterprise Information Systems V 300—
307.

Rukzio, E., Rohs, M., Wagner, D., Hamard, J., 2005.
Development of interactive applications for mobile
devices, in: Proceedings of the 7th International
Conference on Human Computer Interaction with
Mobile Devices and Services, MobileHClI ’05. ACM,
New York, NY, USA, pp. 365-366.

Rusu, L., Sarbu, M., Podean, M., 2009. Multilayer
solution using multimap for develope a mobile
application, in: Proceedings of the International
Conference on e-Business. Presented at the
International Conference on e-Business, Milan, Italy,
pp. 135-8.

Saifudin, A.W.S.N., Salam, B.S., Abdullah, C.M.H.L.,
2011. MMCD Framework and Methodology for
Developing m-Learning Applications. Presented at the
International conference on Teaching & Learning in
Higher Education (ICTLHE 2011).

Salim, A., Mehdi, Q., 2006. Investigation into Mobile
Development Tools and Technology for Mobile
Games and Application.

Salo, 0., 2004. Improving software process in agile
software development projects: results from two XP

case studies, in: Euromicro Conference, 2004.
Proceedings. 30th. pp. 310-317.

Salo, 0., Abrahamsson, P., 2007. An iterative
improvement process for agile software

development. Software Process: Improvement and
Practice 12, 81-100.

Salvaneschi, G., Ghezzi, C., Pradella, M., 2012.
Context-oriented programming: A software
engineering perspective. Journal of Systems and
Software 85, 1801 — 1817.

Sambasivan, D., John, N., Udayakumar, S., Gupta, R.,
2011. Generic framework for mobile application
development, in: Internet (AH-ICl), 2011 Second Asian
Himalayas International Conference On. pp. 1 5.

Sanchez, P., Jiménez, M., Rosique, F., Alvarez, B.,
lborra, A., 2011. A framework for developing home
automation systems: From requirements to code.
Journal of Systems and Software 84, 1008 — 1021.

Santi, A., Guidi, M., Ricci, A., 2010. Exploiting agent-
oriented programming for developing Android
applications, in: Proc. Of.

Sato, D., Goldman, A., Kon, F., 2007. Tracking the
evolution of object-oriented quality metrics on agile
projects, in: Proceedings of the 8th International
Conference on Agile Processes in Software
Engineering and Extreme Programming, XP’07.
Springer-Verlag, Berlin, Heidelberg, pp. 84-92.

Satoh, I, 2000. MobileSpaces: A framework for
building adaptive distributed applications using a
hierarchical mobile agent system, in: Distributed
Computing Systems, 2000. Proceedings. 20th
International Conference On. pp. 161-168.

S297.

$298.

$299.

S300.

S301.

S302.

S303.

S304.

S305.

S306.

S307.

S308.

S309.

256

Scharff, C., 2010. The Software Engineering of Mobile
Application Development.

Scharff, C., 2011. Guiding global software
development projects using Scrum and Agile with
quality assurance, in: Software Engineering Education
and Training (CSEE&T), 2011 24th IEEE-CS Conference
On. pp. 274-283.

Scharff, C., Verma, R., 2010. Scrum to support mobile
application development projects in a just-in-time
learning context, in: Proceedings of the 2010 ICSE
Workshop on Cooperative and Human Aspects of
Software Engineering, CHASE ’10. ACM, New York,
NY, USA, pp. 25-31.

Schuster, C., Appeltauer, M., Hirschfeld, R., 2011.
Context-oriented programming for mobile devices:
JCop on Android, in: Proceedings of the 3rd
International Workshop on Context-Oriented
Programming, COP ’11. ACM, New York, NY, USA, pp.
5:1-5:5.

Schwieren, J., Vossen, G., 2009. A design and
development methodology for mobile RFID
applications based on the ID-Services middleware
architecture, in: Mobile Data Management: Systems,
Services and Middleware, 2009. MDM’09. Tenth
International Conference On. pp. 260-266.

Seifert, J., Pfleging, B., del Carmen Valderrama
Bahamondez, E., Hermes, M., Rukzio, E., Schmidt, A.,
2011. Mobidev: a tool for creating apps on mobile
phones, in: Proceedings of the 13th International
Conference on Human Computer Interaction with
Mobile Devices and Services, MobileHCI ’11. ACM,
New York, NY, USA, pp. 109-112.

Sen, R., 2009. Developing Parallel Programs. TechEd
Special Edition 17.

Serhani, M.A., Benharref, A., Dssouli, R., Mizouni, R.,
2009. Toward an Efficient Framework for Designing,
Developing, and Using Secure Mobile Applications.
the Proceedings of World Academy of Science,
Engineering and Technology 40.

Serm, T., Blanchfield, P., Su, K., 2006. Mobile
Newspaper Development Framework: Guidelines for
newspaper companies for creating usable mobile
news portals, in: Computing & Informatics, 2006.
ICOCI'06. International Conference On. pp. 1-8.

Serral, E., Valderas, P., Pelechano, V., 2010. Towards
the Model Driven Development of context-aware
pervasive systems. Pervasive and Mobile Computing
6, 254 — 280.

Session 4 Abstract: Mobile Application Development,
2008. , in: Mobile Business, 2008. ICMB ’08. 7th
International Conference On. p. xv.

Shah, M., Mears, B., Chakrabarti, C., Spanias, A,
Center, S., Tempe, A., 2012. A Top-Down Design
Methodology Using Virtual Platforms for Concept
Development.

Shen, J., Sun, P., Guo, C., Yin, Y., Song, S., 2005.
Delivering mobile enterprise applications on iIMMS

S310.

S311.

S312.

S313.

S314.

S315.

S316.
S317.

S318.

S319.

$320.

S321.

S322.

framework, in: Proceedings of the 6th International
Conference on Mobile Data Management, MDM ’05.
ACM, New York, NY, USA, pp. 289-293.

Shen, M., Yang, W., Rong, G., Shao, D., 2012. Applying
Agile Methods to Embedded Software Development:
A Systematic Review. Presented at the The 2nd
International Workshop on Software Engineering for
Embedded Systems, Zurich, Switzerland.

Shetty, K.S., Singh, S., 2011. Cloud Based Application
Development for Mobile Devices for Accessing LBS.
Advances in Parallel Distributed Computing 532-543.

Shiratuddin, N., Sarif, S.M., 2008. m d-Matrix: Mobile
Application Development Tool. Proceedings of the
International MultiConference of Engineers and
Computer Scientists 1.

Shiratuddin, N., Sarif, S.M., 2009. Construction of
Matrix and eMatrix for Mobile Development
Methodologies. Handbook of research in mobile
business: technical, methodological, and social
perspectives.

Shrestha, A., 2010. MobileSOA Framework for
Context-Aware Mobile Applications, in: Proceedings
of the 2010 Eleventh International Conference on
Mobile Data Management, MDM ’10. IEEE Computer
Society, Washington, DC, USA, pp. 297-298.

Simon, R., Frohlich, P., 2007. A mobile application
framework for the geospatial web, in: Proceedings of
the 16th International Conference on World Wide
Web, WWW ‘07. ACM, New York, NY, USA, pp. 381—
390.

Simonsen, A., 2004. Developing mobile applications.

Simula, K., 2007. Intelligent software agent
framework for customized mobile services, in:
Proceedings of the 4th on Middleware Doctoral
Symposium, MDS ’‘07. ACM, New York, NY, USA, pp.
15:1-15:6.

Singh, M., Rahmatabadi, G.Y., Ahamed, S.I., 2004.
User Interface and application development
experience on handheld devices, in:

Electro/Information Technology Conference, 2004.
EIT 2004. IEEE. pp. 125-137.

Soroker, D., Caceres, R., Dig, D., Schade, A.,
Spraragen, S., Tiwari, A., 2006. Pegboard: a
framework for developing mobile applications, in:
Proceedings of the 4th International Conference on
Mobile Systems, Applications and Services, MobiSys
’06. ACM, New York, NY, USA, pp. 138-150.

Soumaya, D., Tabbane, M.S., Jemai, M.A., 2007.
Development of a software mobile banking solution
for S60 phones.

Spataru, A.C., 2010. Agile development methods for
mobile applications.

Srinivasa, K.G., Harish Raddi, C.S., Mohan Krishna,
S.H., Venkatesh, N., 2011. MeghaOS: Cloud based
operating system and a framework for mobile
application development, in: Information and

$323.

S324.

S325.

S326.

$327.

$328.

$329.

$330.

S331.

S332.

S333.

S334.

257

Communication Technologies (WICT), 2011 World
Congress On. pp. 858 —863.

Srinivasan, J., Dobrin, R., Lundqyvist, K., 2009. “State of
the Art”in Using Agile Methods for Embedded
Systems Development, in: Computer Software and
Applications Conference, 2009. COMPSAC’'09. 33rd
Annual IEEE International. pp. 522-527.

Su, S.H., Scharff, C., 2010. Know Yourself and Beyond:
A Global Software Development Project Experience
with Agile Methodology, in: Proceedings of Student-
Faculty Research Day, CSIS. Pace University.

Sung, M., Lee, J., 2004. Desirable mobile networking
method for formulating an efficient mobile
conferencing application. Embedded and Ubiquitous
Computing 46—-151.

Tang, L., Yu, Z., Zhou, X., Wang, H., Becker, C., 2011.
Supporting rapid design and evaluation of pervasive
applications: challenges and solutions. Personal
Ubiquitous Comput. 15, 253—-269.

Tanuan, M., 2007. Using Sybase WorkSpace to build
service oriented architecture (SOA) applications
quickly, in: Companion to the 22nd ACM SIGPLAN
Conference on Object-oriented Programming Systems
and Applications Companion, OOPSLA ’07. ACM, New
York, NY, USA, pp. 848-849.

Tarnacha, A., Maitland, C.F., 2006. Entrepreneurship
in mobile application development, in: Proceedings of
the 8th International Conference on Electronic
Commerce: The New E-commerce: Innovations for
Conquering Current Barriers, Obstacles and
Limitations to Conducting Successful Business on the
Internet, ICEC '06. ACM, New York, NY, USA, pp. 589—
593.

Teng, C.C., Helps, R., 2010. Mobile Application
Development: Essential New Directions for IT, in:
Information Technology: New Generations (ITNG),
2010 Seventh International Conference On. pp. 471 —
475.

Terani, N.S., 2012. IPhone Application Development
Challenges and Solutions.

Thompson, C., White, J., Dougherty, B., Schmidt, D.,
2009. Optimizing mobile application performance
with model—driven engineering. Software
Technologies for Embedded and Ubiquitous Systems
36-46.

Thompson, C., White, J., Dougherty, B., Turner, H.,
Campbell, S., Zienkiewicz, K., Schmidt, D.C., 2010.
Model-Driven Architectures for Optimizing Mobile
Application Performance.

Titica, D., Fratu, O., Stanescu, E., Halunga-Fratu, S.,
2007. Simple Location-based Application
Development for Mobile Phones, in:
Telecommunications in Modern Satellite, Cable and
Broadcasting Services, 2007. TeLSIKS 2007. 8th
International Conference On. pp. 15-18.

TRIF, S., VISOIU, A, 2011. A Windows Phone 7
Oriented Secure Architecture for Business Intelligence

S335.

S336.

S337.

S338.

S339.

S340.

S341.

S342.

S343.

S344.

S345.

S346.

Mobile Applications. Informatica Economica 15, 119—
129.

Ueyama, J., Pinto, V.P.V., Madeira, E.R.M., Grace, P.,
Jonhson, T.M.M., Camargo, R.Y., 2009. Exploiting a
generic approach for constructing mobile device
applications, in: Proceedings of the Fourth
International ICST Conference on COMmunication
System softWAre and middlewaRE, COMSWARE ’09.
ACM, New York, NY, USA, pp. 12:1-12:12.

Um, J,, Hong, S., Kim, Y.T., Chung, E., Choi, K.M., Kong,
J.T., Eo, S.K., 2005. ViP: A Practical Approach to
Platform-based System Modeling Methodology.
Journal of Semiconductor Technology and Science 5,
89.

Unhelkar, B., Murugesan, S., 2010. The Enterprise
Mobile Applications Development Framework. IT
professional 12, 33—-39.

Vara, J.M., Marcos, E., 2012. A framework for model-
driven development of information systems:
Technical decisions and lessons learned. Journal of
Systems and Software -.

Vazquez-Briseno, M., Vincent, P., Nieto-Hipolito, J.1.,
de Dios Sanchez-Lopez, J., 2012. Applying a Modular
Framework to Develop Mobile Applications and
Services. Journal of Universal Computer Science 18,
704-727.

Viana, W., Andrade, R., 2008. XMobile: A MB-UID
environment for semi-automatic generation of
adaptive applications for mobile devices. Journal of
Systems and Software 81, 382-394.

Walkerdine, J., Phillips, P., Lock, S., 2009. A Tool
Supported Methodology For Developing Secure
Mobile P2P Systems, in: Mobile Peer-to-peer
Computing for Next Generation Distributed
Environments: Advancing Conceptual and Algorithmic
Applications. pp. 283-301.

Walter, T., Bussard, L., Roudier, Y., Haller, J., Kilian-
Kehr, R., Posegga, J., Robinson, P., 2004. Secure
mobile business applications — framework,
architecture and implementation. Information

Security Technical Report 9, 6 — 21.

Wang, A., Segrensen, C.F., Ramampiaro, H., Le, H.,
Conradi, R., Nyg\aard, M., 2005. Using the MOWAHS
characterisation framework for development of
mobile work applications. Product Focused Software
Process Improvement 111-127.

Wang, M., Hunger, |.A., 2007. Support Agile
Development Process: Exploring Windows
Presentation Foundation Technology Under the
Conceptual Framework of Model-View-Controller.

Wang, Y., 2004. An FSM model for situation-aware
mobile application software systems, in: Proceedings
of the 42nd Annual Southeast Regional Conference,
ACM-SE 42. ACM, New York, NY, USA, pp. 52-57.

Wasserman, A.l,, 2010. Software engineering issues
for mobile application development, in: Proceedings
of the FSE/SDP Workshop on Future of Software

S347.

$348.

$349.

$350.

S351.

S352.

S353.

S354.

S355.

S356.

S357.

258

Engineering Research, FOSER ’10. ACM, New York,

NY, USA, pp. 397-400.

Weerasekera, P., Abeysinghe, S., 2005. Modular
mobile application development framework for
resource constrained devices.

Wesson, J.L., van der Walt, D.F., 2005. Implementing
mobile services: does the platform really make a
difference?, in: Proceedings of the 2005 Annual
Research Conference of the South African Institute of
Computer Scientists and Information Technologists on
IT Research in Developing Countries, SAICSIT ’05.
South African Institute for Computer Scientists and
Information Technologists, Republic of South Africa,
pp. 208-216.

Wichmann, D., Pielot, M., Boll, S., 2009. Companion
Platform-Modular Software Platform for Rapid
Development of Mobile Applications. IT-Information
Technology 51, 72-78.

Wikman, J., Nurminen, J.K., 2008. Open Source Web
Application Development Stack for Symbian-Based
Mobile Phones, in: Next Generation Mobile
Applications, Services and Technologies, 2008.
NGMAST’08. The Second International Conference
On. pp. 607-612.

Wolkerstorfer, P., Tscheligi, M., Sefelin, R.,
Milchrahm, H., Hussain, Z., Lechner, M., Shahzad, S.,
2008. Probing an agile usability process, in: CHI ‘08
Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’08. ACM, New York, NY, USA, pp.
2151-2158.

Wooldridge, D., Schneider, M., 2011. Keys to the
Kingdom: The App Store Submission Process, in: The
Business of iPhone and iPad App Development. pp.
353-398.

Xiong, Y., Wang, A., 2010. A new combined method
for UCD and software development and case study,
in: Information Science and Engineering (ICISE), 2010
2nd International Conference On. pp. 1-4.

Yang, B., 2009. Design and implementation of a novel
mobile application for SMS on demand, in:
Management of e-Commerce and e-Government,
2009. ICMECG’09. International Conference On. pp.
412-415.

Yang, K., Todd, C., Ou, S., 2006. Model-based service
discovery for future generation mobile systems, in:
Proceedings of the 2006 International Conference on
Wireless Communications and Mobile Computing,
IWCMC ’'06. ACM, New York, NY, USA, pp. 973-978.

Yao, L., 2003. An Adaptive Mobile Application
Development Framework (CITATION) (Master thesis).

Yu, P., Yu, H., 2004. Lessons learned from the practice
of mobile health application development, in:
Computer Software and Applications Conference,
2004. COMPSAC 2004. Proceedings of the 28th
Annual International. pp. 58-59.

S358.Yuen, S.L., 2003. Postponement Strategies for Mobile S362. Zeidler, C., Kittl, C., Petrovic, O., 2008. An integrated

Application Development—A Framework. BLED 2003
Proceedings 45.

$359. Zabri, S.N., Awang, A.H., Salahuddin, L., Said, M.M.,

product development process for mobile software.
International Journal of Mobile Communications 6,
345-356.

2011. Application development with J2ME for mobile ~ $363.Zheng, P., Ni, L., 2006. Mobile Application Challenges,

phone, in: Advanced Communication Technology
(ICACT), 2011 13th International Conference On. pp.
1420 -1423.

in: Smart Phone and Next Generation Mobile
Computing. Morgan Kaufmann, Burlington, pp. 407 —
512.

S$360.Zakal, D., Lengyel, L., 2010. Feature model-driven S364.Zimmerman, J.B.,, 1999. Mobile Computing:

software development.

S361.Zakal, D., Lengyel, L., Charaf, H., 2011. Software
Product Lines-based development, in: Applied
Machine Intelligence and Informatics (SAMI), 2011
IEEE 9th International Symposium On. pp. 79-81.

259

Characteristics, Business benefits, and the mobile
framework. University of Maryland, Browie state,
INSS 960.

Appendix B — Papers selected for the SLR Phase 3 analysis

S1.

S2.

S3.

S4.

S5.

S6.

S7.

S8.

S9.

S10.

Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T.,
Jaalinoja, J., Korkala, M., Koskela, J., Kyllonen, P., Salo,
0., 2004. Mobile-D: an agile approach for mobile
application development, in: Companion to the 19th
Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications,
OOPSLA '04. ACM, New York, NY, USA, pp. 174-175.

Abrahamsson, P., Hanhineva, A., Jaalinoja, J., 2005.
Improving business agility through technical solutions:
A case study on test-driven development in mobile
software development, in: Business Agility and
Information Technology Diffusion. Presented at the
IFIP TC8 WG 8.6 International Working Conference.

Abrahamsson, P., lhme, T., Kolehmainen, K., Kyllénen,
P., Salo, O., 2009. Mobile-D for Mobile Software: How

to Use Agile Approaches for the Efficient
Development of Mobile Applications.
Ahtinen, A., Nurminen, J.K.,, Hakkila, J., 2007.

Developing a mobile reporting system for road
maintenance: user research perspective, in:
Proceedings of the 4th International Conference on
Mobile Technology, Applications, and Systems and
the 1st International Symposium on Computer Human
Interaction in Mobile Technology, Mobility '07. ACM,
New York, NY, USA, pp. 1-7.

Alyani, N., Shirzad, S., 2011. Learning to innovate in
distributed mobile application development: Learning
episodes from Tehran and London, in: 2011
Federated Conference on Computer Science and
Information Systems (FedCSIS). Presented at the 2011
Federated Conference on Computer Science and
Information Systems (FedCSIS). IEEE., Piscataway, NJ,
USA, pp. 497-504.

Balagtas-Fernandez, F.T., Hussmann, H., 2008. Model-
Driven Development of Mobile Applications, in:
Proceedings of the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering, ASE
’08. IEEE Computer Society, Washington, DC, USA, pp.
509-512.

Barnawi, A., Qureshi, M., Khan, A.l, 2012. A
Framework for Next Generation Mobile and Wireless
Networks Application Development using Hybrid
Component Based Development Model. Arxiv
preprint arXiv:1202.2515.

Bergstrom, F., Engvall, G., 2011. Development of
handheld mobile applications for the public sector in
Android and iOS using agile Kanban process tool.

Binsaleh, M., Hassan, S., 2011. Systems Development
Methodology for Mobile Commerce Applications:
Agile vs. Traditional. International Journal of Online
Marketing (JOM) 1, 33-47.

Biswas, A., Donaldson, T., Singh, J., Diamond, S.,
Gauthier, D., Longford, M., 2006. Assessment of
mobile experience engine, the development toolkit

S11.

S12.

S13.

S14.

S15.

S16.

S17.

S18.

S19.

S20.

S21.

S22.

260

for context aware mobile applications, in:
Proceedings of the 2006 ACM SIGCHI International
Conference on Advances in Computer Entertainment
Technology, ACE '06. ACM, New York, NY, USA.

Bowen, J., Hinze, A., 2011. Supporting Mobile
Application Development with Model-Driven
Emulation. Electronic Communications of the EASST
45,

Charaf, H., 2011. Developing Mobile Applications for
Multiple Platforms, in: Engineering of Computer
Based Systems (ECBS-EERC), 2011 2nd Eastern
European Regional Conference on The. p. 2.

Chen, M., 2004. A methodology for building mobile
computing applications. International journal of
electronic business 2, 229-243.

Cuccurullo, S., Francese, R., Risi, M., Tortora, G., 2011.
A Visual Approach supporting the Development of
MicroApps on Mobile Phones, in: Proc. of 3rd
International Symposium on End-User Development.
Presented at the 3rd International Symposium on
End-User Development, Brindisi, Italy, pp. 289-294.

Ejlersen, A., Knudsen, M.S., Lgvgaard, J., Sgrensen,
M.B., 2008. Using Design Science to Develop a Mobile
Application.

Fjellheim, T., Milliner, S., Dumas, M., Vayssiére, J.,
2007. A process-based methodology for designing
event-based mobile composite applications. Data
& Knowledge Engineering 61, 6 — 22.

Forstner, B., Lengyel, L., Kelenyi, I., Levendovszky, T.,
Charaf, H., 2005. Supporting Rapid Application
Development on Symbian Platform, in: Computer as a
Tool, 2005. EUROCON 2005.The International
Conference On. pp. 72 -75.

Forstner, B., Lengyel, L., Levendovszky, T., Mezei, G.,
Kelenyi, ., Charaf, H., 2006. Model-based system
development for embedded mobile platforms, in:

Model-Based Development of Computer-Based
Systems and Model-Based Methodologies for
Pervasive and Embedded Software, 2006.

MBD/MOMPES 2006. Fourth and Third International
Workshop On. p. 10—pp.

Gal, V., Topol, A., 2005. Experimentation of a Game
Design Methodology for Mobile Phones Games.

Hedberg, H., lisakka, J., 2006. Technical Reviews in
Agile Development: Case Mobile-D, in: Quality
Software, 2006. QSIC 2006. Sixth International
Conference On. pp. 347-353.

lhme, T., Abrahamsson, P., 2005. The Use of
Architectural Patterns in the Agile Software
Development of Mobile Applications.

Jeong, Y.J., Lee, J.H., Shin, G.S., 2008. Development
Process of Mobile Application SW Based on Agile

S23.

S24.

S25.

S26.

S27.

S28.

S29.

S30.

S31.

S32.

S33.

S34.

Methodology, in: Advanced Communication
Technology, 2008. ICACT 2008. 10th International
Conference On. pp. 362—-366.

Kaariainen, J., Koskela, J., Abrahamsson, P., Takalo, J.,
2004. Improving requirements management in
extreme programming with tool support - an
improvement attempt that failed, in: Euromicro
Conference, 2004. Proceedings. 30th. pp. 342 — 351.

Kangas, E., Kinnunen, T., 2005. Applying user-
centered design to mobile application development.
Communications of the ACM 48, 55-59.

Khambati, A., Grundy, J., Warren, J., Hosking, J., 2008.
Model-Driven Development of Mobile Personal
Health Care Applications, in: Proceedings of the 2008
23rd IEEE/ACM International Conference on
Automated Software Engineering, ASE ’'08. IEEE
Computer Society, Washington, DC, USA, pp. 467—
470.

Khan, U.A.,, 2008. Improved Iterative Software
Development Method for Game Design.

Kim, H., Choi, B., Yoon, S., 2009. Performance testing
based on test-driven development for mobile
applications, in: Proceedings of the 3rd International
Conference on Ubiquitous Information Management
and Communication, ICUIMC ’09. ACM, New York,
NY, USA, pp. 612-617.

Kim, H.K., 2008. Frameworks of Process Improvement
for Mobile Applications. Engineering Letters 16.

Kim, W.Y., Son, H.S. Kim, J.S.,, Kim, R.Y., 2010.
Development of Windows Mobile Applications using
Model Transformation Techniques. Journal of KISS:
Computing Practices 16, 1091-5.

Korkala, M., Abrahamsson, P., 2004. Extreme
programming: Reassessing the requirements
management process for an offsite customer.

Software Process Improvement 12-22.

Kurschl, W., Mitsch, S., Prokop, R., Schonbock, J.,
2007. Gulliver - a framework for building smart
speech-based applications, in: Proceedings of the
40th Annual Hawaii International Conference on
System Sciences. Waikoloa, HI, USA.

La, H.J.,, Lee, H.J.,, Kim, S.D., 2011. An efficiency-centric
design methodology for mobile application
architectures, in: Wireless and Mobile Computing,
Networking and Communications (WiMob), 2011 IEEE
7th International Conference On. pp. 272-279.

Madiraju, P., Malladi, S., Balasooriya, J., Hariharan, A,
Prasad, S.K., Bourgeois, A., 2010. A methodology for
engineering collaborative and ad-hoc mobile
applications using SyD middleware. Journal of
Network and Computer Applications 33, 542 — 555.

Maharmeh, M., Unhelkar, B., 2009. A Composite
Software Framework Approach for Mobile Application
Development. Handbook of research in mobile
business: technical, methodological, and social
perspectives 194.

S35.

S36.

S37.

S38.

S39.

S40.

S41.

S42.

S43.

S44.

545.

261

Maia, M.E.F., Celes, C., Castro, R., Andrade, R.M.C,,
2010. Considerations on developing mobile
applications based on the Capuchin project, in:
Proceedings of the 2010 ACM Symposium on Applied
Computing, SAC ’10. ACM, New York, NY, USA, pp.
575-579.

Makunga, L., Church, K., 2002. Software Development
in Mobile Computing Applications. INFORMATION
TECHNOLOGY ON THE MOVE 257.

Manjunatha, A., Ranabahu, A., Sheth, A,
Thirunarayan, K., 2010. Power of clouds in your
pocket: An efficient approach for cloud mobile hybrid
application development, in: Cloud Computing
Technology and Science (CloudCom), 2010 IEEE
Second International Conference On. pp. 496-503.

Marinho, F.G., Andrade, R.M.C., Werner, C., Viana,
W., Maia, M.E.F., Rocha, L.S., Teixeira, E., Filho, J.B.F.,
Dantas, V.L.L., Lima, F., Aguiar, S., 2012. Mobiline: A
Nested Software Product Line for the domain of
mobile and context-aware applications. Science of
Computer Programming -.

Nystrom, A., 2011. Agile Solo - Defining and
Evaluating an Agile Software Development Process for
a Single Software Developer.

Ortiz, G., Prado, A.G.D., 2010. Improving device-aware
Web services and their mobile clients through an
aspect-oriented, model-driven approach. Information
and Software Technology 52, 1080 — 1093.

Paspallis, N., Papadopoulos, G.A., 2006. An approach
for developing adaptive, mobile applications with
separation of concerns, in: Computer Software and
Applications Conference, 2006. COMPSAC’'06. 30th
Annual International. pp. 299-306.

Pauca, V.P., Guy, R.T., 2012. Mobile apps for the
greater good: a socially relevant approach to software
engineering, in: Proceedings of the 43rd ACM
Technical Symposium on Computer Science
Education, SIGCSE '12. ACM, New York, NY, USA, pp.
535-540.

Rahimian, V., Ramsin, R., 2008. Designing an agile
methodology for mobile software development: A
hybrid method engineering approach, in: Research
Challenges in Information Science, 2008. RCIS 2008.
Second International Conference On. pp. 337-342.

Ranabahu, A.H., Maximilien, E.M., Sheth, A.P.,
Thirunarayan, K., 2011. A domain specific language
for enterprise grade cloud-mobile hybrid applications,
in: Proceedings of the Compilation of the Co-located
Workshops on DSM’11, TMC'11, AGERE!11,

AOOPES’11, NEAT'11, & VMIL'11, SPLASH ’11
Workshops. ACM, New York, NY, USA, pp. 77-84.
Rosa, R.E.V.S.,, LucenaJr., V.F,, 2011. Smart

composition of reusable software components in
mobile application product lines, in: Proceedings of
the 2nd International Workshop on Product Line
Approaches in Software Engineering, PLEASE ‘11.
ACM, New York, NY, USA, pp. 45-49.

546.

S47.

548.

$49.

S50.

S51.

S52.

S53.

S54.

S55.

S56.

Rossi, M., Tuunanen, T., 2010. A method and tool for
rapid consumer application development.
International Journal of Organisational Design and
Engineering 1, 109-125.

Rupnik, R., 2009. Mobile Applications Development
Methodology, in: Unhelkar, B. (Ed.), Handbook of
Research in Mobile Business: Technical,
Methodological, and Social Perspectives. 1Gl Global
Snippet.

Saifudin, A.W.S.N., Salam, B.S., Abdullah, C.M.H.L,,
2011. MMCD Framework and Methodology for
Developing m-Learning Applications. Presented at the
International conference on Teaching & Learning in
Higher Education (ICTLHE 2011).

Salo, 0., 2004. Improving software process in agile
software development projects: results from two XP
case studies, in: Euromicro Conference, 2004.
Proceedings. 30th. pp. 310-317.

Scharff, C., 2010. The Software Engineering of Mobile
Application Development.

Scharff, C., 2011. Guiding global software
development projects using Scrum and Agile with
quality assurance, in: Software Engineering Education
and Training (CSEE&T), 2011 24th IEEE-CS Conference
On. pp. 274-283.

Scharff, C., Verma, R., 2010. Scrum to support mobile
application development projects in a just-in-time
learning context, in: Proceedings of the 2010 ICSE
Workshop on Cooperative and Human Aspects of
Software Engineering, CHASE ’10. ACM, New York,
NY, USA, pp. 25-31.

Schwieren, J., Vossen, G., 2009. A design and
development methodology for mobile RFID
applications based on the ID-Services middleware
architecture, in: Mobile Data Management: Systems,
Services and Middleware, 2009. MDM’09. Tenth
International Conference On. pp. 260-266.

Shah, M., Mears, B., Chakrabarti, C., Spanias, A.,
Center, S., Tempe, A., 2012. A Top-Down Design
Methodology Using Virtual Platforms for Concept
Development.

Shiratuddin, N., Sarif, S.M., 2008. m d-Matrix: Mobile
Application Development Tool. Proceedings of the
International MultiConference of Engineers and
Computer Scientists 1.

Shiratuddin, N., Sarif, S.M., 2009. Construction of
Matrix and eMatrix for Mobile Development
Methodologies, in: Handbook of Research in Mobile
Business: Technical, Methodological, and Social
Perspectives. |Gl Global, pp. 113-126.

S57.
S58.

S59.

S60.

S61.

S62.

S63.

S64.

S65.

S66.

S67.

262

Simonsen, A., 2004. Developing mobile applications.

Su, S.H., Scharff, C., 2010. Know Yourself and Beyond:
A Global Software Development Project Experience
with Agile Methodology, in: Proceedings of Student-
Faculty Research Day, CSIS. Pace University.

Terani, N.S., 2012. IPhone Application Development
Challenges and Solutions. CALIFORNIA STATE
UNIVERSITY.

Thompson, C., White, J., Dougherty, B., Turner, H.,
Campbell, S., Zienkiewicz, K., Schmidt, D.C., 2010.
Model-Driven Architectures for Optimizing Mobile
Application Performance.

Um, J., Hong, S., Kim, Y.T., Chung, E., Choi, K.M., Kong,
J.T., Eo, S.K., 2005. ViP: A Practical Approach to
Platform-based System Modeling Methodology.
Journal of Semiconductor Technology and Science 5,
89.

Walkerdine, J., Phillips, P., Lock, S., 2009. A Tool
Supported Methodology For Developing Secure
Mobile P2P Systems, in: Mobile Peer-to-peer
Computing for Next Generation Distributed
Environments: Advancing Conceptual and Algorithmic
Applications. pp. 283—-301.

Wasserman, A.l,, 2010. Software engineering issues
for mobile application development, in: Proceedings
of the FSE/SDP Workshop on Future of Software
Engineering Research, FOSER ’'10. ACM, New York,
NY, USA, pp. 397-400.

Wolkerstorfer, P., Tscheligi, M., Sefelin, R.,
Milchrahm, H., Hussain, Z., Lechner, M., Shahzad, S.,
2008. Probing an agile usability process, in: CHI ‘08
Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’08. ACM, New York, NY, USA, pp.
2151-2158.

Xiong, Y., Wang, A., 2010. A new combined method
for UCD and software development and case study,
in: Information Science and Engineering (ICISE), 2010
2nd International Conference On. pp. 1-4.

Zakal, D., Lengyel, L., Charaf, H., 2011. Software
Product Lines-based development, in: Applied
Machine Intelligence and Informatics (SAMI), 2011
IEEE 9th International Symposium On. pp. 79-81.

Zeidler, C., Kittl, C., Petrovic, O., 2008. An integrated
product development process for mobile software.
International Journal of Mobile Communications 6,
345-356.

Appendix C — Study quality assessment table

ID | Quality assessment question

Possible results

Q1 | Study reports methodology or approach used in mobile application development? Yes/No

Q2 | Study defines new methodology or approach for mobile applications development? | Yes/No

Q3 | Research design is appropriate to address the study context? Yes/Partially/No

Q4 | Researches have experience in software development and mobile applications Yes/Partially/No
development?

Q5 | The reported or created process is clearly defined to the applicable level? Yes/Partially/No

Q6 | The study provided value for research and practice? Yes/Partially/No

Study / Question Q1 Q2 Q3 Q4 Q5 Q6 Score

(Charaf, 2011) Yes No Yes Yes Partially | Partially 3.0

(Alyani and Shirzad, 2011) Yes Yes Partially Yes Partially | Partially 2.5

(Maharmeh and Unhelkar, 2009) No Yes Partially Yes Partially Yes 3.0

(Schwieren and Vossen, 2009) No Yes No Partially No No 0.5

(Ranabahu et al., 2011) No No

(Barnawi et al., 2012) No Yes Yes Yes Yes Yes 4.0

(Rossi and Tuunanen, 2010) No No

(Chen, 2004) No Yes Yes Yes Yes Yes 4.0

(Madiraju et al., 2010) No No

(Xiong and Wang, 2010) No Yes Yes Yes Partially | Partially 3.0

(Fjellheim et al., 2007) No No

(Walkerdine et al., 2009) No Yes Yes Yes Partially | Partially 3.0

(Shah et al., 2012) No No

(Cuccurullo et al., 2011) No Yes | Partially Yes Partially | Partially 2.5

(Nystrom, 2011) Yes Yes Partially | Partially | Partially | Partially 2.0

(Paspallis and Papadopoulos, 2006) No No

(Laetal, 2011) No No

(Zeidler et al., 2008) No Yes | Partially Yes Partially No 2.0

(Kangas and Kinnunen, 2005) No No

(Biswas et al., 2006) No Yes Yes Yes Yes Partially 3.0

(Maia et al., 2010) No Yes No Yes No No 1.0

(Shiratuddin and Sarif, 2009) Yes No Yes Yes No No 2.0

(Rahimian and Ramsin, 2008) No Yes Yes Yes Partially | Partially 3.0

(Ahtinen et al., 2007) No No

(Simonsen, 2004) No No

(Bergstrom and Engvall, 2011) Yes No Partially | Partially | Partially No 1.5

(Kim et al., 2010) No No

(Jeong et al., 2008) No Yes Yes Yes Partially No 2.5

(Korkala and Abrahamsson, 2004) Yes No Yes Yes Partially | Partially 3.0

(Gal and Topol, 2005) Yes No Yes Yes Partially | Partially 3.0

(Kim, 2008) Yes No Partially Yes Partially | Partially 2.5

(Scharff, 2011) Yes No Yes Yes No No 2.0

(Kurschl et al., 2007) No No

(Khan, 2008) No No

(Abrahamsson et al., 2005b) Yes No Yes Yes Yes Yes 4.0

(Ortiz and Prado, 2010) Yes No Yes Yes Partially | Partially 3.0

(Kaariainen et al., 2004) Yes No Partially Yes Partially No 2.0

(Salo, 2004) Yes No Partially Yes Partially No 3.0

(Terani, 2012) No No

(Su and Scharff, 2010) Yes No Partially | Partially | Partially | Partially 2.0

(Shiratuddin and Sarif, 2008) Yes No Yes Yes Partially No 2.5

(Saifudin et al., 2011) No Yes Partially Yes No No 1.5

(Rupnik, 2009) No Yes Partially | Partially | Partially No 1.5

(Pauca and Guy, 2012) Yes No No Yes No No 1.0
(Abrahamsson et al., 2009) No Yes No Yes No No 1.0
(Abrahamsson et al., 2004) No Yes | Partially Yes Partially | Partially 2.5
(Marinho et al., 2012) No Yes Yes Yes Yes Yes 4.0
(Forstner et al., 2006) Yes No Partially Yes Partially | Partially 2.5
(Thompson et al., 2010) Yes No No Yes No No 1.0
(Balagtas-Fernandez and Hussmann, No No

2008)

(Khambati et al., 2008) Yes No Partially Yes Partially | Partially 2.5
(Kim et al., 2009) Yes No Partially Yes No No 1.5
(Manjunatha et al., 2010) No Yes Partially Yes Partially | Partially 2.5
(Wolkerstorfer et al., 2008) No Yes | Partially Yes Partially No 2.0
(Scharff and Verma, 2010) Yes No Yes Yes Partially No 2.5
(Rosa and Lucena,Jr., 2011) Yes No Partially Yes Partially No 2.0
(Makunga and Church, 2002) No No

(Wasserman, 2010) No No

(Zakal et al., 2011) Yes No Partially Yes Partially No 2.0
(Bowen and Hinze, 2011) No No

(Forstner et al., 2005) Yes No Partially Yes Partially No 2.0
(Binsaleh and Hassan, 2011) Yes Yes Yes Yes Yes Yes 4.0
(Hedberg and lisakka, 2006) Yes Yes Yes Yes Yes Yes 4.0
(Scharff, 2010) Yes No Partially Yes Partially | Partially 2.5
(Ejlersen et al., 2008) Yes No Yes Yes Partially | Partially 3.0
(IThme and Abrahamsson, 2005) Yes No Partially Yes Partially | Partially 3.5
(Um et al., 2005) No Yes Yes Yes Yes Yes 4.0

The study quality score is calculated by summarizing the columns Q3 to Q6 by valuing each
positive answer (Yes) with score of 1 and each answer Partially with the score of 0.5.

264

Appendix D - Filled data forms for the SLR

Data item Value Notes

Study identifier (Charaf, 2011)

Title Developing Mobile Applications Using SAP NetWever Mobile

Publication details T. thl, R Kothgndaraman, and V. S. Se.shasai. Developing Mobile
Applications Using SAP NetWever Mobile. SAP Press, 2007.

Study type Approach usage

Name of methodology / Model Driven Development

approach

Application in multi- Yes

platform development

Details on defined / This paper introdupes the problem of the solftware.development for

reported methodology / 1ncompat1ble mobile platforms. .Moreox./er, it prov.ldes a Model-Driven

approach Architecture (MDA).and Domain Specific Modeling Language
(DSML)-based solution.

Additional resources on

methodology / No

approach description

?:5;:);31?:;}:3312 logy Usage of: Visual Modeling and

. . Transformation System (VMTS)

implementation

Organlzatlonal aspects None

on implementation

Project management

aspects on None

implementation

Data item Value Notes

Study identifier (Alyani and Shirzad, 2011)

Title Learning to innovate in distributed mobile application development:

Learning episodes from Tehran and London

Publication details

N. Alyani and S. Shirzad, “- Learning to innovate in distributed mobile
application development: Learning episodes from Tehran and
London,” in 2011 Federated Conference on Computer Science and
Information Systems (FedCSIS)., Piscataway, NJ, USA, 2011, pp.
497-504.

Study type Methodology usage / New Methodology
Name of methodology / Scrum / DEAL

approach

Application in multi- Yes

platform development

Details on defined /
reported methodology /
approach

At the heart of the activities however, we noted a range of processes
which we labeled as DEAL, as an acronym that stands for the cycle of
Design, Execute, Adjust and Learn. Within the DEAL model, various
activities were enhanced via formal and informal knowledge brokering
and knowledge sourcing.

Additional resources on
methodology /
approach description

No

Report on methodology
/ approach example
implementation

Usage: Real life projects in several years long period.
Proposal: No

Organizational aspects
on implementation

Small and medium sized companies are reffered

Project management

None

265

aspects on

implementation
Data item Value Notes
Study identifier (Maharmeh and Unhelkar, 2009)
Title A Composite Software Framework Approach for Mobile Application
Development
M. Maharmeh and B. Unhelkar, “A Composite Software Framework
Publication details Approach for Mebile Application Development,” Handbook of .
research in mobile business: technical, methodological, and social
perspectives, p. 194, 2009.
Study type New approach
Name of methodology / | Composite Application Software Development Process Framework
approach (CASDPF)
Application in multi- Yes Platform
platform development independent
Details on defined / This framework for software development, as its name suggests, is
reported methodology / | made up of the waterfall, iterative, and agile approaches to software
approach development.
Additional resources on
methodology / No
approach description
Report on methodology
/ approach example No
implementation
Organizational aspects | The composite process framework combines the business rules and
on implementation processes that are involved in mobile application development.
A composite software development process framework retains the
Project management flexible aspects of the agile development approach and, at the same
aspects on time, facilitates exchange of information between project stakeholders
implementation (such as business users, developers and testers) during the project life-
cycle. Therefore, the CASDPF increases the chance of project success.
Data item Value Notes
Study identifier (Schwieren and Vossen, 2009)
Title A design and development methodology for mobile RFID applications

based on the ID-Services middleware architecture

Publication details

J. Schwieren and G. Vossen. “A design and development methodology
for mobile RFID applications based on the ID-Services middleware
architecture,” in Mobile Data Management: Systems, Services and
Middleware, 2009. MDM’09. Tenth International Conference on,
2009, pp. 260-266.

Study type New methodology
;e;r:lgacé{]methodology/ Design and Development Methodology for mobile RFID applications

Application in multi-
platform development

Yes

Details on defined /
reported methodology /
approach

Basic process model of the proposed design and development
methodology consists of three phases: Analysis, Design and
Implementation. The authors propose basic activities at very high
abstraction level.

Additional resources on

methodology / No

approach description

Report on methodology

/ approach example SPCS - Sentry Patrol Control System
implementation

266

Organizational aspects

; . None
on implementation
Project management
aspects on None
implementation
Data item Value Notes
Study identifier (Barnawi et al., 2012)
A Framework for Next Generation Mobile and Wireless Networks
Title Application Development using Hybrid Component Based
Development Model
A. Barnawi, M. Qureshi, and A. I. Khan. “A Framework for Next
Publication details Generation Mobile and Wireless Networks Application Development
using Hybrid Component Based Development Model,” Arxiv preprint
arXiv:1202.2515, 2012.
Study type New methodology
i;Tsazflmethodology/ Component Based Model for IP Multimedia Subsystem g)?glxﬁgl
Application in multi- Yes Platform
platform development independent
A new component-based development (CBD) model has
been proposed for an IMS-based mass mobile examination system
Details on defined / as a solution for the research problem. A CBD model is a process
reported methodology / | model that provides a framework to develop software from
approach previously developed components. The main phases of the
improved CBD are ‘Project Planning’, ‘Analysis’, ‘Adaptation,
Engineering & Integration’ and ‘Testing’.
Additional resources on The phases are described in detail. The document used in the process
methodology / .
L are also presented and described.
approach description
Report on methodology
/ approach example MObile Mass EXamination (MOMEX)
implementation
Organlzatlonal gspects None
on implementation
Project management
aspects on None
implementation
Data item Value Notes
Study identifier (Chen, 2004)
Title A methodology for building mobile computing applications
M. Chen, “A methodology for building mobile computing
Publication details applications,” International journal of electronic business, vol. 2, no. 3,
pp. 229-243, 2004.
Study type New methodology
Name of methodology / A Methodology for Building Enterprise-Wide Mobile Applications
approach
Application in multi- Yes Platform
platform development independent

Details on defined /
reported methodology /
approach

The five major phases for building mobile computing applications are
described as follows:

1. Develop enterprise-wide mobile strategies

2. Analyze the mobility of business processes

3. Develop an enterprise-wide mobile technical architecture

4. Build mobile applications

267

5. Deploy mobile applications

Additional resources on

methodology / Each of stated phases is described in more details.
approach description

Report on methodology

/ approach example No

implementation

Organizational aspects
on implementation

The proposed methodology in this paper is an attempt to identify some
guidelines and formulate a life-cycle approach to assisting enterprises
in planning and developing enterprise-wide mobile strategies and
applications.

Project management

aspects on No
implementation
Data item Value Notes
Study identifier (Xiong and Wang, 2010)
Title A new combined method for UCD and software development and case
study
Y. Xiong and A. Wang, “A new combined method for UCD and
Publication details software development and case study,” in Information Science and
Engineering (ICISE), 2010 2nd International Conference on, 2010, pp.
1-4.
Study type New methodology
Name of methodology / Inter-combined Model
approach
Application in multi- Yes Platform
platform development independent
Inter-combined Model aims to shorten the knowledge transfer from
Details on defined / designers t‘o developers. The model has four parts:
reported methodology / | Requirement 'analys1s and user 'study ' ‘
approach - Model establishment and function map specification
- Design and background engine implementation
- System integration and coding
Additional resources on Each phase was described in additional details, but not to the level of
methodology / " .
o activities, tasks, inputs and outputs.
approach description
Report on methodology
/ approach example Mobile Karaoke project.
implementation
Organizational aspects | Researchers stated that Inter-combined Model has positive effect on
on implementation human resource arrangement and cost reduction.
Project management
aspects on Some implications on human resource arrangements.
implementation
Data item Value Notes
Study identifier (Walkerdine et al., 2009)
Title A Tool Supported Methodology For Developing Secure Mobile P2P

Systems

Publication details

J. Walkerdine, P. Phillips, and S. Lock. “A Tool Supported
Methodology For Developing Secure Mobile P2P Systems,” in Mobile
peer-to-peer computing for next generation distributed environments:
advancing conceptual and algorithmic applications, 2009, pp. 283-301.

Study type New methodology
Name of methodology / PEPERS Development Methodology (PDM)
approach

268

Application in multi-
platform development

Yes

Details on defined /
reported methodology /
approach

PEPERS Development Methodology (PDM), is a tool-supported
methodology that aims to assist designers in developing secure mobile
P2P systems, and encourages them to consider specific mobile P2P
design issues from an early stage. The PDM is based on a 5-stage spiral
model.

* Requirements Elicitation

* Propose P2P system architecture

* Propose sub-system design

* System Implementation

* Verification and Validation

Additional resources on | BANKSEC project

methodology / P2P ARCHITECT project
approach description PEPERS project

Report on methodology

/ approach example Case study - The Security firm pilot
implementation

Organizational aspects
on implementation

Workshops were held with local mobile phone software companies to
obtain additional third-party feedback. These companies were typically
small in size, and so provided a different perspective to the software
development process. Overall the developers found the PDM and
supporting tool to offer significant help in guiding the development of
their secure mobile P2P applications. The smaller industrial companies
were less sure about its use to them, mainly because they do not have
the resources to follow a traditional development process and time to
market is critical to them.

Project management

aspects on None
implementation
Data item Value Notes
Study identifier (Cuccurullo et al., 2011)
. A Visual Approach supporting the Development of MicroApps on
Title .
Mobile Phones
S. Cuccurullo, R. Francese, M. Risi, and G. Tortora, “A Visual
. . Approach supporting the Development of MicroApps on Mobile
Publication details PII:(I)Jnes,” in I?rr())c. ofg3rd Internati%nal Symposiumr())lil End-User
Development, Brindisi, Italy, 2011, pp. 289-294.
Study type New methodology
i;)r?gac;}f]methodology / MicroApp visual approach
Application in multi- Current
platform development | Yes implement.
in Android

Details on defined /
reported methodology /
approach

In this paper, we present a visual approach to enable End-Users to
compose visually their own applications directly on their mobile
phone. It is composed of:

- MicroApp Definition

- MicroApp Modeling

- MicroApp Deployment

Additional resources on
methodology /
approach description

No

Report on methodology
/ approach example
implementation

Organizational aspects

None

User centric

269

on implementation method.
Project management
aspects on None
implementation
Data item Value Notes
Study identifier (Nystrom, 2011)
. Agile Solo - Defining and Evaluating an Agile Software Development
Title .
Process for a Single Software Developer
oy . A. Nystrom. “Agile Solo - Defining and Evaluating an Agile Software | Master
Publication details Deve}llopment Pr%)cess for a Single éoftware Devel(g)per,” %01 l. thesis
Study type New methodology / Approach usage
Name of methodology / Agile Solo / Test Driven Development
approach
Application in multi- Yes
platform development
The development process was intended to be helpful for any single
programmer in any project. The defined practices are:
Details on defined / - Weekly Presentations and Updated Priorities, Monthly Deliveries
reported methodology / and Customer Test, Planning an iteration, Test Driven
approach Development, The Pomodoro Technique, Peer Code Review,
Auto Code Review, Visual Control, Modeling, Compensating for
pair programming, Iteration Task Management
Additional resources on
methodology / No
approach description
Report on methodology
/ approach example Case study
implementation
Organizational aspects Single
? . No
on implementation developer
Project management
aspects on Yes. Agile project management.
implementation
Data item Value Notes
Study identifier (Zeidler et al., 2008)
Title An integrated product development process for mobile software
C. Zeidler, C. Kittl, and O. Petrovic, “An integrated product
Publication details development process for mobile software,” International Journal of
Mobile Communications, vol. 6, no. 3, pp. 345-356, 2008.
Study type New methodology
Name of methodology / An Integrated Product Development Process for Mobile Software
approach
Application in multi- Yes Platform
platform development independent

Details on defined /
reported methodology /
approach

Based on the extensive research coverage on the new product
development process, we have adapted a holistic product development
approach for mobile services and applications. The resulting process
considers a more dynamic competitive environment and the use of
common tools for strategic analysis and product development. Consists
of five pages:

- Idea generation

- Business model development

- Legal aspects

- Market research and user experience design

270

- Implementation

Additional resources on

Phases are described at relatively the high level of abstraction.

methodology / _ Although, the activities are enumerated.
approach description

Report on methodology

/ approach example Case study: HEROLD mobile
implementation

Organizational aspects
on implementation

The process included the organizational aspects.

Project management

aspects on The process includes the project management aspects.
implementation
Data item Value Notes
Study identifier (Biswas et al., 2006)
Title Assessment of mobile experience engine, the development toolkit for
context aware mobile applications
A. Biswas, T. Donaldson, J. Singh, S. Diamond, D. Gauthier, and M.
Longford, “Assessment of mobile experience engine, the development
Publication details toolkit for context aware mobile applications,” in Proceedings of the
2006 ACM SIGCHI international conference on Advances in computer
entertainment technology, New York, NY, USA, 2006.
Study type Methodology usage
S;)r?(t):a(;flmethodology / New media application prototyping
Application in multi- Yes Platform
platform development independent
Prototyping with multiple iterations is an expensive solution to break
Details on defined / this deadlock. The key bottlenecks in such prototyping are:
reported methodology / | contextual/user behavior research; design idea generation; design
approach transfer from designer/artist to the technologists; system design,
development and testing; and situated validation
Additional resources on
methodology / No
approach description
Report on methodology | Trickster game application
/ approach example Deer & Bear game application
implementation Situated editor mobile application
Organlzatlonal 'flspects None
on implementation
Project management
aspects on None
implementation
Data item Value Notes
Study identifier (Maia et al., 2010)
Title Considerations on developing mobile applications based on the

Capuchin project

Publication details

M. E. F. Maia, C. Celes, R. Castro, and R. M. C. Andrade.
“Considerations on developing mobile applications based on the
Capuchin project,” in Proceedings of the 2010 ACM Symposium on
Applied Computing, New York, NY, USA, 2010, pp. 575-579.

Study type New methodology

Name is not
Name of methodology / Development process of Caputchin applications formally
approach defined
Application in multi- No Platforms

271

platform development supporting
Flash only
Paper shows an initial development process for mobile applications
Details on defined / based on the Capuchig project. Thg defmed phases.are:
reported methodology / | Application requlrements. elicitation and user interface draft
approach - Implement and test the View component based on Flash Ul
- Flash/JME division and data transfer format specification
- Implement the controller and model components
Additional resources on
methodology / No
approach description
Report on methodology
/ approach example Case study: Weather application
implementation
Organlzatlonal gspects Some organizational aspects are discussed
on implementation
Project management
aspects on None
implementation
Data item Value Notes
Study identifier (Shiratuddin and Sarif, 2009)
. Construction of Matrix and eMatrix for Mobile Development
Title .
Methodologies
N. Shiratuddin and S. M. Sarif, “Construction of Matrix and eMatrix
o . for Mobile Development Methodologies,” in Handbook of research in
Publication details) .
mobile business: technical, methodological, and social perspectives,
2nd ed., IGI Global, 2009, pp. 113-126.
Study type Methodology usage
Mobile-D
Name of methodology / | Mobile RAD
approach Dynamic Channel Model
Mobile Engineering (MobE)
Application in multi- Yes
platform development
Details on defined / The study compares the mentioned methodologies in systematic
reported methodology /
approach manner.
Additional resources on
methodology / No
approach description
Report on methodology
/ approach example Yes. The methodologies are compared based on example projects.
implementation
Organlzatlonal gspects Partially included in comparison.
on implementation
Project management
aspects on Partially included in comparison.
implementation
Data item Value Notes
Study identifier (Rahimian and Ramsin, 2008)
Title Designing an agile methodology for mobile software development: A

hybrid method engineering approach

Publication details

V. Rahimian and R. Ramsin, “Designing an agile methodology for
mobile software development: A hybrid method engineering
approach,” in Research Challenges in Information Science, 2008. RCIS

272

2008. Second International Conference on, 2008, pp. 337-342.

Study type New methodology
Name of methodology / . . Formally
approach Agile Methodology for Mobile Software Development not defined

Application in multi-
platform development

Yes

Details on defined /
reported methodology /
approach

Paper identifies the main requirements of a mobile software
development methodology, based on which a highlevel methodology
framework was built using the Hybrid Methodology Design approach.
Proposed methodology is an agile risk-based methodology, highly
influenced by the Adaptive Software Development method and New
Product Development approaches.

Additional resources on

methodology / No
approach description

Report on methodology

/ approach example No
implementation

Organizational aspects
on implementation

Included in methodology.

Project management

aspects on Agile project management should be used.

implementation

Data item Value Notes
Study identifier (Bergstrom and Engvall, 2011)

Title Development of handheld mobile applications for the public sector in

Android and i0S using agile Kanban process tool

Publication details

F. Bergstrom and G. Engvall, “Development of handheld mobile
applications for the public sector in Android and iOS using agile
Kanban process tool,” 2011.

Study type Approach usage
Name of methodology / Kanban
approach

Application in multi- Yes

platform development

Details on defined /
reported methodology /
approach

Kanban a lean approach to agile software development and a part of
the lean thinking. The approach is invented by Toyota which used this
process for the visual and physical signaling system that ties together
the whole Lean Production System. However, Kanban in software
development can be divided into three main parts.

- Visualize the workflow

- Limit work in process

- Measure the lead time

Additional resources on
methodology /
approach description

No

Report on methodology
/ approach example
implementation

Prototype application

Organizational aspects
on implementation

Not well defined.

Project management
aspects on
implementation

Not well defined.

273

Data item Value Notes
Study identifier (Jeong et al., 2008)
. Development Process of Mobile Application SW Based on Agile
Title
Methodology
Y.J. Jeong, J. H. Lee, and G. S. Shin, “Development Process of
Publication details Mobile Application SW Based on Agile Methodology,” in Advanced
Communication Technology, 2008. ICACT 2008. 10th International
Conference on, 2008, vol. 1, pp. 362—-366.
Study type New Methodology
Name of methodology / MASAM methodology
approach
Application in multi- Yes
platform development
The objective of this proprietary methodology is to provide the process
for developing the application SW operated on mobile platform. Paper
Details on defined / Standard process of THE MASAM is comprised of 4 phases: per -
: written 1n
reported methodology / | - Development Preparation Phase,
approach - Embodiment Phase, IEOOTI‘ h
- Product developing Phase, and nEHsh.
- Commercialization Phase.
Additional resources on
methodology / The phases are briefly described.
approach description
Report on methodology
/ approach example No.
implementation
Organizational gspects Partially covered.
on implementation
Project management
aspects on Agile approach should be used.
implementation
Data item Value Notes
Study identifier (Korkala and Abrahamsson, 2004)
. Extreme programming: Reassessing the requirements management
Title .
process for an offsite customer
M. Korkala and P. Abrahamsson, “Extreme programming: Reassessing
Publication details the requirements management process for an offsite customer,”
Software Process Improvement, pp. 12-22, 2004.
Study type Methodology usage
Name of methodology / Extreme Programming, Mobile-D
approach
Application in multi- Yes Platform
platform development independent

Details on defined /
reported methodology /
approach

Brief description is provided on executed process:

- Identify essential requirements

- Evaluation and implementation of enhanced User Storries
- Implement, Report and Feedback

- Iteration Acceptance

Additional resources on

methodology / No

approach description

Report on methodology

/ approach example zOmbie project
implementation

Organizational aspects No

on implementation

Project management Agile approach used.

274

aspects on

implementation
Data item Value Notes
Study identifier (Gal and Topol, 2005)
Title Experimentation of a Game Design Methodology for Mobile Phones
Games
.. . V. Gal and A. Topol, “Experimentation of a Game Design
Publication details Methodology forII)\/Iobile Ilzhones Games,” 2005. :
Study type New methodology
Name of methodology / 2TUP - 2 Tracks Unified Process
approach
Application in multi- Yes Platform
platform development independent
Paper presents the 2TUP method, “2 Tracks Unified Process”. It is
based upon a SPEM modeling architecture in order to conceive elegant
. and adapted solutions but also to take advantage of the new techniques
Details on defined /
and technologies. 2TUP is a unified process (i.e. a software
reported methodology / . . .
approach development process} built on the UML modeling language. According
to 2TUP the process is modeled by two branches (tracks):
- A functional track (capitalization of knowledge trade)
- A technical track (re-use of a technical knowhow).
Additional resources on
methodology / The fair description is given on implementation on own project.
approach description
Report on methodology
/ approach example Case study.
implementation
Organizational aspects
; . No
on implementation
Project management
aspects on No
implementation
Data item Value Notes
Study identifier (Kim, 2008)
Title Frameworks of Process Improvement for Mobile Applications
Publication details H. K. Kim, “Frameworks of Process Improvement for Mobile
Applications,” Engineering Letters, vol. 16, 2008.
Study type Approach usage
Name of methodology / Model Driven Development
approach
Application in multi- Yes
platform development
Details on defined / Paper goes through mobile development process and architectural
reported methodology / | structures and analysis of these with empirical mobile application Poor paper
structure.
approach development.
Additional resources on
methodology / No

approach description

Report on methodology

/ approach example Case study.
implementation

Organizational aspects No

on implementation

Project management No

275

aspects on

implementation

Data item Value Notes

Study identifier (Scharff, 2011)

Title Guiding global software development projects using Scrum and Agile
with quality assurance
C. Scharff, “Guiding global software development projects using

Publication details Scrum and Agile with quality assurance,” in Software Engineering
Education and Training (CSEE&T), 2011 24th IEEE-CS Conference
on, 2011, pp. 274-283.

Study type Methodology usage

Name of methodology /
Scrum

approach

Application in multi- Yes

platform development

Details on defined / The paper describes the usage of Scrum in distributed development

reported methodology / | teams as well as for development for different target platforms. The

approach developers are students.

Additional resources on

methodology / Brief description of methodology.

approach description

Report on methodology | Android application

/ approach example Blackberry application

implementation Java ME Team

Organlzatlonal gspects Partially covered.

on implementation

Project management

aspects on Partially covered.

implementation

Data item Value Notes

Study identifier (Abrahamsson et al., 2005b)

Title Improving business agility through technical solutions: A case study on

test-driven development in mobile software development

Publication details

[1]P. Abrahamsson, A. Hanhineva, and J. Jddlinoja, “Improving
business agility through technical solutions: A case study on test-
driven development in mobile software development,” in Business
Agility and Information Technology Diffusion, 2005.

Study type Approach usage
Name of methodology / Test Driven Development
approach

Application in multi-
platform development

Yes

Details on defined /
reported methodology /
approach

Thorough research was performed on empirical evidence of using the
Test Driven Development in mobile application development process.

Additional resources on
methodology /
approach description

Test Driven Development described.
The references on other researches are given.

Report on methodology

/ approach example Case study.
implementation

Organlzatlonal gspects Included.
on implementation

Project management Included.

276

aspects on

implementation
Data item Value Notes
Study identifier (Ortiz and Prado, 2010)
. Improving device-aware Web services and their mobile clients through
Title .)
an aspect-oriented, model-driven approach
G. Ortiz and A. G. D. Prado, “Improving device-aware Web services
Publication details and their mobile clients through an aspect-oriented, model-driven
approach,” Information and Software Technology, vol. 52, no. 10, pp.
1080 — 1093, 2010.
Study type Approach usage.
Name of methodology / Model Driven Development
approach
Application in multi- Yes Platform
platform development independent
Details on defined / Aspect-Oriented Programming and model—driven de\{elopment have
reported methodology / been usgd to reducg both th.e impact of service qu client code ’
adaptation for multiple devices as well as to facilitate the developer’s
approach task.
Additional resources on
methodology / No
approach description
Report on methodology
/ approach example Case study
implementation
Organizational aspects
” . No
on implementation
Project management
aspects on No
implementation
Data item Value Notes
Study identifier (Kaariainen et al., 2004)
Title Improving requir@ments management in extreme programming with
tool support - an improvement attempt that failed
J. Kaariainen, J. Koskela, P. Abrahamsson, and J. Takalo, “Improving
oy . requirements management in extreme programming with tool support -
Publication details anqimprovement attgempt that failed,” iﬁ EﬁromicrogCOnference, 5804.
Proceedings. 30th, 2004, pp. 342 — 351.
Study type Methodology usage
Name of methodology / Extreme Programming
approach
Application in multi- Yes Platform
platform development independent

Details on defined /
reported methodology /
approach

The paper mainly focusses on other aspects than on methodology itself.

Additional resources on
methodology /
approach description

No

Report on methodology
/ approach example
implementation

zOmbie project

Organizational aspects
on implementation

No

277

Project management

aspects on No
implementation
Data item Value Notes
Study identifier (Salo, 2004)
. Improving software process in agile software development projects:
Title .
results from two XP case studies
0. Salo, “Improving software process in agile software development
Publication details projects: results from two XP case studies,” in Euromicro Conference,
2004. Proceedings. 30th, 2004, pp. 310-317.
Study type Methodology usage
Name of methodology / Extreme Programming
approach
Application in multi- Yes Platform
platform development independent
Details on defined /
reported methodology / | The paper mainly focusses on other aspects than on methodology itself.
approach
Additional resources on
methodology / No
approach description
Report on methodology eXpert project
/ approach example . .
. . zOmbie project
implementation
Organlzatlonal asp ects Included in the analysis.
on implementation
Project management
aspects on Included in the analysis.
implementation
Data item Value Notes
Study identifier (Su and Scharff, 2010)
Title Know Yourself and Beyond: A Global Software Development Project
Experience with Agile Methodology
S. H. Su and C. Scharff, “Know Yourself and Beyond: A Global
Publication details Software Development Project Experience with Agile Methodology,”
in Proceedings of Student-Faculty Research Day, CSIS, 2010.
Study type Methodology usage
Name of methodology /
Scrum
approach
Application in multi- Yes Platform
platform development independent
Details on defined / . .
The paper describes the usage of Scrum process in a case study
reported methodology /
development performed by students.
approach
Additional resources on
methodology / Scrum was partially described.

approach description

Report on methodology
/ approach example
implementation

Case study: TargetFirstGrade project

Organizational aspects
on implementation

Partially included

Project management
aspects on

Included

278

implementation

Data item Value Notes
Study identifier (Shiratuddin and Sarif, 2008)
Title m’-Matrix: Mobile Application Development Tool
N. Shiratuddin and S. M. Sarif, “m d-Matrix: Mobile Application
Publication details Development Tool,” Proceedings of the International MultiConference
of Engineers and Computer Scientists, vol. 1, 2008.
Study type Methodology usage
Mobile-D
Name of methodology / | Mobile RAD
approach Dynamic Channel Model
Mobile Engineering (MobE)
Application in multi- Yes Platform
platform development independent
Details on defined / Paper describes the tool that helps novices to choose development
reported methodology / | methodology. In that manner, the four mentioned methodologies are
approach compared.
Additional resources on
methodology / No
approach description
Report on methodology
/ approach example Yes. The methodologies are compared based on example projects.
implementation
Organizational asp ects Included in analysis.
on implementation
Project management
aspects on Included in analysis.
implementation
Data item Value Notes
Study identifier (Saifudin et al., 2011)
Title MMCD Framework and Methodology for Developing m-Learning

Applications

Publication details

A. W. S.N. Saifudin, B. S. Salam, and C. M. H. L. Abdullah, “MMCD
Framework and Methodology for Developing m-Learning
Applications,” presented at the International conference on Teaching &
Learning in Higher Education (ICTLHE 2011), 2011.

Study type New methodology
Name of methodology / MMCD Methodology
approach

Application in multi- Yes

platform development

Details on defined /
reported methodology /
approach

The proposed MMCD Methodology focuses only m-Learning
applications. It comprises of five main components:

- application idea creation stage,

- structure analysis stage,

- process design stage,

- main function development stages, and

- testing stage

Additional resources on

methodology / Stages are described on abstract level
approach description

Report on methodology

/ approach example M-Nations m-learning application
implementation

Organizational aspects

No

279

on implementation

Project management

aspects on No
implementation
Data item Value Notes
Study identifier (Rupnik, 2009)
Title Mobile Applications Development Methodology
R. Rupnik, “Mobile Applications Development Methodology,” in
Publication details Handbook of research in mobile business: technical, methodological,
and social perspectives, Second Edition., B. Unhelkar, Ed. IGI Global
Snippet, 2009.
Study type New methodology
Name of methodology / . .
Mobile Application Development Methodology
approach
Application in multi- Yes
platform development
The book chapter defines new methodology and roughly defines the
main phases, but it lacks the precise and detailed description on
Details on defined / methodology itself. The defined phases are:
reported methodology / | - strategy,
approach - analysis,
- design
- implementation
Additional resources on
methodology / Some elements of the stated phases are described.
approach description
Report on methodology
/ approach example Two projects.
implementation
Organizational aspects
; . No.
on implementation
Project management
aspects on No.
implementation
Data item Value Notes
Study identifier (Pauca and Guy, 2012)
Title Mobile apps for the greater good: a socially relevant approach to

software engineering

Publication details

V. P. Pauca and R. T. Guy, “Mobile apps for the greater good: a
socially relevant approach to software engineering,” in Proceedings of
the 43rd ACM technical symposium on Computer Science Education,
New York, NY, USA, 2012, pp. 535-540.

Study type Methodology usage
Name of methodology /
Scrum
approach
Application in multi- Yes

platform development

Details on defined /
reported methodology /
approach

Paper only mentions the usage of Scrum and nothing else.

Additional resources on
methodology /
approach description

No

Report on me