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Zagreb, 2022



FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA
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Abstract

Components of many systems, structures, and buildings, require constant monitoring and in-

spections because of possible defect occurrences due to constant usage and material stress. To

inspect the material and prevent component failure, a wide range of non-destructive evaluation

(NDE) techniques can be applied. Ultrasonic testing (UT) is one of the NDE techniques that is

commonly used today due to its many advantages. UT is quite simple to employ since only one-

sided access to the material is needed, and the internal structure of a material can be inspected

with the ability to precisely localize defects within the inspected component. Acquisition of

UT data is nowadays mostly performed in an automated fashion, using the robotic manipulator.

The manipulator moves the ultrasonic transducer along the surface of the material. At each

position, the ultrasonic probe (transducer) transmits and receives ultrasonic waves. In case of

a defect presence, a fraction of the transmitted waves will bounce off the defect back to the

probe, and by analyzing the received signal it is possible to precisely determine the defect’s

position and size. The analysis of the acquired data is currently done manually, making the

process heavily reliant on the personnel’s previous experience and knowledge. Manual analy-

sis of the data can lead to error, especially when a large amount of data needs to be inspected

and the repetitive work leads to fatigue of the inspectors. To overcome these problems, many

researchers have proposed methods for the automated analysis of UT data. The main problem

with the automated analysis is the irregularity of the acquired data, which makes it impossible

to write an algorithmic description of the analysis process as done by the human inspector. In

recent years, deep learning-based approaches emerged as one of the promising directions in the

development of automated UT data analysis solutions. Deep learning approaches can implicitly

learn the important features from the large datasets of labeled data. While in some cases it is

possible to apply existing deep learning architectures for the analysis of UT data, some domain-

specific challenges occur and limit the performance of such methods. For example, extreme

aspect ratios of the defects in ultrasonic images limit the precision that can be achieved by the

existing one-stage object detectors. Furthermore, when detecting a defect on an ultrasonic im-

age, it would be useful to use additional information available from the surrounding area but

a method that simultaneously processes several ultrasonic images was not yet proposed in the

literature. In this thesis, several solutions and novel architectures are proposed in order to solve

the aforementioned challenges. All of the proposed methods were tested on an in-house dataset

with over 4000 ultrasonic B-scans. Experimental results confirm that the precision can be sig-

nificantly improved by developing a novel deep learning architecture specifically designed for

defect detection from ultrasound images.

Keywords: ultrasound image analysis, non-destructive evaluation, automated defect detec-

tion, object detection, data augmentation, image generation, deep learning



Prošireni sažetak

Metode zasnovane na dubokom učenju za detekciju defekata iz ultrazvučnih slika

Nerazorno ispitivanje je skup tehnika koje se upotrebljavaju za inspekciju materijala ili di-

jela nekog sustava bez nanošenje štete ispitivanoj komponenti. Brojne takve tehnike su razvi-

jene tijekom godina i često se koriste prilikom inspekcije elektrana, zrakoplova, cjevovoda i

sličnih konstrukcija gdje je nužno na vrijeme detektirati defekte. Neke od metoda nerazornog

ispitivanja su metoda vrtložnih struja, vizualne metode, radijacijske metode, toplinske metode

te ultrazvučno testiranje. Nekada se koriste i kombinacije različitih metoda kako bi se povećala

pouzdanost inspekcije. Ultrazvučno testiranje (UT) ističe se med̄u nabrojanim metodama zbog

brojnih prednosti. Za početak, dovoljan je pristup samo jednoj strani materijala, a metoda sve-

jedno daje uvid u internalnu strukturu i stanje materijala. Ultrazvučnim testiranjem se uglavnom

dobiju podaci s visokim omjerom signala i šuma što omogućuje preciznu lokalizaciju defekta

i odred̄ivanje njegovih dimenzija. Ultrazvučno testiranje bazira se na generiranju i detekciji

ultrazvučnih valova unutar testnog objekta. Ako je defekt prisutan u materijalu, njegova gus-

toća se razlikuje od okolnog područja pa će to uzrokovati odbijanje dijela ultrazvučnih valova.

Sonda će registrirati reflektirane ultrazvučne valove te se iz informacija o svojstvima materijala

može izračunati točna dubina na kojoj se defekt nalazi. Dio odaslanih ultrazvučnih valova se

takod̄er odbija od nepravilnosti u materijalu zbog čega se pojavljuje šum. Kako bi se povećala

pouzdanost pronalaska defekta, prikupljanje ultrazvučnih podataka se danas uglavnom obavlja

korištenjem sondi s faznim poljima (engl. phased array). Sonde s faznim poljima istovremeno

odašilju ultrazvučne valove pod raznim kutovima (npr. od 45° do 79° s rezolucijom od 2°). Ko-

rištenjem ovog tipa sondi, smanjuje se vjerojatnost da se valovi neće odbiti od plosnatog defekta

postavljenog paralelno u odnosu na putanju ultrazvučnih valova. Problem je što se količina po-

dataka povećava korištenjem ovog tipa sonde pa je za analizu ovakvih podataka potrebno puno

vremena. Prikupljeni ultrazvučni podaci se mogu prikazati u raznim formatima. Najjednos-

tavniji prikaz se zove A-sken i on pokazuje količinu primljene energije kao funkciju vremena

(ili dubine). Jedan A-sken se dobije kada sonda generira i primi jedan ultrazvučni val. Kon-

tinuiranim pomicanjem sonde po površini materijala dobije se niz A-skenova. Niz A-skenova

uglavnom se prikazuje u obliku slike koja se zove B-sken. B-sken se dobije pretvorbom am-

plituda A-skena u vrijednosti piksela. Kako bi se ispitao cjelokupni volumen materijala, sonda

se pomakne u stranu svaki put se prikupi jedan B-sken. Na ovaj način se tijekom inspekcije

prikupi niz B-skenova pri čemu svaki B-sken odgovara odred̄enom presjeku materijala. Uz

spomenute, postoje i brojni drugi načini prikaza prikupljenih podataka (C-sken, S-sken, itd.),

ali ovi spomenuti su najčešće korišteni. Inspektori ručno pregledavaju prikupljene podatke kako

bi utvrdili eventualnu prisutnost defekata u materijalu. Inspektori pritom istovremeno gledaju

u razne prikaze podataka kako bi potvrdili svoju odluku. Često je za ispravnu odluku potrebno
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pogledati i okolna područja oko sumnjive lokacije ili tu istu lokaciju pogledati pod drugim

kutom. Količina podataka koja se prikupi tijekom stvarne inspekcije je ogromna zbog čega je

analiza UT podataka jako zamorna i teška. Nadalje, većina slika uopće ne sadrži defekte tako da

inspektori većinu vremena provode gledajući u monotone podatke. Ovaj postupak je jako repet-

itivan i naporan za ljude pa zbog umora može doći do pogreške u analizi podataka odnosno ne

primjećivanja defekta. Automatizirani sustav bi mogao ovaj zadatak izvoditi puno brže, a do-

biveni rezultati bi bili konzistentni. Bilo bi dovoljno da takav sustav pronad̄e sumnjive dijelove

podataka, a ljudski inspektor bi zatim mogao pregledati taj manji izdvojeni dio i provesti daljnju

analizu po potrebi.

Puno truda je uloženo u razvoj metoda koje bi mogle asistirati inspektorima prilikom analize

UT podatka. Rani pokušaju se uglavnom oslanjaju na ekstrakciju značajki valićnom transfor-

macijom i klasifikacijom ekstrahiranih značajki korištenjem strojnog učenja. Ovakvim pris-

tupom se za svaki A-sken utvrdi sadrži li on signal defekta ili ne. Kao klasifikator se najčešće

koriste umjetne neuronske mreže ili stroj potpornih vektora. Informacije iz A-skena se mogu

izvući i korištenjem drugih transformacija ili kombinacijom raznih transformacija. Neki autori

se za cjelokupni proces analize oslanjaju na nadzirano učenje korištenjem umjetnih neuronskih

mreža. U tom slučaju potrebno je imati dovoljno veliki skup podataka iz kojega model onda

može implicitno naučiti bitne značajke i na temelju njih razlikovati defektne od normalnih A-

skenova. Za ovakav pristup posebno je popularna specijalna vrsta neuronske mreže koja se zove

konvolucijska neuronska mreža (engl. convolutional neural network). Konvolucijske neuronske

mreže mogu direktno iz podataka naučiti koje informacije su bitne pa se ne treba provoditi ručno

dizajnirana ekstrakcija značajki. Konvolucijske neuronske mreže su pogotovo efikasne prilikom

analize jednodimenzionalnih ili dvodimenzionalnih struktura podataka kao što su sekvence ili

slike. Bez obzira na način analize pojedinog A-skena, često je teško provesti klasifikaciju bez da

se u obzir uzmu i okolni A-skenovi. Glavi razlog je sličnost signala uzrokovanih geometrijom

komponente ili šumom i signala nastalog refleksijom od defekta.

Zbog toga se osim metoda za analizu A-skenova, razvijaju i metode za analizu B-skenova.

Dugo vremena metode za analizu slika nisu bile dovoljno razvijene kako bi se uspješno de-

tektirali defekti na B-skenovima. Situacija se nedavno poboljšala razvojem raznih arhitektura

dubokih neuronskih mreža, te procedura korištenih za njihovo treniranje. Postoji mnogo javno

dostupnih skupova slika na kojima se testiraju generalne sposobnosti predloženih arhitektura za

razne zadatke kao što su klasifikacija slike, detekcija i praćenje objekata na slikama, semantička

segmentacija, itd. Tijekom godina se poboljšala efikasnost predloženih arhitektura te je mnogim

predloženim tehnikama kao što su augmentacija podataka i prijenosno učenje, omogućena prim-

jena postojećih modela u novim domenama. Posljedično se povećao i broj radova koji duboke

neuronske mreže upotrebljavaju za analizu B-scanova dobivenih ultrazvučnim testiranjem. Ako

je dostupan dovoljno veliki skup slika, za detekciju defekata mogu su primijeniti postojeći de-
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tektori koji se često dijele u dvije obitelji: jednofazni (engl. one-stage) i dvofazni (engl. two-

stage). Dvofazni detektori su u vrijeme pojavljivanje postizali bolje rezultate od jednofaznih, ali

su bili sporiji. Kao što i samo ime nalaže kod njih se detekcije provodi u dvije faze. U prvoj fazi

se na slici identificiraju područja koja potencijalno sadrže objekte od interesa. U Drugoj fazi

se odbacuju područja za koja se odredi da ne sadrže objekte, a za preostale objekte se izračuna

njihova točna lokacija odred̄ena graničnim okvirom. Gledano na nekoj apstraktnoj razini, može

se reći da su dvofazni detektori nastali iz tradicionalnog pristupa gdje se prvo nekakvim seg-

mentacijskim algoritmom poput selektivnog pretraživanja odrede regije od interesa, a zatim se

provodi klasifikacija. Ovakav pristup je pogotovo prikladan kada se analiziraju slike u kojima

su prikazane kompleksne pozadine ili objekti. Takve slike su uobičajene u javno dostupnim

skupovima slika koji se koriste za evaluaciju novih metoda, ali kod ultrazvučnih slika to nije

slučaj. Jednofazni detektori detekciju provode u jednoj fazi, koristeći gustu mrežu preddefini-

ranih oblika za koje model pokušava utvrditi pripadaju li nekom od objekata koje je potrebno

detektirati. Kada se za neki od predodred̄enih oblika, koji se još u literaturi nazivaju i sidreni

okviri (engl. anchor boxes, priors, or default boxes), zaključi da sadrži objekt, njegov oblik se

dodatnom transformacijom modificira tako da bolje enkapsulira objekt kojeg je potrebno de-

tektirati. Jednofazni detektori su u početku bili brži od dvofaznih, ali manje precizni. Razlika

u preciznosti s vremenom je nestala, a danas je većina novo predloženih suvremenih detektora

objekata (EfficientDet, YOLOv5) jednofaznog tipa.

Postojeće detektore objekata moguće je primijeniti za detekciju defekata na B-skenovima,

ali će zbog raznih problema koji se pojavljuju preciznost takvih pristupa biti ograničena. Neki

od problema koji se pojavljuju su mali skup slika za treniranje i evaluaciju, šumovite slike na

kojima je teško razlikovati signal defekta od signala uzrokovanog geometrijom ili šumom te

ekstremni omjeri defekata. Prvi problem utječe na veličinu modela kojeg je moguće istrenirati.

U običajnim situacijama, ako imamo dovoljno veliki skup slika moguće je povećavati model

dodavanjem novih slojeva i povećavanjem broja filtera sve dok model ne dosegne dovoljan

kapacitet za uspješno obavljanje zadatka. Ako je skup podataka manji, potrebno je smanjiti i

model, kako bi se svi parametri (težine) modela mogle naučiti. Korištenje kompleksnih modela,

čak i kada je dostupna baza slika mala, donekle je moguće kada se koristi tehnika prijenosnog

učenja (engl. transfer learning) i augmentacija podataka uz pomoć koje umjetno povećamo broj

dostupnih slika. Ovi pristupi med̄utim i dalje imaju ograničenja i nerealno je očekivati da se

desetci milijuna parametara uspješno mogu izračunati iz ograničenog broja primjera za učenje.

Jedno od rješenja ovog problema je izrada novog modela s manje parametara od modela koji se

učestalo koriste za zadatke na javno dostupnim skupovima slika i koji su namijenjeni za treni-

ranje na milijunima slika. Dobrim dizajniranjem nove arhitekture potencijalno se može dobiti

veća preciznost i mogućnost treniranje čak i kada je baza podataka mala. Model i dalje mora

imati dovoljan kapacitet kako bi mogao raditi sa šumovitim podacima što je prije u radu istaknut
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kao drugi problem. Treći problem je da se tijekom treniranje detektora objekata baziranih na

dubokom učenju koriste samo sidreni okviri koji dobro enkapsuliraju objekte koje je potrebno

detektirati. Zbog toga je namještanje hiperparametara sidrenih okvira jako bitan i težak zadatak.

Predloženi oblici sidrenih okvira računaju se iz definiranih omjera i faktora skaliranja. Iako za

neke modele postoje algoritmi za izračun tih vrijednosti, za neke suvremene detektore to je pi-

tanje otvoreno i još nije jednoznačno odred̄en najbolji način za postavljanje tih vrijednosti. Ako

početne vrijednosti nisu dobro postavljene, treniranje je otežano a krajnja preciznost detektora

limitirana.

Na početku ovog doktorskog rada, napravljena je usporedba suvremenih detektora objekata

i uspored̄ene su njihove performanse. Predložena je nova procedura za izračun hiperparametara

sidrenih okvira kod EfficientDet arhitekture. Eksperimentima je potvrd̄eno da se korištenjem si-

drenih okvira dobivenih predloženom procedurom ostvaruje značajno veća preciznost. U idućoj

iteraciji je predložena potpuno nova arhitektura. Implementiran je novi ekstraktor značajki uz

pomoć kojega se postižu još bolji rezultati i to uz značajno ubrzanje u usporedbi s prethod-

nom arhitekturom. Novi detektor ima i modificiranu glavu za detekciju koja je dizajnirana

specifično za detekciju objekata s ekstremnim omjerima stranica. Nova arhitektura na ispit-

noj bazi podataka ultrazvučnih B-skenova ostvaruje veću preciznost od svih drugih testiranih

arhitektura. Iako je utjecaj prethodno navedenih problema minimiziran implementacijom ove

arhitekture , preciznost detektora koji pojedinačno analizira B-skenove i dalje je djelomično

ograničena. Nekada je jednostavno nemoguće razaznati je li neki signal nastao odbijanjem od

defekta ili pak zbog odbijanja od geometrije ispitivane komponente ili šuma. Kada ljudski in-

spektori provode analizu, njihova odluka ovisi i o okolnim područjima (susjedni B-skenovi) ili

o prikazima istog područja dobivenima snimanjem pod drugim kutom (najčešće korištenjem

sonde s faznim poljima). Kako bi se dodatno poboljšala preciznost detektora defekata, osmišl-

jeno je i implementirano nekoliko novih arhitektura za istovremenu analizu više ultrazvučnih

B-skenova.

Jedna od predloženih arhitektura se koristi za ubrzanje automatske analize u realnim situaci-

jama gdje je potrebno analizirati podatke dobivene skeniranjem metalnog bloka sondom s faznim

poljima. Predložena arhitektura, uz minimalne gubitke preciznosti, istovremeno analizira slike

pod svim kutovima. To je izvedeno tako što se prvo provede dinamičko spajanje slika, a za-

tim detektira defekte u rezultantnoj slici. Težina pojedine ulazne slike, odred̄uje se korištenjem

submodela koji uz pomoć nekoliko 3D konvolucijskih slojeva i mehanizmom pažnje odred̄uje

važnost pojedine ulazne slike.

Druga predložena arhitektura za analizu sekvenci ultrazvučnih slika, koristi se za poboljšanje

preciznosti detektora. Poboljšanje je ostvareno proširenjem ulaza u model u 3D volumen. Um-

jesto analize jednog B-skena, ovaj model analizira sekvencu B-skenova koji prikazuju susjedne

presjeke materijala. Za početak je pokazano da naivan pristup gdje se ulaz u postojeće detek-
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tore samo proširi iz trokanalne slike u devet-kanalnu sliku ne dovodi do poboljšanja. Zatim su

predložena dva nova pristupa koja su bazirana na izračunu značajki iz pojedine ulazne slike,

njihovom spajanju u visokodimenzionalnom prostoru značajki te provod̄enju detekcije iz do-

bivenih značajki. Za spajanje značajki su isprobana dva pristupa, jedan baziran na običnom

dvodimenzionalnom konvolucijskom sloju te jedan baziran na konvolucijskom LSTM (Long-

short term memory) sloju. Eksperimentalno je pokazano da predloženi pristupi dodatno povećavaju

preciznost detektora defekata.

Ključne riječi: analiza ultrazvučnih slika, nerazorno ispitivanje, automatska detekcija de-

fekata, detekcija objekata, augmentacija slike, generiranje slika, duboko učenje
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Chapter 1

Introduction

Non-destructive evaluation is a set of techniques used to examine objects of any type, size,

shape, or material to determine the presence or absence of discontinuities such as defects, or to

evaluate other material characteristics [1, 2]. Applying an NDE method does not cause damage

to the inspected component, and it does not affect its usability. This property makes NDE

methods perfect for continuous inspection of critical components in many systems, especially

if the inspected component is expensive to manufacture. Some examples of NDE techniques

include:

•Visual testing (VT)

•Penetrant testing (PT)

•Radiographic testing (RT)

•Ultrasonic testing (UT))

•Eddy current testing (ET)

•Thermal infrared testing (TIR)

Every NDE method has limitations and in most cases, a thorough examination will require an

application of a minimum of two NDE methods[1]. Non-destructive evaluation can be used to

ensure proper quality after the product manufacturing, or it can be used to continuously monitor

some components. This is done to minimize the possibilities of failure, prevent disasters, and

economically plan the replacement of components. NDE methods are commonly applied in the

oil and gas industry, aeronautics, and various power plants including the nuclear power plant.

1.1 Ultrasonic testing

Ultrasonic testing can be used for the inspection of various materials such as metals and alloys,

composites, ceramics, plastic, and sometimes even wood and concrete. There are several ways

an ultrasonic testing technique can be implemented, but the main principles are always similar.

Pulse-echo (PE) is one of the simple implementations of ultrasonic testing that consists of only
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Introduction

one transducer that serves both as the transmitter and the receiver of ultrasound energy. An

illustration of PE is shown in Figure 1.1. An ultrasonic transducer is placed on top of some

Figure 1.1: Illustration of the pulse-echo method for ultrasonic testing

material, and then it transmits ultrasound waves throughout the material. Whenever there is an

inconsistency in material density, the acoustic impedance changes and causes the reflection of

some of the ultrasonic waves. The first time this happens is when the waves are entering the

material. A large portion of the energy will then be immediately reflected and when plotting the

amount of received energy as a function of time (A-scan), this signal will appear at the beginning

of the x-axis as shown on the plot displayed in Figure 1.1. The second time ultrasonic waves

will reflect back to the probe is when the waves reach the bottom of the inspected component.

This signal is called the backwall signal. When searching for a defect in the material, trained

experts search for signals that appear between these two characteristic signals. If a signal is

found in this area, it is probably caused by the defect that is positioned between the surface of

the material and its bottom. The described procedure shows how the analysis of one A-scan is

done. In reality, the inspection of the whole material is needed, so the probe must be moved

along the surface. This is usually done with a robotic manipulator that consistently moves the

probe from one side of the material to the other and collects a series of A-scans. The surface

of the inspected material is often not perfectly smooth, so while moving the probe the air can

appear in between the probe and the inspected material (lift-off). This causes a lot of noise in

acquired data, so to prevent this from happening, the scanning can be performed with the probe

and the material submerged in some liquid. Another possibility is to apply lubricant between

the probe and the material, which prevents the air from getting in between the probe and the

material. Once the probe was moved from one side of the material to the other, data from one

cross-section of material was collected in the form of a series of A-scan. A series of A-scans can

2
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also be converted into an ultrasonic image for easier manual analysis. This is done by converting

each of the A-scans into one image column. Pixel intensities are determined from the amplitudes

of corresponding A-scans. Also, since the x-axis of the A-scan represents the time needed for a

signal to be reflected back to the probe, if the speed of ultrasonic waves thorough the inspected

material is known, it is possible to calculate the exact depth of an artifact that caused some

signal. This allows the inspector to directly report the coordinates of the defects found inside

the material. PE technique is extensively used in industry due to its simplicity and efficiency

[3]. However, it has one substantial disadvantage. If a flat defect is positioned parallel to the

trajectory of transmitted ultrasonic waves, the surface from which the waves can possibly reflect

is very small. This can easily lead to an undetected defect. To increase the reliability of finding

a defect, scanning at various angles can be performed. However, if different probes are used to

accomplish this, the time needed for data acquisition would be increased by several times. A

better option is to use a single phased array probe. This probe has the ability to simultaneously

scan the material from different angles. An illustration of a phased array probe is shown in 1.2.

In Phased Array Ultrasonic Testing (PAUT), images are typically formed through constructive

Figure 1.2: Illustration of the phased array ultrasonic testing (PAUT)

and destructive superposition of signals backscattered from flaws or geometric features [4]. The

angle of the transmitted beam can be steered. This enables the phased array probe to collect

data from dozens of angles in a single pass from one side of the material to the other. Some

defects might not be visible from all angles, so all of the collected data must be analyzed. This

increases the reliability of inspection, but it also means more data for inspectors to analyze.

Another ultrasonic testing implementation that was commonly used before is called Time

Of Flight Diffraction (TOFD). Data obtained by this approach was not used in this thesis, so the

principles of this approach will not be discussed here. In general, ultrasonic testing has many
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advantages compared to the other Non-destructive testing techniques. Some of the important

advantages are [5]:

•detection of both surface and subsurface discontinuities

•higher depth of penetration than other NDT methods

•pulse-echo and phased array techniques require only single-sided access

•highly accurate

•requires minimal part preparation

•instantaneous results

These advantages made ultrasonic testing a popular NDE approach for industry applications.

1.1.1 Ultrasonic testing data analysis

The amount of data collected during the ultrasonic inspection is immense, especially if a phased

array probe is used and the cross-sections are acquired at various angles. The analysis of the

UT data is currently done manually by trained personnel. This is done with the help of soft-

ware that is able to process and display the acquired UT data in various formats. Such software

has many functionalities that help the inspectors to analyze the data quicker and more confi-

dently. However, commercial software for UT data analysis, currently do not contain advanced

tools for automated UT data analysis and defect detection. During the ultrasonic data analy-

sis, trained inspectors simultaneously look at various representations of data. Some commonly

used representations are shown in Figure 1.3. The top left window contains an A-scan, which

Figure 1.3: Various representations of UT data.

is a representation that displays the amount of received energy as a function of time. On the

right side of the figure, two variants of B-scans are shown. The upper B-scan was obtained by
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transferring each A-scan into one image column. The defects that are in reality vertical will

appear slanted in this view because the angle of the ultrasonic waves is not taken into account.

The lower variant is called volume corrected B-scan (VC-B-scan) and in this case, the A-scans

are transferred onto an image at an angle that the ultrasonic waves were traveling through the

material. VC-B-scans preserve realistic orientations of the artifacts found inside the material.

In the bottom-left window, a C-scan representation is shown. This representation is obtained by

projecting minimum values of some ultrasonic image columns, which means that each B-scan

will be converted into one row. Values of each pixel of that row were calculated as the minimum

value found in some columns of the B-scan. If this operation was done for the whole column of

a B-scan, the projection would almost always return the minimum values caused by the initial

pulse or the backwall signal, so the useful information would not be preserved. Instead of using

all the pixels from a column, a C-scan projection is done only for the area between the initial

pulse and the backwall signal. By looking at a C-scan, we can quickly get a rough idea about

the B-scans that contain defects. By looking at Figure 1.3 it is clear that the B-scans with in-

dices two, three, four, and six need a more detailed analysis. The inspection usually starts with

that step. The inspectors then thoroughly check B-scans that looked suspicious on the C-scan.

When analyzing some signal seen on a B-scan, the inspectors can also use other representations

such as A-scan or sectorial scan (S-scan) to confirm their decision. Another thing that signifi-

cantly helps when making a decision is to look at the surrounding B-scans. Many defects are

not planar, so their signal will appear on multiple adjacent B-scans. Also, if the data is scanned

with a phased array probe, it is useful to look at the same cross-section of the material from

different angles. An example of these useful surrounding B-scans is illustrated in Figure 1.4.

Figure 1.4: Sequences of ultrasonic B-scans. The same cross-section of material can be seen from
multiple angles when the scanning is performed with a phased array probe. Neighboring cross-sections
often contain the same defects and can be very useful during the analysis.

5



Introduction

1.2 Problem description

There are several limitations in the procedure currently used to analyze UT data. First, there is a

need for specially trained experts and their training requires a lot of time. Each inspection takes

a significant amount of time, so the real-time results are usually not possible even if several

inspectors are simultaneously working to analyze the data. Furthermore, decisions made by

the inspectors can be subjective and prone to human errors, especially when a large amount of

data needs to be processed which impacts the concentration of the inspectors. This problem

will only become more prominent with the increasing usage of phased array probes that acquire

more data compared to the traditional single-angle probes. Most of the collected UT data does

not actually contain a defect. Having an algorithm that can extract only the suspicious parts of

the data would significantly increase the analysis speed. Additionally, it would be very useful

to precisely localize potential defects and pass all the suspicious signals to the inspectors for

confirmation. This semi-automated approach is probably the intermediate step towards fully

automated systems for ultrasonic testing data analysis.

In this work, a deep learning approach is used to analyze ultrasonic testing B-scans and

to localize defects. Several problems must be tackled in order to create a precise and reliable

algorithm for defect detection. A deep learning approach is chosen due to its superiority and

better generalization compared to the traditional computer vision methods. However, in order

for a deep learning approach to be reliable, a large enough dataset of images must be acquired

for the training of such an approach. As stated before, the amount of data is increasing with

the usage of phased array probes, but most of those images are empty, which is not ideal for

training of supervised object detection model. An approach based on anomaly detection can

be used in that case. Such approaches are trained solely on the normal data and are designed

in a way that leads to higher anomaly scores when the model encounters data that differs sig-

nificantly from the normal data used during the training. Another option that is used in this

work is to collect the data by scanning components with artificially created defects inside the

material. This way, a database that contains enough B-scans displaying defects is collected.

Other problems that are encountered when applying object detectors for defect detection from

ultrasonic images are the noise and the signals that appear due to reflections from the geometry

of the scanned component. These signals can sometimes appear very similar to the defects’ sig-

nals. A computer has no additional knowledge and input about the scanned component, which

is something that human inspectors usually have access to when performing the analysis. This

makes the decision-making process of some methods even harder. It is also one of the reasons

for the poor performance of the traditional approaches, since the noise and geometry signals can

hardly be anticipated and a method for defect detection must have a significant generalization

ability while retaining reliability. There can also be some other challenges depending on the
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types of components that are scanned (pipelines, bolts, solid metal blocks, welds, etc.) but such

case-specific challenges are not discussed in detail here.

The focus of this thesis is the development of novel approaches based on deep learning

for the analysis of ultrasonic B-scans. It is necessary that the proposed architectures can be

trained with a small amount of data since blocks with artificial defects are expensive and in

real-life the amount of images that can be collected for the training of a deep learning model

is limited. As shown in the publications attached to this thesis, training on a small dataset

can be accomplished by using transfer learning, extensive data augmentation, generation of

artificial images, or by designing a simpler model with fewer parameters. Data augmentation

and transfer learning are standard tricks when applying an existing object detector on a new

dataset. However, artificial image generation with the goal of improving a detector’s precision

is not so trivial and thus not used as often as other data augmentation techniques. This topic is

discussed and researched more thoroughly in Pub 3. Another problem that needs to be taken

into account when developing a new object detection method is the extreme aspect ratios of

the defects that need to be detected. In Chapter 3 the working principle of one-stage detectors

is described. The influence of the anchors’ design and placement on the loss function and

the performance of the object detector is explained. The anchors’ design and tweaks that are

necessary to obtain the maximal performance out of object detector when analyzing ultrasonic

B-scans are the topics of Pub 1 and Pub 2.

Another challenge with the current approaches for automated analysis of UT data is that

they use only one cross-section of the material (for example one B-scan) during the decision-

making. This approach is not ideal since useful information from the surrounding areas remains

unused. Human inspectors always look at the suspicious areas of material from several view-

points. Generally speaking, looking at the same material cross-section from different angles

will produce similar images. The difference will be in the sizes of the defect’s signal and usu-

ally, in the higher angles, the defects will appear more elongated. The only time a significant

difference can occur is if the defect is planar and positioned in such a way that the ultrasonic

waves do not reflect from it for a particular scanning angle. In that case, the defect will not be

seen on some scanning angles, but it will probably appear on some others (that is the point of

scanning the material with a phased array probe). This is why it is important to inspect data for

all the scanning angles to ensure none of the defects will be missed. However, this slows down

the inspection regardless of the way it is done (manual or automated). One of the contributions

of this thesis is a novel method for simultaneous analysis of all scanning angles (Pub 4) that

was designed to speed up the overall analysis without sacrificing reliability.

Simultaneous analysis of ultrasonic B-scans can also be used to increase the mean average

precision of the defect detector. In this case, it is better to use the neighboring cross-sections of

the material rather than the same cross-section as seen from a different angle. However, a simple
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input expansion of the standard object detector will not enable the model to use efficiently this

additional information. A more complex approach is needed, and designing such an architecture

was the topic in Pub 5.

While there is a large number of approaches for image analysis, most of them are designed

for some general computer vision tasks. Straightforward application of the existing method can

sometimes lead to good results, but more often some tweaks are needed to achieve the desired

performance. The existing methods can be notably improved if some NDE domain-specific

knowledge is combined with the knowledge of computer vision and if the novel models are

developed with this specific application in mind.

1.3 Scientific contributions

The emphasis of this thesis is on novel deep learning-based methods for the analysis of ul-

trasonic testing data. More specifically, one-stage object detectors are used to detect defects

from ultrasonic B-scans. In order for this approach to work well and outperform existing meth-

ods, an architecture appropriate for the detection of objects with extreme aspect ratios must be

developed. To further improve the results, a method for automated analysis of UT data must

approach the current procedure for the analysis of UT data which relies on confirming decisions

by looking at the same area from different viewpoints. This can be accomplished by expanding

the input to the model and designing an architecture that can successfully capture this additional

information and improve its decision-making process. The scientific contributions of this thesis

that are the results of the performed research are the following:

•Method for detection of defects with extreme bounding box aspect ratios from ultrasound

images based on deep one-stage detector.

•Method for defect detection by simultaneous analysis of multiple ultrasound images based

on deep one-stage detector.

1.4 Thesis structure

The main contributions of the thesis are presented as a compilation of five research publications

addressing the research objectives stated earlier. The thesis is structured as follows. Chapter 2

contains an overview of the existing methods for automated analysis of NDE data. Chapter 3

describes the existing approaches for object detection and their working principles. Chapter 4

contains definitions of commonly used metrics for evaluation of object detectors and methods

for automated defect detections. The main scientific contributions of the thesis are presented

in Chapter 5. Chapter 6 lists the publications used in this work, and in the following Chapter

7 the author’s contribution to each individual publication is given. Finally, in Chapter 8 the
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conclusion is written together with some possible future research directions.
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Chapter 2

Overview of existing approaches for
non-destructive evaluation data analysis

2.1 Methods for automated analysis of ultrasonic testing data

Ultrasonic testing can be used to inspect various materials. It is commonly used for inspection

in aeronautics, the oil and gas industry, and all kinds of power plants. It is often applied to

inspect metal components, but it can also be used to inspect carbon fiber reinforced polymer

(CFRP) specimens, or some other materials such as ceramics, concrete, and wood. Since the

inspection procedure differs depending on the inspected material, obtained data also differs, so

a variety of methods was invented to automatically analyze collected data. Also, depending on

the use case, the results of the analysis can be of different granulation. Most of the methods

for automated analysis perform classification which means that for some samples such as one

A-scan, or one B-scan it is possible to determine if it contains a defect’s signal, but the exact

location of the defect is not explicitly given by such algorithms. For A-scan analysis, this is

not a problem, since one A-scan is already very localized and we can precisely determine the

defect’s real-world coordinates from that information. For B-scan, it is possible to perform

a more thorough analysis and provide the location of the defect (object detection methods),

or even a pixel-wise segmented map (semantic segmentation methods). If the algorithm for

automated analysis is used in collaboration with a human inspector, it is useful if an algorithm

can at least give a rough location of the defect so that the inspector knows which part of the data

is considered anomalous. Also, a fine-grained localization enables automatic calculation of the

dimensions of the defect, which can be used to assess the severity of a problem.
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2.1.1 Methods for A-scan analysis

The defects can be recognized from the acquired UT signal because the reflections from material

discontinuities appear in the A-scan as abrupt time localized changes resulting in time-varying

spectral characteristics [6]. One of the popular approaches for automated defect detection from

ultrasonic A-scans is to process the signal with wavelet transform and then feed the obtained

coefficients into some classifier.

Signal processing with wavelet transform works by decomposing the signal into N levels

and calculating appropriate approximation and detail coefficient. By thresholding the detail co-

efficients and calculating inverse transformation on the remaining data, it is possible to denoise

the original signal. Usage of long time intervals to obtain more precise low-frequency infor-

mation and shorter regions for obtaining high-frequency information is enabled by applying a

windowing technique with variable-sized regions. Many authors used the wavelet transform

to improve the quality of A-scans before performing further analysis. The authors of [7] built

a classifier based on this procedure and used it for the classification of three distinct signals

(fault echo, echo from weld, and backwall echo) in the material used for airplane engines. Af-

ter processing the signals with the discrete wavelet transform, the authors calculated features

such as mean value, standard deviation, etc. from the ultrasonic signal. The features were then

classified by Support Vector Machine (SVM). A similar approach was used in [8] where the

authors classified four different types of defects in stainless steel plates. The data consisted

of 240 A-scans collected using a pulse-echo technique. Unlike [7], the authors of this work

used an ANN to classify defects and achieved an average accuracy of 94%. There are also

many other works [6, 9, 10] that applied similar approaches for the development of methods

for automated classification of A-scans. These methods were developed for different types of

UT data and sometimes use a slightly modified approach compared to the one described above.

For example, in [9] the process described earlier was used for the analysis of ultrasonic TOFD

data [9]. The authors concluded that the SVM classifier performs well even when the dataset

is small, which is the main advantage compared to the ANN classifier. The authors of [6] used

the envelope shape of the signal as an input to the ANN instead of calculating mean value, max

value, or some other similar features usually calculated from the signal. Signal prepossessing

with the wavelet can remain the same regardless of the used classifier and inputted features,

but sometimes different features work better for different classifiers. In [11], a special type of

ANN called Convolutional Neural Network (CNN) was used to analyze UT data obtained by

scanning CFRP specimens. The authors additionally modified a standard CNN by swapping the

last layer with an SVM, which improved the results. In order to feed the information extracted

with wavelet transform to the network, calculated transformation coefficients were re-organized

into a 2D matrix with dimensions 32x16, which was then used as an input. The authors con-

cluded that this input works better than feeding hand-crated features from the coefficients. It
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is also possible to use a different preprocessing / feature extraction technique such as DFT or

Cosine transform [12] or to perform additional feature selection of the calculated features using

a PCA [12, 13] or Wilcoxon-Mann-Whitney test [12]. Another option is to skip completely

hand-crafted feature extraction and let a machine learning (ML) model automatically determine

the important information from the data. The progress in deep neural networks and their appli-

cations to various domains has greatly stimulated research of such methods for the analysis of

UT data [14, 15, 16, 17]. The authors of [14] collected TOFD and pulse-echo (PE) data. The

author inputted A-scans into ANN, which was used to classify four different types of the signal

(conditions of weld joints). In the case when the A-scans were first smoothed with a low-pass

filter, the ANN achieved an accuracy of 73% for PE and 98% for TOFD signal classification.

In [15] it was demonstrated that a deep neural network (DNN) with dropout regularization out-

performs a simple ANN. The authors performed many experiments in the search for the best

hyperparameters, such as the dimension of hidden layers and activation function choice. This

work was also the first work to run experiments for automated analysis of UT data on a mixed

frequency dataset. A DNN achieved significantly better accuracy than ANN on the task of clas-

sifying five defect types. The authors also noted that image representation of the data such as

B-scans and C-scans are very useful in the context of non-destructive evaluation and that these

representations should be considered in the future for the development of automated UT data

analysis systems. In the follow-up work [16], the authors added Gaussian noise to collected

A-scans and compared the performance of CNN and DNN for various levels of signal-to-noise

ratio (SNR). The CNN network achieved on average 6.82% better accuracy compared to the

DNN. The authors also noted the importance of data augmentation. The authors tested time-

shifting of the defect signals, which mimics changing the distance between the transducer and

defect in a real coordinate system. Data augmentation led to significant improvements for both

the DNN and CNN, and for all the SNRs. In [17], a CNN in the form of an autoencoder

was used to further improve the denoising abilities of CNN. Autoencoder is composed of three

parts: encoder, latent layer, and decoder. The spatial resolution in the encoder is decreased

by using the pooling layer. After the latent layer, the spatial information is increased by using

upsampling layers. This bottleneck design forces the architecture to learn and extract important

information from the input data. It was shown that such architecture works better with noisy

data compared to the standard CNN. Similar to the previous work, data augmentation was used

to increase the number of collected samples, and various levels of Gaussian noise were added

to test the performances of the models. Autoencoder architecture was proven to work well for

denoising and the performance was improved by several percents in different experiments by

using this approach. By looking at the aforementioned related works, it can be seen that the re-

cent trend is to collect a large enough database of A-scans and then used some direct approach

without hand-crafted feature extraction. DNN and CNN proved to be especially suited for this
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task. Also, many authors noted the importance of expanding their current work to work with

ultrasonic images. However, the number of research work showing the usage of modern ML

and DL-based solutions for automated analysis of UT data is limited, presumably because of

the costs involved with the collection of a large enough dataset of ultrasonic images.

2.1.2 Methods for B-scan and C-scan analysis

Methods for automated UT data analysis have for a long time relied on approaches for A-scan

analysis. Traditional well-investigated signal processing techniques could be applied to A-scan

signals and the achieved results were good. On the other hand, traditional techniques for image

analysis were not as good, so not many works went down this path. Despite this, there are

some works that explore traditional approaches for automated analysis of UT images. Wavelet

transform can also be a useful tool for feature extraction from images, as shown in [18]. The

most relevant features were selected by PCA, and fed into a fuzzy C-mean clustering classifier.

The proposed approaches were tested on several TOFD images with known geometric defects

in them. Presented results show that the proposed approach can successfully segment different

types of defects in an image. However, to ensure the reliability of mentioned method, it should

be tested on a much larger and more diverse dataset of images. Another example of a traditional

image processing technique for analysis of ultrasonic B-scans was shown in [19]. In this work,

the authors used a Radon transform to detect cracks in rails. The data was obtained by scanning

the rail with three different probes. Acquired B-scans were first processed with the wavelet

decomposition, which was done to suppress the horizontal structures, thus eliminating the noise

in the B-scans while preserving the defect’s signal. The authors then used Radon transform

to detect cracks in the denoised images. The authors concluded that in future work, a neural

network approach should be built in order to create a fully automated system. In [20], TOFD

B-scans were analyzed using a parabola matched filter. This is possible because the motion

of the emitter and receiver relative to the scatterer such as defects describes the characteristic

parabolic shape. One of the drawbacks of this approach is that the parabola’s form varies with

the depth of the defect, so this approach works only for a specific depth. The approach achieved

good results when tested on simulated data, but on real experimental data, it was less effective.

Traditional image processing techniques were also used for the analysis of ultrasonic C-scans

[21]. In this work, the authors used a reference image, a C-scan, showing the flawless inspected

component. If later a new instance of the same component is inspected, it is possible to compare

the obtained C-scan with the expected one and highlight the differences. The authors reported

no missed defects, but the number of false detection was very high. The robustness of this

approach is probably affected by the fact that the data from different instances of the same

component often looks different in real life.

Lately, a deep learning approach became a dominant approach for the analysis of sequences
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and images since some architectures like Convolutional neural networks (CNN) have a natural

ability to process sequences and grid-like representations of the data. For a long time, an ap-

proach based on deep learning has been hindered by the cost and difficulty of gathering enough

data to train a good deep learning network [22]. If a big enough dataset of UT data is available,

one can utilize additional context information available in the B-scan compared to the individ-

ual A-scan analysis, and develop a more precise method. This advantage was also noticed by

many other authors, so the development of methods for B-scan analysis recently got a lot more

attention. In [22] it was demonstrated how the data needed for the training of deep learning

architecture can be simulated. The authors used simulated data to train a network for crack

characterization. proposed deep learning approach was compared to the 6dB drop method. The

deep learning model was able to size 97% of the tested defects of lengths 1 to 5 mm within ± 1

mm, while the 6dB method could only size 48% of the defects. In [4] the authors showed that

a CNN trained mostly with simulated data in combination with a small amount of real data can

be used to detect, locate and size a defect from ultrasonic phased array data. The used dataset

was created by GPU-accelerated finite element simulations and then expanded with a small per-

centage of real data. The authors trained a two-stage detector Faster-RCNN [23] that reached

the area under the curve of 0.95 when tested on simulated data. When testing the detector on

real data with an intersection over union (IOU) threshold of 0.4, the model was able to locate

70% of the flat bottom hole defects. Another approach for artificially generating the UT images

used for the development of an ML classification model was shown in [24]. The authors ex-

tracted signals of several defects and inserted them into ultrasonic B-scans that do not contain

any flaws. Using this technique, 20000 images were generated and used to train a model similar

to VGG[25]. The authors compared the probability of detection [26, 27] achieved by this model

with the human performance and concluded that the ML approach works as well as human in-

spectors. However, using only the generated or simulated data for comparing the performances

can give an unwanted advantage to the ML model. Since the artificially generated UT data do

not contain all the variations that can appear in real situations, reliable evaluation should be

performed on a large-enough dataset of real images [4, 28]. In [28] the authors trained a ma-

chine learning model on an artificially expanded dataset of multichannel phased array data of

austenitic welds. A separate subset of realistic data was used to test the performance of an ML

classification model and compare it to the human-level performance. The model almost man-

aged to match the inspectors’ performance, missing two out of nine flaws that were detected by

the experts. In [29] another example of training a CNN for the classification of different types of

defects from simulated images is shown. The authors reported an accuracy of over 90% for all

types of tested defects. In [30] a real UT data was used for the training and the testing of deep

learning networks for defect detection from ultrasonic B-scans. The authors tested SSD[31]

and YOLOv3 [32] architectures and concluded that YOLOv3, which achieved a mean average
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precision of 89.7 %, outperforms SSD. However, the testing dataset contained only 98 images.

In [33] the authors proposed a deep learning approach for the identification of the geometrical

elements of a weld. The proposed process allows the segmentation of 3D Phased-Array Ultra-

sonic testing scans. The segmentation of the welded joints does not give information about the

quality of the inspected weld, but the geometrical information can be used to determine if the

acquisition of the data was performed correctly. Calculated geometrical information can also

enable algorithms for defect detection to position detected defects within the geometry of the

weld. This increases the relevance of the UT analysis and provides more detailed overall results.

The used dataset was created from 30 3D UT scans, and the model achieved a voxel accuracy

of 96.76% and a dice score of 90.00% on the test subset. In [34] the authors collected ultrasonic

data by inspecting additively manufactured specimens. The specimens’ surfaces were on pur-

pose created with a different level of roughness, which influences the signal-to-noise ratio. The

goal of their work was to classify specimens into different categories according to their porosity

content. To accomplish this, the author tested several architectures (CNN, DNN, MLP) for the

classification of collected ultrasonic images and determined that the CNN model achieved the

best result with an accuracy of 94.5%.

2.2 Methods for automated defect detection from other types

of NDE data

The methods mentioned below do not make an exhaustive list of works from NDE domains

other than UT. There are many other works from each of the below-mentioned domains, and

the publications listed here are simply the examples used to show recent trends in applications

similar to the one from this thesis.

2.2.1 Visual inspection

Visual inspection is a type of NDE technique used to inspect the surface of a material and

detect abnormalities. It is applied in various industries and for inspection of different types of

material such as concrete inspection [35], rail systems [36], products (wires[37], steel strips [38]

and others), pipelines [39], wind turbine generators [40], etc. Some approaches for automated

analysis of images collected during the visual inspections are shown in the rest of the section.

In [40] the authors showed that the features extracted with a pretrained deep learning convo-

lutional model work better than the hand-crafted features. The goal of the work was to visually

inspect the images of wind turbine blades and detect possible damages like cracks, paint peeling,

etc. The authors compared the classification performance of the SVM model depending on the

inputted features. They concluded that the features extracted with VGG[25] architecture lead to
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better performance compared to hand-crafted descriptors such as Histogram of oriented gradi-

ents (HOG)[41] and Scale-invariant feature transform (SIFT) [42]. In [43] the authors created

a convolutional neural network to inspect rolled steel strips. The goal was to classify images

into seven categories depending on the defect that appears on the strip. The achieved results

were very promising, especially if it is taken into consideration that many of the deep learn-

ing architectures and techniques used for improved training were not yet invented at the time

of publication of this article. In [37] the authors develop a one-stage detector to analyze wire

images and detect three different types of surface defects. The proposed model was created by

enhancing the Darknet53 [32] backbone with attention module [44] and combining it with Fea-

ture Pyramid Network (FPN) [45]. Experiments showed that the proposed approach achieves a

mean average precision (mAP) of 88.5% which is a significant improvement compared to the

other similar methods that were used before for this task. The authors of [46] propose a method

for railway shelling defect detection. The authors compared several deep learning classification

models with traditional approaches based on hand-crafted features and SVM classifier. Deep

learning convolutional networks, VGG and ResNet, achieved far superior results compared to

approaches based on HOG, SIFT, and LBP.

2.2.2 Thermographic inspection

Thermographic inspection is one of the NDE techniques commonly used to inspect carbon fiber

reinforced polymer/plastic (CFRP). This material is often used in aerospace industry, automo-

tive industry, power plants (e.g. wind turbine blades), etc. so convenient methods for such data

analysis are necessary.

In [47] the authors tested several architectures for automatic defect detection from thermo-

graphic inspection images. The best results were achieved by the architecture based on the

pretrained VGG [25] on top of which a decoder part inspired by the U-net [48] architecture

was added. The authors also tested an approach for temporal analysis of each pixel-value based

on 3-layer LSTM [49]. However, this temporal model did not achieve good results for all the

tested samples. In [50] the authors proposed a generative adversarial network (GAN)-based

semantic segmentation model trained with a novel joint loss function. The authors develop this

model with the goal of analyzing different types of data without adjusting the parameters of

the model or requiring multiple models. They tested their approach on carbon fiber reinforced

polymer/plastic (CFRP) specimens and compared the results with existing methods for seman-

tic segmentation. The authors evaluated the model using the F-Score, and the model proposed

in this work significantly outperformed other tested models. In [51] the authors used a pre-

trained Faster-RCNN object detector to detect defects from thermographic images. The model

was trained using the images collected from the literature and validated on specimens produced

using different sets of material in order to show the generalization ability of the proposed model.
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The best among the tested variants of the model achieved a mean average precision (mAP) of

75 %.

2.2.3 Radiography inspection

One of the NDE techniques often used to inspect the internal structure of material besides

the UT is radiography testing. This approach is commonly used to inspect metal parts in the

automotive industry to ensure that none of the components contains some internal weaknesses

that could lead to expensive failures in the future. This approach is more popular for testing

independent components right after the manufacture, since later the process is more complicated

and would require significant preparation and often disassembly of the system being inspected.

In [52] the authors proposed a system for automated detection of defects from X-ray images

using a deep learning object detector. They tested two popular architectures (FPN[45] and

Faster-RCNN[23]). The used dataset proved to be very challenging, so the achieved mean

average precision (mAP) was quite low. The authors concluded that the FPN is better suited for

detecting small defects compared to the Faster R-CNN.

In [53] the authors dealt with common problems encountered when developing a method

for automated defect detection from NDE data - a small dataset. The main idea proposed in

this publication was to use a Wasserstein Generative Adversarial Network (WGAN) [54] for

artificial dataset expansions. They tested their approach on two datasets, one of which is a

dataset of X-ray images of welding joints. The authors tested Inception [55] and MobileNet

[56] architectures and, in the end, created an ensemble with a bit larger weight put on the

Inception since it slightly outperformed MobileNet. The final ensemble achieved accuracies of

over 94% for all the classes.

In one of the earlier works [57], the authors designed a method for the detection of defects

from X-ray images by analyzing the gray line curve of vertical weld scan lines. The method for

detection relies on the existence of local minimum points in cases where a defect is present in

the weld. After the potential defects are segmented with this method, features are extracted and

fed into the SVM classifier. This step is used to remove false positives from the first step. Ex-

perimental testing showed that SVM reaches an almost perfect accuracy and surpasses Artificial

Neural Network (ANN) and Fuzzy inference classifiers.

In [58] the authors trained a deep learning network in three stages and used it to detect air

bubbles in engines. First, they train an autoencoder using normal images, which are easier to

obtain. Only the encoding part from this network is used later to perform classification. Then,

the weights of the encoder are frozen and the rest of the network (fully connected layers)is

trained on both defective and normal images. In the last step, the whole network is fine-tuned

jointly using both normal and defective images. The proposed approach yielded around 9% of

false positives and around 6% of false negatives.
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Chapter 3

Overview of deep learning-based object
detection methods

Object detection is one of the fundamental tasks in the area of computer vision. The main

goal of object detection methods is to determine if objects from particular categories (such

as person, car, tree, etc.) are present in an image and what are the exact locations of those

objects. Object detection can be applied in various domains such as autonomous driving and

robotics, surveillance, agriculture, medicine, industrial inspection and manufacturing, sports,

and many others. Since object detection is an old problem, many traditional approaches were

developed to perform this task. However, for some years now, the deep learning paradigm

has completely taken over this field. Deep learning models, usually based on convolutional

neural networks (CNN) architectures, achieve great results both in real-life applications and

many publicly available datasets for bench-marking novel object detection methods [59, 60, 61].

Convolutional neural networks were dominating in computer vision area ever since the authors

of AlexNet[62] won the ILSVRC 2012 challenge [60]. The rise of CNNs was largely driven

by the increasing availability of large-scale public datasets and the more accessible computing

power.

3.1 Convolutional neural networks

The dominance of CNNs in computer vision was not a coincidence. Convolution operation

can be regarded as a sliding window approach, a strategy that is intrinsic to visual processing,

particularly when working with high-resolution images [63]. The first step in the development

of the CNN model is the collection and annotation of the data for which the model will be used.

The database can be considered as a set of examples x associated with target values (labels) y.

The goal is to use an optimization technique to determine parameters θ of the model. Those

parameters are directly used to map inputs to desired targets. The trained model should in theory
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learn a function f (θ) that transforms the inputs to their corresponding targets f (θ) : X 7→ Y .

In the case of classification, the desired target value is simply a number that represents some

category. In the case of object detection, the targets contain five values for each object in the

input image that needs to be detected. Those values represent the category to which some

object belongs and the bounding box that encapsulates the object. Bounding box are usually

expressed either as four corner points of the object (xmin,ymin,xmax,ymax) or the center point

and the dimensions of the object (xc,yc,width,height). The target values are used to define the

loss function (objective function or cost function terms are also used). The loss function defines

the distance between the values outputted by the network and the target values. In order to find

optimal parameters of the model, the expected loss J∗(θ) over data generating distribution pdata

must be minimized. In practice, this is not feasible, so the loss function is approximated from

the collected training data:

J(θ) =
1
N

N

∑
i=1

L( f (xi,θ),yi) (3.1)

One desirable property of the loss function is its differentiability. If a deep learning network

is designed as a sequence of differentiable operations on the input data, one can propagate the

error from the loss function through all layers of the network. Propagating error from the net-

work’s output to its input allows the network to update values of its internal parameters (θ ) in a

way that leads to more precise predictions. This process is also known as back-propagation and

was first successfully used by LeCun for training the CNN network [64] on a task of handwrit-

ten digit recognition. Minimization of the loss function relies on first-order partial derivatives of

the loss function with respect to the model parameters. As stated earlier, if all the operations in

the network are differentiable, one can apply the chain rule and calculate the gradient ∇θ J(θ)

of the loss function with respect to the model parameters. Once the gradient is calculated, a

method like stochastic gradient descend (SGD) can be applied to update the parameters of the

model in each training step. Many other optimization methods were later built by upgrading

upon the vanilla SGD. Some commonly used optimizers include RMSprop[65], ADAM [66],

Adadelta [67] and Adagrad [68]. To aid the process of training and allow the network to focus

on important information in the input, researchers have come up with many different layers and

optimization procedures. The layers can be arranged and combined in numerous ways and re-

searchers are constantly improving the layouts of existing CNNs which leads to the development

of novel architectures, usually with improved performances. The improved performance can for

example mean better accuracy, easier training, increased generalization ability, decreased infer-

ence speed, or something similar. The reason why CNN architectures work so well for images

is the natural ability of such architectures to process sequences and grid-like representations

of data. Convolutional layers operate on the input tensor by sliding a kernel over the input,

multiplying the values of a kernel with the input at the current kernel position, and passing the
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resulting values through some activation function such as ReLu, sigmoid, tanh, etc. The acti-

vation function is used to increase the capabilities of the network and allow the modeling of

non-linear transformations. In practice, more than one kernel is usually used, so the output of a

convolutional layer will have a depth equal to the number of used kernels. The spatial resolution

of the output depends on the type of convolution. Padding of the input, kernel size, and stride

are the factors that determine the spatial resolution of the output. Convolutional layers are often

paired with some type of pooling layer, such as maximum pooling. Usage of this layer helps

the network to focus on important information and reduces spatial resolution, which leads to a

smaller number of parameters in the deeper layers. Recently, many deep learning models also

used normalization layers, such as Batch Normalization [69]. By using the Batch Normaliza-

tion, the training is faster and more stable, but those merits are only seen if a large enough batch

size is used. Many state-of-the-art object detectors are based on CNN architectures. Variants

and working principles of the most popular CNN-based object detectors are described in the

following section.

3.2 Object detection architectures

Object detectors are often divided into two groups: (I) One-stage detectors and (II) Two-stage

detectors. Most of the detectors from these two groups rely on the detection of objects from a

dense grid of predefined rough guesses about the objects’ position in the image. These rough

guesses are called anchors, priors, or default boxes. This concept is explained in more detail in

the rest of this section. However, there are also some different approaches for object detection

that do not rely on the usage of anchors such as CornerNet [70], CenterNet [71], FCOS [72],

and similar. While it is interesting to see a different idea for performing object detection, this

type of detector can hardly compete with anchor-based detectors in terms of precision and time

complexity trade-offs. Additionally, there has recently been an increase in the development of

computer vision models that are based on transformers [73] instead of CNNs. Several such

models were built specifically for object detection [74, 75] and achieved results comparable to

commonly used one-stage and two-stage CNN-based detectors. In this work, the focus will be

on the working principle of one-stage object detectors, since many object detectors of this type

achieve state-of-the-art results [76, 77] and these models are often applied both in industry and

research. An architecture of a CNN-based object detector is usually divided into three parts: (I)

feature extractor (backbone) (II) neck (III) detection head. A feature extractor is used to extract

important information from the image. This is done by applying some architecture with good

classification abilities such as VGG [25], ResNet [78, 79], MobileNet [56, 80, 81], DenseNet

[82], EfficientNet [83], or some other. Improvements made in the image classification task often

have a direct impact on the results for the object detection task. A better classification model
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usually extracts better features and can be used to build more precise object detectors. Fully

connected layers from the classifiers are discarded when reusing the classification model for the

object detection backbone. Instead, the layers from the classifier’s feature extractor are passed

to the second building block of an object detector - the neck. The neck is used to combine high-

resolution feature maps and low-resolution feature maps. Spatial resolution is usually decreased

through the model by using maximum or minimum pooling layers or by performing convolu-

tions with strides larger than one. While lowering spatial resolution means the fine details are

lost, the model is able to focus more on the semantic meaning of the inputted information. One

of the popular neck implementations is called Feature Pyramid Network (FPN) [45]. This idea

was used as a baseline for the development of many other approaches for combining feature

maps of different resolutions, such as PANet [84] and BiFPN [76]. Combining fine-grained

details from earlier feature maps with semantic information from deeper layers improves the

network’s performance and allows easier and more natural image analysis on different scales.

An illustration showing an object detector’s building blocks is shown in Figure 3.1. After the

Figure 3.1: An illustration of object detector’s main components.

multiscale features were extracted from the image using the backbone and neck of the model,

they need to be fed into a detection head that will perform the actual classification and localiza-

tion of the objects. A detection head can perform object classification and localization in one

step (one-stage detectors) or two steps (two-stage detectors). With two-stage detectors such as

the Faster-RCNN family [23, 85, 86, 87, 88], rough locations of the objects are first estimated.

This estimation is done by the Region Proposal Network (RPN) which relies on features ex-

tracted by the backbone, and a dense grid of initial rough guesses about the possible regions

of interest called anchors. Anchors are defined and placed in a way that covers the image with

tens of thousands of bounding boxes with varying aspect ratios and scales. This dense grid of

anchors is, together with the feature maps outputted by the neck, fed into the detection head as
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Figure 3.2: An illustration of the data inputted to the detection head.

shown in Figure 3.2. Anchors that probably contain some object are separated by the RPN and

the shapes and locations of the selected anchors are refined by the network to obtain regions

of interest. These are just the class-agnostic areas of an image that have a higher probability

of containing an object. Regions of interest are then fed to a Region of Interest Pooling (ROI

Pooling) layer together with the feature maps from the backbone. ROI Pooling divides the re-

gion of interest into smaller sub-windows and performs a pooling operation in each of these

sub-windows. This layer is a special type of Spatial Pyramid Pooling (SPP) [89] layer, so the

outputted features are of fixed size regardless of the input size. Finally, the calculated features

are fed into branches for classification and regression. These branches will refine the regions

of interest into the final predictions by discarding the regions without the object and fine-tuning

the locations of regions that contain an object. The classification branch determines the cat-

egory to which the detected objects belong. The described working principle corresponds to

the way the Faster-RCNN works. Some other two-stage detectors have a different architecture

and use slightly different approaches to perform object detection. The two-stage approach has

additional computational complexity compared to the one-stage detectors. Despite that, it was

for a long time a preferred approach in cases where accuracy was the deciding factor. Lately,

some problems that were present in the early one-stage object detectors were solved and this

allowed the one-stage object detectors to achieve state-of-the-art results [76, 77].

One stage detectors directly classify and localize objects in an image. This is again done

by having a dense grid of anchors (also called priors, or default boxes). The principle is the

same as the one used by the two-stage detector’s RPN. The main difference is that for one-stage

detectors there is no additional refinement, so the detection head must directly produce the final

prediction from the anchors. This includes both the classification and localization tasks. An-

chors’ shapes and sizes as well as their placement on top of the image are determined from the
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hyperparameters. This can have a huge impact on the model’s performance. As seen in Equa-

tion 3.2 both the localization and the classification losses used during the training depend on

the anchors that are selected during the training. The development of one-stage object detectors

took off with the introduction of SSD [31] and YOLO [90] architectures. Many state-of-the-art

models were later built by upgrading upon these architectures. Some examples that were created

by upgrading SSD are DSSD [91] RetinaNet [92], RefineDet [93], and EfficientDet [76]. Ex-

amples of architecture that derive from YOLO include YOLOv2 [94], YOLOv3 [32], YOLOv4

[77], and YOLOv5 [95]. The improved versions of object detectors usually introduce ideas from

other related computer vision tasks, such as image classification. For example, introducing lay-

ers from image classification models such as Batch Normalization or using some novel data

augmentation techniques. Besides applying existing ideas to object detection, some publica-

tions also focus on redesigning the components of object detectors such as architecture’s neck,

which was improved in EfficientDet. Despite the differences among these object detectors, their

working principle is similar. One-stage detectors all rely on predicting the locations and classes

from anchors. On a high level, this can be considered as a modernized and better-optimized

version of a traditional sliding window approach. For each window (anchor), the model needs

to predict whether it contains an object and if it does to which category it belongs. Furthermore,

the locations of objects are predicted as offsets relative to the corresponding anchors. The loss

function used in SSD architecture [31] is shown below to explain how the optimization process

is used to train one-stage object detectors. The overall loss function of a one-stage object de-

tector is usually expressed as a weighted sum of localization and classification loss functions:

Lloc(x, l,g) =
1
N
(Lcon f (x,c)+αLloc(x, l,g)) (3.2)

where: xp
i, j = indicator for matching the i-th anchor box to the j-th ground truth box of class p

l = predicted bounding box

g = ground truth bounding box

α = weight of localization error

An example of the classification loss function is the cross-entropy loss:

Lcon f (x,c) =−
N

∑
i∈Pos

xp
i, j log(ĉp

i )−
N

∑
i∈Neg

log(ĉ0
i ) (3.3a)

ĉp
i =

exp(cp
i )

∑p exp(cp
i )

(3.3b)
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where: xp
i, j = indicator for matching the i-th anchor box to the j-th ground truth box of class p

c = predicted class confidence

Localization error:

Lloc(x, l,g) =
N

∑
i∈Pos

∑
m∈{cx,cy,w,h}

xp
i, jsmoothL1(lm

i − ĝm
j ) (3.4a)

ĝcx
j = (gc

jx−dc
i x)/dw

i (3.4b)

ĝcy
j = (gc

jy−dc
i y)/dh

i (3.4c)

ĝw
j = log(

gw
j

dw
i
) (3.4d)

ĝh
j = log(

gh
j

dh
i
) (3.4e)

where: xp
i, j = indicator for matching the i-th anchor box to the j-th ground truth box of class p

smoothL1 = smoothed L1 error

l = predicted bounding box

g = ground truth bounding box

d = anchor box

cx,cy = center coordinates of a bounding box

w,h = width and height of a bounding box

As it can be seen from the equations, both the localization and classification losses depend on

chosen positive anchors. The chosen anchors are the ones for which the variable x has value

one. Usually, the positive anchors are the ones that overlap with the ground truth label by more

than some threshold. This overlap is calculated as intersection over union metric (Jaccard in-

dex). Additionally, if some ground truth label does not have an anchor that overlaps by more

than the defined threshold, an anchor that fits the best to the ground truth is used (even if its

overlap is smaller than the threshold). Proper anchor shapes lead to more sampled anchors and

better initial guesses of the object appearances, and are thus very important hyperparameters.

In [94] the authors proposed the usage of K-means clustering on training annotations in order
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to compute good anchor shapes. There were also attempts to optimize anchors for other ob-

ject detectors [96, 97, 98]. Optimization of anchors is especially important in cases where the

objects are extremely elongated. If the objects have an extreme aspect ratio, default anchors

settings will not produce enough matched anchors for training and will thus negatively impact

the detector’s performance. Extreme aspect ratios are common in ultrasonic images due to the

angle of data acquisition. When the probe transmits ultrasonic waves at large angles (for exam-

ple 60°-80°) the defects and other structures will appear elongated in the resulting image and

can have an aspect ratio greater than 10. This is why a significant portion of the work in this

thesis was dedicated to the development of proper anchors design, placement, and matching.

Another option, that would implicitly solve this problem, is the generation of additional

training data. If due to imperfect anchor hyperparameters there aren’t enough sampled positive

samples for training, the problem may partially be mitigated by generating more training im-

ages. This would in turn increase the total number of anchors that are used during the model

training. Additional training images can be generated using different approaches, but the usage

of Generative Adversarial Network (GAN) - based methods stands out due to their ability to

generate highly-realistic images. Generating additional training examples also helps the model

training when the dataset is small, since the model sees more variations during the training. The

described idea was used in multiple works [99, 100] to improve the object detector’s perfor-

mance.

3.3 Object detection from sequences of images

Another goal of this work was the development of a method that can detect a defect on some

B-scan while using additional information from other images. The ultrasonic images can be

expanded to sequences which would increase the amount of information inputted into a model.

The sequences of ultrasonic B-scans can be formed in two ways: (I) stacking images acquired

for different scanning angles (horizontal axis in Figure 3.3) or (II) by stacking images in the

scanning direction (vertical axis in Figure 3.3). If the first option is used to create sequences,

object detection is somewhat similar to object detection in videos. The similarity stems from

the fact that the neighboring frames look alike, and some distant frames can influence predic-

tions made for some other frame. Modeling a long-term dependency between the frames can

thus be beneficial. The second described way of creating a sequence is not so similar to the

video sequence. The neighboring B-scans can be substantially different, and the important in-

formation will always be contained only in the space close to the target B-scan. Modeling a

long-term relationship between the B-scans of the sequence is unlikely to yield any improve-

ment in detection. This use case is more similar to the analysis of medical images than the

analysis of videos. A thorough search of the relevant literature did not yield any research ar-
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Figure 3.3: When analyzing ultrasonic B-scan, additional context can be obtained by looking at the same
material cross-section from a different angle, or by looking at the neighboring material cross-sections.

ticles related to the analysis of sequences of ultrasonic testing B-scans. This is not surprising

since most of the researchers do not have a large enough dataset to even train a deep learning

model for image analysis, and expansion to 3D would require even more data. The inspiration

for the development of methods for that task can still be found in some other domains and tasks

that are somewhat related to this topic. As mentioned before, video analysis and medical data

analysis are two tasks that share some properties with the defect detection from sequences of

UT B-scans. An overview of methods from these areas is given below.

Methods for object detection in videos: When detecting an object from sequences of

images, several approaches can be used. One simple approach is to post-process independent

detection from each frame with an algorithm such as SeqNMS [101]. SeqNMS uses high-

scoring object detections to increase the scores of related weaker detections from the nearby

frames within the same video. Other options try to combine features from different frames to

improve the precision. In [102] the authors use a flow-based approach to aggregate features

from different frames. The authors designed a network that estimates the flow field and uses

it to propagate features calculated from sparse key frames to other frames. This is much faster

than calculating features for each frame by CNN. Another option that is often seen is the usage

of 3D convolutional layers [103, 104]. The authors of [103] proposed a new architecture, called

I3D, that was developed to take advantage of pretraining the model on a large-scale dataset

as it is commonly done for image classification. Their model is built upon standard image

classification architectures but with filters and pooling kernels inflated into 3D. Later works

(S3D) [104] showed that it is possible to replace many of the 3D convolutions with low-cost 2D

convolutions. The authors concluded that the 3D convolutions are more useful at the end of the

network, where they enable temporal modeling between high-level semantic features. This also

has the additional benefit of making the network faster compared to the version that uses 3D
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convolutions at the beginning of the network. In [105] the authors propose a method that learns

to index into a long-term memory bank while performing object detection. The authors augment

the Faster-RCNN architecture by adding attention-based modules before the detection head.

This enables the model to incorporate features outputted by the region proposal network (RPN)

with the ones from the "memory bank". The combined features are then used to detect objects in

the current frame. The authors of [106] propose a Spatio-temporal Sampling Network (STSN)

that performs object detection on the current (reference) frame by using features calculated

from some other (supporting) frame. First, a CNN computes object-level features for each

video frame individually. Then, spatio-temporal sampling blocks are applied to the object-level

feature maps in order to sample relevant features from nearby frames. This part is done by

predicting a location offset from the combination of reference and support frame (target frame

and context), and then extracting the features from the supporting frame with a deformable

convolution. The sampled features are then aggregated into a single tensor, which is used as an

input to the detection network to produce final object detection results for the given reference

frame.

Ideas from the aforementioned works related to video analysis can be used as inspiration

when designing a method for UT B-scan sequence analysis. However, there are many differ-

ences between these two tasks, so the direct application of some method for video analysis

might not work that well for defect detection from sequences of UT B-scans. In video, there is

a temporal dimension with a strictly defined orientation of increment. Most of the methods for

object detection from the video are designed to work in real-time, which means that the future

frames can not be used for the analysis of the current frame. This is not the case for either of

the described ultrasonic sequences, since all of the B-scans can always be used to increase the

amount of inputted information. Also, the main problems encountered in object detection in

the video such as motion blur, video defocus, unusual poses, or object occlusions [106] do not

appear when analyzing sequences of UT images.

Methods for object detection in Medical data: A domain that is more similar to the one

investigated in this work is object detection from medical images. Unnatural images, small

datasets, irregular objects that are difficult to distinguish from the background are some com-

mon challenges found both in medical data analysis and UT data analysis. The authors of [107]

combined U-net and RetinaNet models to combine object detection with auxiliary semantic seg-

mentation task. The developed architecture was used for medical object detection from CT and

MRI data. The authors showed that additional training signals from the pixel-wise annotations

can successfully be used to improve the results. Tested object detectors were implemented to

work with both 2D and 3D input data. In [108] The authors designed a cascade framework

that first proposes regions or volumes of interest and then uses a CNN to classify all the can-

didates. The first part is designed in a way that maximizes sensitivity with the cost of higher
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false-positive calls. The false positives are then filtered by the CNN that analyzes features ag-

gregated from randomly sampled sets of 2D or 2.5D views. The authors test their approach

on several medical datasets (sclerotic metastasis detection, lymph node detection, and colonic

polyp detection). A similar approach was later used in [109]. However, the approach introduced

in this work is fully three-dimensional. The candidate regions are selected by a U-net-inspired

two-stage detector Faster-R-CNN that was modified to work in 3D. The false positives are then

reduced with a 3D DCNN. In [110] the authors propose a network that is able to incorporate

3D context when analyzing CT scans. Multiple neighboring slices are sent into a 2D detection

network to generate feature maps separately, which are then aggregated for final prediction. The

authors used R-FCN [87] as a starting point, and then make modifications necessary for it to

work with 3D context. This approach is similar to the approach used in Pub 5. In [111] the

authors develop a YOLO-based 2.5D fusion algorithm to localize individual 3D cells in densely

packed volumes. Their approach is based on the fusion of 2D detections from orthogonal planes

in 3D, which is then used to estimate the coordinates of the 3D bounding box. A similar ap-

proach was shown in [112] for the analysis of CT data. The authors propose a method that

localizes anatomical structures in 3D images by first determining their presence in 2D image

slices. In [113], the authors propose an optimized version of the SSD model for liver lesions

detection from multiphase CT data. The goal is to design a model that can use knowledge from

all the phases individually. This can not be accomplished by using standard convolutional lay-

ers, since the data distribution from each of the input phases is different. Instead, the authors

applied convolution with separate filters for each phase and then concatenate the outputs into

the resulting feature map. The authors then inserted an additional 1x1 convolution before the

detection head to fuse the information from different phases.

While the overview of detection methods from medical data given here is not exhaustive, it

is possible to get an idea about the main research directions. Most of the methods rely on feature

aggregation extracted from 2D views and usage of additional context to improve the detection.

The reason why this is the proffered way has mostly to do with the re-usability of existing

architectures for image classification and lack of data to properly train full 3D convolutional

networks. None of the mentioned methods for video analysis or medical data analysis were

directly used to analyze UT data, since there are some differences between these domains.

However, research works mentioned in this chapter served as an inspiration when designing a

network for defect detection from sequences of UT data.
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Chapter 4

Evaluating the performance of defect
detection methods

4.1 Ultrasonic testing dataset

To develop novel methods for the automated analysis of phased array ultrasonic testing (PAUT)

data, and to evaluate the performance of those methods, a dataset of such images must be

available. Unfortunately, there are currently no publicly available datasets of realistic PAUT

data. The only publicly available datasets are either artificially generated [24] or acquired with

a different ultrasonic testing setup [114, 115] instead of a phased array probe. We collected

the largest dataset of PAUT B-scans that was so far used in the literature in order to develop

and evaluate methods for automated analysis of ultrasonic images. A large dataset enables

the application of deep learning-based approaches and ensures the credibility of the achieved

results. The dataset was obtained by scanning several steel blocks with artificially placed defects

inside of them. The blocks were scanned with a phased array probe using the angles from 45°

- 79° with a two-degree increment. The blocks contained a total of 68 defects, and most of

them could be seen from various angles and scanning directions. This means that the same

defect appears on several B-scans, and its appearance slightly varies in each of those scans.

More than 4000 ultrasonic B-scans were collected and defects in those images were manually

annotated. More details about the dataset can be found in the publications attached to this thesis

(for example Pub 1). The methods proposed in this thesis were all developed and tested on

the same dataset in order to allow comparability among the used approaches. Our experiments

showed that the object detectors work a bit better when the pseudo-colored images are used as

an input instead of unprocessed grayscale images. This is why we used pseudo-colored images

in all publications except in Pub 3. Pub 3 uses a generative adversarial network to expand the

dataset of images for training and since the generation of grayscale images is easier, in that

work the original grayscale images were used for the experiments.
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4.2 Evaluation metrics

4.2.1 Accuracy, precision, recall

The evaluation metric used to numerically define the performance of the model depends on the

granularity of the algorithm’s output and the goals of the evaluation. In cases where an image

classification method is applied to analyze ultrasonic images, it is natural to also adopt com-

monly used metrics for the evaluation of image classifiers. For example, if an image classifier

is applied to determine whether an ultrasonic B-scan has a defect or not, the accuracy metric

can be used to quantify performance. It is important that the dataset is balanced if this metric is

used. Accuracy is defined as:

accuracy =
T P+T N

T P+FP+T N +FN
(4.1)

where: T P = Number of true positives

T N = Number of true negatives

FP = Number of false positives

FN = Number of false negatives

Positive class is usually defined as a class of interest, so in this case, images containing defects

would be positive examples. Correctly classified positive images are considered true positives.

Images containing defects that were classified as normal images are called false negatives. Im-

ages that do not contain defects are negative examples. Correctly classified such images are

called true negatives, and incorrectly classified such examples are false positives. When taking

into consideration the domain where the methods for automated defect detection are applied,

one can conclude that false negatives are much more serious than false positives. This is why

a different metric such as precision and recall might be more suitable. The precision metric is

similar to accuracy, but focuses only on the positive samples. It measures the percentage of true

positives among all the examples that were classified as positive examples:

precision =
T P

T P+FP
(4.2)

Another important aspect of some method’s performance is to numerically define how many

of the examples belonging to the important (positive) class were successfully classified. This

is what a recall metric is used for. The recall is determined by the percentage of the positive
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examples that some method was able to find from all of the positive examples:

recall =
T P

T P+FN
(4.3)

4.2.2 Mean average precision

Optimizing independently one of the aforementioned metrics is easier than optimizing their

combination. However, a method that has a 100 % recall is useless if the models simply always

predict the positive class. This is why, in practice, we want to measure some overall metric

that captures several of the aforementioned metrics. A metric that considers both precision

and recall can be calculated as the area under the precision-recall curve (PR curve). When

generalizing the described metric for the task of object detection, some additional aspects must

be considered. First, the definition of true positives, false positives, true negatives, and false

negatives must be slightly altered since the bounding boxes must also be taken into account. In

order to define a correct prediction, the overlap between the predicted bounding boxes and the

ground truth boxes must be quantified. This is usually done by calculating the intersection over

union (IOU):

IOU = (4.4)

If the IOU is larger than some threshold and the class of the predicted object is correct, the

prediction is considered a true positive. If the predicted bounding box does not overlap enough

with the ground truth bounding box or the predicted class does not match the actual class, the

prediction is considered a false positive. Ground truth bounding boxes that do not have matched

predictions are regarded as false negatives. True negatives would be all the other possible

bounding boxes that can be found in the image that do not overlap with the annotated objects.

There can be an infinite number of such boxes, so this value is usually discarded when analyzing

the object detection results. Alternatively, one can consider all the anchors that were correctly

classified as the background class to be the true negatives. In practice, this would mean that

tens of thousands of correctly classified negative anchors are considered as true negatives (if an

object detector works well). Since accuracy depends on the number of true negatives, it is not

an appropriate metric for evaluating object detection methods. Object detection is not limited

to the detection of only one type of object. It is much more common that the object detector

must be able to distinguish between multiple objects and to be able to localize all of them

in the image. To calculate the performance of an object detector for this task, the previously
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mentioned area under the PR curve metric can be expanded to work with multiple classes. A

mean average precision metric is used for this. It is calculated in the following way:

1.Sort prediction of a model by the confidence and assign them to the matching ground

truth

2.Each prediction that has an IOU greater than some threshold (usually 0.5) and has a

correct class is matched to the ground truth.

3.The prediction is correct (true positive) only if the ground truth was not already assigned

to some other prediction. Otherwise, the prediction is considered a false positive.

The result of the described procedure is a list of predictions, both correct and wrong, that are

sorted by their confidence. A precision-recall curve can be plotted by gradually taking examples

from the list. The recall will either increase or stay the same as more examples are taken from

the list. The precision can either increase or decrease, and usually the precision-recall curve

will have a zigzag shape depending on the number of TP and FP that are found in each of the

sampled lists. To reduce the influence of these small variations in precision, the PR curve needs

to be smoothed before calculating the average precision. This is done by replacing each of

the precision values with the maximum precision value to the right of the current value (future

precision values obtained for higher recall values). Illustrations of PR curves before and after

the smoothing is shown in Figure 4.1. The average precision (AP) is defined as the area under

the PR curve:

AP =
∫ 1

0
p(r)dr (4.5)

where: r = recall

p(r) = smoothed precision-recall curve

The smoothed curve is more commonly used for the calculation of AP and in that case, the

equation can be written in another way. The average precision can be calculated by summing

the areas of rectangle surfaces underneath the smoothed curve formed by sampling the curve in

points where the maximal precision was decreased:

AP = ∑
k∈K

(rk+1 − rk)pinter(rk+1) (4.6)

where: r = recall

pinter = smoothed precision-recall curve

K = list of indices for which the decrease of maximal precision occurred

Once the average precision is calculated for each class, a mean average precision (MAP)
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(a) before smoothing

(b) after smoothing

Figure 4.1: Precision recall curve

can be calculated. This metric is obtained by calculating the average performance across all

the classes. This metric is the most common metric for the comparison of object detectors on

popular public challenges such as PASCAL VOC[61], COCO[59], and ImageNet[60]. Since

defect detection in B-scans is an equivalent task to standard object detection, MAP is suitable

to determine the performance of defect detectors.

4.2.3 Probability of detection

Since the topic of this thesis is the application of object detection methods for defect detection

of ultrasonic testing images, it is important to mention another evaluation approach called the

probability of detection (POD) [26, 27, 116]. This metric is more tightly related to the NDE do-

main, and it is often used to determine the overall reliability of the whole inspection procedure.

This includes the hardware for acquisition as well as the analysis of the data done by the human

inspectors. However, a unique way of POD approach does not exist, instead, a number of evalu-

ation methods that are distinguished for example by the signal inputs or used statistical methods
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[116] are used in practice. The drawback of the previously described MAP metric is that it does

not take into account the defect sizes. A defect’s size is an important factor, since the severity

of the problem that can be caused by the material failure depends primarily on the dimensions

of the found defect. When a method for automated defect detection is used, it analyzes all the

angles, so a defect’s size in pixels can vary a lot. A defect with a smaller physical size can

sometimes appear bigger on a B-scan compared to a defect with a smaller physical size. Also,

if the test dataset is small, it is possible to achieve great results even though the actual perfor-

mance on new cases might significantly vary. For example, if only one defect is contained in the

test set, a model can achieve a perfect score but the model’s performance on new cases is highly

uncertain. Probability of detection (POD) is a tool based on the advanced statistical analysis

of the obtained detection results, used to calculate the reliability of inspection procedures with

sufficient certainty. An example of this metric is hit/miss POD. It is calculated from the list of

flaws, their sizes, and hit/miss label indicating whether a flaw was successfully detected or not.

This type of POD curve is plotted by placing the flaw sizes on the x-axis and the corresponding

probability of detections on the y-axis. A logit/probit curve can then be fitted to the data and

the interval for a specific confidence level can be found. A point from this curve will deter-

mine the smallest flaw a procedure can reliably detect. A commonly used threshold is a90/95

[24, 28, 117]. This means that the probability of detection must be over 90% with the confidence

of the obtained results of at least 95%. An example of such a curve is shown in Figure 4.2. The

plot shows that the smallest flaw that can reliably be found is 2.1 mm because this value on the

x-axis is obtained for the y-axis value corresponding to a 90% probability of detection in the

lower bound of the 95% confidence curve. The main drawback to this evaluation metric is the

large number of flaws that are needed to perform the analysis. Also, the threshold discussion

and complex relationships between the NDE response and the defect might make it impossible

to use POD analysis in a regular way [116]. If the hit/miss POD analysis is performed for an

image classification method that analyzes individual B-scans as done in some previous works

[24, 28] a criterion for hit/miss is straightforward. If the model correctly classifies a B-scan

with a defect, the prediction is regarded as a hit, if the model falsely classifies such B-scans it

would be considered a miss. However, in our use case where the PAUT data is analyzed with

object detectors, there are many additional criteria that need to be determined. How much does

the predicted bounding box need to overlap with the ground truth to mark a detection as a hit?

How to ensure that the ground truth bounding boxes are completely correct and would not be

annotated differently by another inspector? If a defect appears on multiple B-scans, how many

of its appearances need to be detected for it to be considered a hit? What to do with borderline

cases where the defect’s signal is barely visible, and a human inspector would also not be able

to make a decision without looking at additional data? These questions make the usage of POD

very challenging, and they ultimately prevented the usage of POD analysis in the publications
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Figure 4.2: Illustration of the probability of detection (POD) curve. The intersection of the black dashed
lines determines the flaw size that has a probability of detection of 90 % with the 95% confidence (a90/95)

in this thesis. Instead, a mean average precision was used, but with some additional analysis

done in Pub 1 that showed the reliability of the proposed methods and enabled the readers to

clearly see how many of the defect’s appearances were detected.

35



Chapter 5

Main scientific contributions of the thesis

The main scientific contributions of this thesis are: (I) deep learning-based method for detection

of defects with extreme aspect ratio with results disseminated in [Pub1], [Pub2], and [Pub3];

(II) deep learning-based method for defect detection by simultaneous analysis of multiple ultra-

sound images with results disseminated in [Pub4], and [Pub5].

5.1 Deep learning-based method for detection of defects with

extreme aspect ratios

Deep learning object detectors achieve good results when applied to general object detection

on natural scenes. The techniques like transfer learning [118] and data augmentation [119], al-

lowed researchers to leverage the good performance of these detectors and apply them to other

domains. However, the application of deep learning object detectors for defect detection in ul-

trasonic images was hindered by the lack of realistic datasets. A thorough search of the relevant

literature did not yield any research articles before [30] that applied deep learning object detec-

tors for defect detection from ultrasonic images. Usage of deep learning is fairly new in this

domain, and the lack of public datasets prevents realistic comparison of the published methods.

As stated earlier, the focus of this thesis is on the application and development of one-stage

object detectors for defect detection from ultrasonic images. The first step in this process was

to establish baseline results and compare several of the top-performing object detections on a

large database of ultrasonic B-scans. This was one of the contributions of [Pub1]. A thorough

evaluation enabled comparison among the existing methods and gave insight into the reliabil-

ity of object detection methods when applied in UT data analysis. An additional contribution

of this work was a procedure for calculating the anchors’ hyperparameters. In Section 3.2 it

was shown that anchors’ design has a huge impact on object detector training, and the proper

setup of anchors can have a positive effect on the detector’s performance. The importance of

choosing the right anchors is highlighted when the objects that need to be detected have extreme
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aspect ratios, which is common in phased array ultrasonic (PAUT) images. If the default anchor

settings are used, the training can be difficult and the models sometimes do not even converge.

However, if the procedure from [Pub1] is used to calculate anchors’ hyperparameters, an im-

provement of almost 6% is achieved compared to the default model. Other valuable insights,

that revealed new research directions, were also presented in this publication. It was shown

that the smaller networks outperform bigger ones, which indicated that further improvement

might be achievable if more data was available or even simpler architecture was used. These

two hypotheses were explored in the follow-up works ([Pub3], and [Pub2]).

Since the acquisition of additional ultrasonic data is very expensive, in [Pub3] the additional

data was synthetically generated. While some previous works artificially generated UT data,

the used approaches were fairly simple and relied on copy-pasting of the defects into empty

background images. A better quality of the generated images can be achieved if a generative

adversarial network (GAN) is used. Additionally, if those images are to be used for improving

the precision of a deep learning object detector, it is useful to make certain modifications of

the standard GAN architecture. In [Pub3] it was shown that the GAN with additional object

detection discriminator network can be used to generate realistic new B-scans. Moreover, the

generated B-scans can be used as additional data when training an object detector and improve

the mean average precision by almost 6 %.

The second mentioned insight, regarding the possible benefits achieved by the simplification

of the used neural network, was explored in [Pub2]. A novel encoder-decoder-based feature ex-

tractor was designed and implemented while keeping in mind insights provided in [Pub1]. A

small number of parameters enables easier training on a small dataset and reduces computa-

tional complexity. The skip connections used in the network minimize the loss of information

that was noticed in [Pub1] by comparing the results of object detectors on various input im-

ages resolution. Furthermore, the feature network and the detection head of the architecture

proposed in [Pub2], were designed to enable dense placement of anchors on the x-axis of fea-

ture maps. This modification was proposed because some anchors calculated with the procedure

from [Pub1] had aspect ratio so extreme that the used anchors did not overlap and properly cover

the entire image. A DefectDet architecture proposed in [Pub2] achieved additional improve-

ments of both precision and inference time compared to the baseline EfficientDet-D0 model. It

was also shown that the proposed network outperforms other state-of-the-art architecture such

as YOLOv5 in terms of mean average precision.
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5.2 Deep learning-based method for defect detection by si-

multaneous analysis of multiple ultrasound images

Due to the nature of the acquired PAUT images, useful information for detecting defects is

often found across multiple B-scans. It is expected from the inspectors viewing monotone

sequences of images to often rewind and get a better view of suspicious signals. The inspectors

confirm their decision by looking at the same area of the material from various angles and

scanning directions. To ensure the reliability of the UT inspection, the data must be acquired

from various scanning angles and all of the data must be inspected. This prevents the cases

where the transmitted ultrasonic waves propagate parallel to a flat defect, which would result

in no reflection of the waves. This would ultimately mean the signal for this defect would not

be seen, and it would be missed during the analysis. The data is usually acquired for dozens

of angles. The dataset in this thesis, for example, has angles ranging from 45° up to 79° with

a two-degree increment. This also means a huge amount of similar data must be analyzed,

regardless of the way the analysis is performed (manual or automated).

In [Pub4] a novel approach for simultaneous analysis of UT B-scans acquired from different

scanning angles is proposed. The method from this publication is proposed to reduce the time

needed for the overall automated analysis by merging the data acquired for different scanning

angles. The method relies on the attention mechanism that determines which of the input angles

are the most useful, and then the images from those angles are given higher importance during

the data fusion. Since the images from different angles are fused inside the model, the automated

inspection can be performed in a number of steps equal to the number of the unique cross-

section. This means a significant (∼15 times) reduction of time needed for the analysis in a

real-life setting.

A different approach for analyzing sequences of ultrasonic images was presented in [Pub5].

The goal of the methods proposed in this publication was to improve the precision of a defect

detection model by using the additional information. The methods from [Pub1],[Pub2],[Pub3]

all rely on independent B-scan analysis. However, this strategy focuses only on the defect’s

visual similarity and ignores the "temporal" consistency. The temporal consistency, in this case,

refers to the dynamical alteration of the defect’s signal across neighboring cross-sections of

the material. In [Pub5], it was first shown that the simple expansion of the input does not

work well and that a more advanced approach is needed. Two novel methods were then pro-

posed to enable a one-stage object detector to leverage the additional context available when

the sequence of consecutive B-scan is analyzed. This was implemented by passing the con-

secutive B-scans through a feature extractor and feature pyramid network, and then combining

the obtained feature maps. For each input image, five feature maps of different resolutions are

calculated. Calculated feature maps contain high-dimensional information about the content
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in each of inputted B-scans. These feature maps are then combined using either a standard

convolutional layer or a combination of the convolutional layer with a long short-term memory

layer (ConvLSTM). Both of the proposed approaches work well and lead to a significant mean

average precision improvement compared to the standard EfficientDet model.
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3126-3134, doi: 10.1109/TUFFC.2021.3081750.
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Defect Detection by Merging Ultrasound B-scans from Different Scanning Angles”,

in Proc. of the 12th International Symposium on Image and Signal Processing and

Analysis (ISPA), Sep. 2021, pp. 219-224, doi: 10.1109/ISPA52656.2021.9552050.
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Chapter 7

Author’s contribution to the publications

The results presented in this thesis are based on the research carried out during the period of

2018-2022 at the University of Zagreb Faculty of Electrical Engineering and Computing, mostly

as a part of the research project SMART UTX: Smart modular system for ultrasound diagnostics

in extreme conditions. This research was co-funded by the European Union through the Euro-

pean Regional Development Fund, under the grant KK.01.2.1.01.0151 (Smart UTX). The thesis

includes five publications written in collaboration with the coauthors of the published papers.

The author’s contribution to each paper consists of the conceptualization of novel methods,

data curation and preparation, software implementation, performing the required experiments,

results analysis, text writing, and presentation.

[Pub1] In the paper "Automated Defect Detection From Ultrasonic Images Using Deep
Learning" the author proposed usage of deep learning object detectors for analysis of UT im-

ages following conclusions from several related works about the superiority of deep learning

approaches compared to traditional approaches. An important part of the work was to collect

and annotate the largest database of real ultrasonic B-scans that was until then used in the lit-

erature. This was done to ensure the credibility of reported results. Upon manual annotation

of over 4000 images, the author implemented several state-of-the-art object detectors and com-

pared their performances. A novel method inspired by previous work was proposed to calculate

networks’ hyperparameters related to anchors’ shapes. Using this method, a significant im-

provement of mean average precision (MAP) was achieved. Finally, to prove the reliability of

the proposed method, a thorough evaluation was performed.

[Pub2] In the paper "DefectDet: a deep learning architecture for detection of defects
with extreme aspect ratios in ultrasonic images" the author proposed a novel deep learning

architecture for defect detection in ultrasonic B-scans. This work was done as a continuation of

[Pub1], and solutions to several previously noticed shortcomings were proposed. First, to tackle

the problem of a small dataset, a novel simpler feature extractor based on an encoder-decoder

network was proposed and implemented by the author. A novel feature extractor improved
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mean average precision while simultaneously reducing inference time. Additionally, the new

backbone reduced the loss of information when analyzing images of smaller resolution. The

author also proposed a novel detection head that was designed to improve the performance of

the detector when detecting objects with extreme aspect ratios, such as defects in ultrasonic

B-scans. It was shown that both of these components independently lead to improved MAP, but

the merits were even bigger once the two components were merged into a new deep learning

network that was named DefectDet.

[Pub3] In the paper "Generative adversarial network with object detector discrimina-
tor for enhanced defect detection on ultrasonic b-scans" a different approach was used to

tackle the problem of small datasets of UT B-scans. A generative adversarial network (GAN)

was used to artificially expand the dataset by generating B-scans that contained defects on po-

sitions defined by the input masks. Generated images were then used in combination with the

original image to improve the MAP of the YOLOv3 object detector. In order to develop GAN

that generates images that are useful for object detection training, YOLOv3 was used as an ad-

ditional discriminator during the GAN training. The author’s contribution to this work includes

the development of a new object detector, performing experiments, and paper reviewing and

editing.

[Pub4] In the paper "Rapid Defect Detection by Merging Ultrasound B-scans from Dif-
ferent Scanning Angles" a novel approach for simultaneous analysis of B-scans acquired at

different angles is proposed by the author. The main motivation behind analyzing images from

multiple scanning angles is to improve the precision or to reduce the overall needed time for

data analysis. Even when the UT data analysis is performed in an automated fashion using some

algorithm that is run on the computer, it can still take a long time if the amount of data is huge.

This is often the case with phased array data, where the scans are acquired from many different

angles. The author proposed a new model that uses an attention mechanism to determine which

of the input angles the object detectors should focus on. The input images are then merged in a

way that preserves information from scans for which the model previously determined that are

more important. It was shown that the proposed approach analyses UT data achieves similar

precision and it is around 15 times faster compared to the traditional approach where the images

are analyzed independently.

[Pub5] In the paper "Deep learning-based defect detection from sequences of ultrasonic
B-scans" the author proposed two novel methods for analyzing sequences of UT B-scans. The

proposed architectures were designed to enable object detectors to look at the surrounding area

of some B-scan. Human inspectors also do this when performing the analysis since it enables

them to confirm their decision. The defect usually spans across several B-scans that display

neighboring cross-sections of the inspected material. However, a simple expansion of the deep

neural network input to work with several neighboring B-scans does not lead to improvement.
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More complex approaches that are based on high-dimensional feature maps merging are needed

and their usage improves MAP. The author designed and implemented two of such methods and

experimentally proved the benefits of their application.
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Conclusions and future directions

Currently used procedures for ultrasonic testing data analysis still rely mostly on the knowledge

and experience of the human inspectors. It takes years of practice and training for a human oper-

ator to acquire the skills needed to perform the analysis of the UT data. Even then, the decision

made by humans can be subjective and prone to error, especially in cases where a large amount

of data needs to be analyzed, which leads to fatigue of the inspectors. The procedure used by

the inspectors can not be explicitly expressed as a set of rules, which makes the development of

methods for automated UT data analysis difficult. The development of methods for automated

analysis flourished recently due to many improvements made in the deep learning area. Deep

learning methods are very promising in this field since they can implicitly learn to detect defects

by training on large amounts of labeled images. Their generalization abilities are a lot better

than those of the traditional approaches and in some works, their performance was on par with

the human-level performance. However, directly applying the existing deep learning architec-

tures for this task will not enable the usage of the full potential of deep learning models. In a

series of publications attached to this thesis, novel deep learning object detectors were designed,

taking into account the application domain. A thorough evaluation was performed to prove the

merits of each individual solution. The novel models, components, design choices, and training

procedures that are proposed in these publications can also be used jointly. This enables the

creation of the ultimate UT defect detector, which is lightweight, fast, reliable, works well with

the objects of extreme aspect ratios, and is able to use additional context when detecting defects.

While the contributions presented in this thesis bring the automated analysis of UT data

to a new level, there is still room for progress. The advances of deep learning methods in

the NDE domain will probably come by improving the three building blocks of deep learning-

based defect detection: the data, the used method, and the evaluation procedure. In this work,

calibration blocks were scanned to acquire the UT data that was used for the development and

evaluation of automated analysis methods. There are many other common use cases where

deep learning could be applied such as the analysis of bolts, welds, pipelines, etc. Also, the
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information inputted into an automated analysis model can be enriched by providing the actual

positions in 3D space, or by using the data acquired from different directions (skews). Another

option is to fuse the UT data with the data obtained by some other NDE technique. The second

direction of improvement should be focused on the new method. This can be either in the form

of introducing new tasks such as anomaly detection, next frame prediction, 3D data generation,

and similar, or by applying a novel method for some existing task like the usage of transformers

networks for detection of defects. Further research in this area will enable the application

of state-of-the-art deep learning models and techniques and can lead to further improvement.

Finally, to objectively measure the achieved improvement, a suitable metric must be considered.

Currently used metrics such as ROC, MAP, and POD all have some disadvantages when used

independently to evaluate an automated method for image analysis in the NDE domain. This

was also noticed by other researchers and with the development of NDE 4.0 proper evaluation of

AI-based solutions will require more attention. In this thesis, the MAP was used for evaluation,

but additional metrics such as POD should be calculated and the proposed methods should be

tested in a real environment before they can be used to assist the human experts in the field

inspections.
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Automated Defect Detection From Ultrasonic
Images Using Deep Learning

Duje Medak , Luka Posilović , Marko Subašić , Member, IEEE, Marko Budimir , Member, IEEE,
and Sven Lončarić , Member, IEEE

Abstract— Nondestructive evaluation (NDE) is a set of
techniques used for material inspection and defect detec-
tion without causing damage to the inspected component.
One of the commonly used nondestructive techniques is
called ultrasonic inspection. The acquisition of ultrasonic
data was mostly automated in recent years, but the analy-
sis of the collected data is still performed manually. This
process is thus very expensive, inconsistent, and prone
to human errors. An automated system would significantly
increase the efficiency of analysis, but the methods pre-
sented so far fail to generalize well on new cases and are not
used in real-life inspection. Many of the similar data analysis
problems were recently tackled by deep learning methods.
This approach outperforms classical methods but requires
lots of training data, which is difficult to obtain in the NDE
domain. In this work, we train a deep learning architecture
EfficientDet to automatically detect defects from ultrasonic
images. We showed how some of the hyperparameters can
be tweaked in order to improve the detection of defects with
extreme aspect ratios that are common in ultrasonic images.
The proposed object detector was trained on the largest
dataset of ultrasonic images that was so far seen in the
literature. In order to collect the dataset,six steel blocks con-
taining 68 defects were scanned with a phased-array probe.
More than 4000 VC-B-scans were acquired and used for
training and evaluation of EfficientDet. The proposed model
achieved 89.6% of mean average precision (mAP) during
fivefold cross validation, which is a significant improvement
compared to some similar methods that were previously
used for this task. A detailed performance overview for
each of the folds revealed that EfficientDet-D0 successfully
detects all of the defects present in the inspected material.

Index Terms— Automated defect detection, deep learn-
ing, flaw detection, ultrasonic image analysis, ultrasonic
testing (UT).

I. INTRODUCTION

NONDESTRUCTIVE evaluation (NDE) is a set of tech-
niques used for material evaluation and defect detection

in industry and science [1]. These methods do not damage the
inspected material, which makes them perfect for continuous
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monitoring of critical components of some systems. NDE
methods are used in aeronautics, oil and gas industry, various
power plants, and other industries where it is crucial to detect
material flaws in time in order to prevent further damages and
disasters. A variety of NDE methods are used: ultrasonic, eddy
current, thermography, and X-radiography, to name a few.
Some of the advantages when using ultrasonic testing (UT)
include simple usage, precise extraction of the defect loca-
tion [2], and the ability to evaluate the structure of alloys of
components with different acoustic properties [3]. UT employs
a diverse set of methods based on the generation and detection
of mechanical vibrations or waves within test objects [4].
One of the commonly used types of probes is called a
phased-array probe. A phased-array probe is a multichannel
ultrasonic system, which uses the principle of a time-delayed
triggering of the transmitting transducer elements, combined
with a time corrected receiving of detected signals [5]. Using
a phased-array probe increases the reliability of inspections
since the material is inspected from various angles. During
an inspection, a probe is moved along the surface of the
inspected component. At each position, the probe transmits
and receives ultrasound energy. The amount of received energy
is usually shown as a function of time in the representation
called A-scan. Multiple A-scans are obtained when the probe
is moved along one axis. The sequence of A-scans can then
be visualized as an image called B-scan. Each column from
the B-scan is obtained from the A-scan by converting the
amplitude at a specific point in time into pixel intensity. The
dimension of the inspected component and the resolution of
the inspection determine the width of the B-scan. It is common
to see B-scans that were created from several hundreds of
A-scans. Other representations of UT data, such as volume
corrected B-scans (VC-B-scans), C-scans, and D-scans, are
also often used during the analysis. Some of the mentioned
representations are shown in Fig. 1.

The acquisition of the UT data was mostly automated
in recent years, but the analysis of the acquired data is
still performed manually by trained experts. The amount of
data that needs to be analyzed is immense, especially when
a phased-array probe is used. The success of the analysis
depends solely on the analyzer’s knowledge and experience
making this process prone to errors. Many efforts were made
in order to develop methods that could assist the analyzers in
the defect detection process.

The most popular approach for the automated analysis of
ultrasonic data in NDE is based on the wavelet transform

1525-8955 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. Examples of different ultrasonic data representations. Top left:
A-scan. Beneath it is the C-scan representation. Right: B-scan (top) and
volume corrected B-scan (bottom).

of A-scans. Coefficients from the transformation can then
be used as an input to some classifiers, such as artificial
neural networks (ANNs) [6], [7] or support vector machines
(SVMs) [8]–[11]. This approach works well when the dataset
is limited since the feature extraction is predefined and the data
samples are used solely for classifier training. Different kinds
of transformations, such as Fourier transformation or Cosine
transformation, can also be used in the feature extraction step
as shown in [12]. Usage of a special type of neural network
called convolutional neural network (CNN) is becoming more
popular in recent years for the analysis of sequences and
grid-like representations of the data. Some works [13], [14]
showed that methods based on CNN achieve good results when
applied for UT data analysis. While many authors achieved
good results, datasets that were used for evaluation contained
only a few thousand or even a few hundreds of A-scans.
When an inspection is performed in a real-life situation,
millions of A-scans are usually acquired. A small dataset
containing only a fraction of that amount can hardly capture
all the possible appearance variations of the signal. The main
drawback of A-scan analysis is the lack of context from the
surrounding area. Distinguishing between geometry, noise, and
defect signals would be considerably easier if the information
from the surrounding A-scans would be available.

This problem is solved if B-scans are used for the automated
analysis. In this case, the spatial information from the sur-
rounding area is available. This extra information can be used
to improve defect detection while reducing the number of false
positives (FPs). The wavelet transform that was commonly
used for A-scan analysis also proved to be a useful tool
when dealing with images. Cygan et al. [15] first denoised
images using the wavelet transform and then performed defect
detection using the Radon transform. In [16], the wavelet
transform was used for feature extraction. The authors also
tried Gabor filters but determined that the wavelet transform
achieves better results. The authors of that work used Fuzzy
C-Mean clustering to classify extracted features. With the
development of deep learning models, new approaches for
the image analysis of the UT data based on CNNs appeared.
Ye et al. [2] compared a CNN with the traditional approaches
that use handcrafted descriptors in combination with SVM.
The authors demonstrated that the CNN-based approach yields
superior results. Some recent works [17]–[19] also showed that

CNN architectures can successfully be applied to analyze the
UT data. Virkkunen et al. [17] showed that a custom CNN can
be trained on artificially generated data. The performance of
this approach was compared with the human expert’s perfor-
mance of detection and the authors concluded that automated
analysis using the deep learning approach works better and
has a higher probability of detection (POD). However, this
approach was not tested on a real (nongenerated) dataset of
B-scans. In [18], it was demonstrated how the data needed for
the training of a deep learning architecture can be simulated.
The authors used simulated data to train a network for crack
characterization. The proposed deep learning approach was
compared to the 6-dB drop method. The deep learning model
was able to size 97% of the tested defects of lengths 1–5 mm
within ±1 mm, while the 6 dB method could only size 48%
of the defects. In [19], real B-scan data were used to train
popular object detectors. To deal with a limited amount of data,
the authors used the pretrained architectures YOLOv3 [20]
and SSD [21] and performed heavy data augmentation during
the training. Even though the achieved results were good,
the amount of testing data was very small (only 98 images).

In this work, we perform defect detection with EfficientDet
architecture, a state-of-the-art object detection algorithm that
was not used for this problem before. EfficientDet belongs
to the one-stage family of detectors, meaning that the objects
are searched in the predefined rectangles called anchors or
default boxes [21]. Anchors are rough guesses about the
objects’ dimensions and positions in the image. The shapes
and positions of the anchors are determined from the hyper-
parameters provided during the training. We propose a novel
procedure for calculating anchors’ hyperparameters values in
order to improve the detection of defects with extreme aspect
ratios that are common in UT images. To the best of our
knowledge, detection algorithms with the ability of defect
localization from UT B-scan were only previously shown
in [19]. We compared EfficientDet with the best performing
method from that work, YOLOv3. In addition, we also made
a comparison with the RetinaNet, an improved version of
the other method used in that work, SSD. We showed that
some previous works used CNNs for defect detection, but the
approach proposed in this work has the following merits.

1) We are the first to employ a state-of-the-art object
detector EfficientDet on this task. We proposed a novel
procedure for calculating anchors’ hyperparameters and
demonstrated that using the calculated values improves
the model’s average precision by a significant amount.

2) We used the largest dataset of real UT B-scans for
training and evaluation that was used so far in the
literature (over 4000 images). The collected database
displays 68 unique defects that were created using
various methods. This ensures that the obtained results
represent a realistic performance of the proposed defect
detection method.

3) We divide our dataset into five disjunctive subsets (folds)
and perform fivefold cross validation [22]. We then
conduct a detailed analysis of model performance for
each of the folds. This is used to prove that the proposed
architecture is reliable enough to be used for automated
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Fig. 2. Illustration of the proposed approach. The input image is first padded to get a squared image and then resized to the network’s input size.
The preprocessed image is fed to trained EfficientDet [23] architecture. Finally, nonmaximum suppression and confidence thresholding are applied
to the model’s output to ensure that only relevant detections are kept.

defect detection. Performing such rigorous testing is the
most thorough evaluation that was so far done to test
the performance of a deep learning object detector for
defect detection from ultrasonic images.

II. MATERIALS AND METHODS

Fig. 2 shows a high-level illustration of the proposed
method. A VC-B-scan is padded to get an image of equal
width and height. The image is resized to 512 × 512 pixels and
fed into the EfficientDet object detection algorithm. The output
of the network is a list of bounding boxes and associated
confidences. Nonmaximum suppression is performed to ensure
that duplicate boxes are removed. Finally, by applying the
confidence threshold, we only keep the boxes with higher
probabilities.

A. Used Deep Learning Architecture

Deep learning object detectors can be divided into two
categories: one-stage detectors, such as YOLOv1 [24], SSD
[21], YOLOv2 [25], RetinaNet [26], and YOLOv3 [20], and
two-stage detectors, such as R-CNN [27], Fast-RCNN [28],
and Faster-RCNN [29]. One-stage detectors search for the
object’s presence at predefined positions. This is usually
implemented as a dense grid of rectangular-shaped areas where
the model decides for each area whether it contains some
particular object or not. Two-stage detectors first run a region
proposal algorithm and then classify only the proposed areas.
The number of areas that need to be classified is decreased,
but the overall complexity is increased because an extra step
for region proposal is needed. Two-stage detectors are usually
slower but more accurate compared to one-stage detectors, but
this accuracy gap was recently reduced. Reliability of defect
detection should always be the primary criterion for choosing
the proper model, but considering the amount of data that
needs to be analyzed, it would be beneficial if the used model
was fast. A good tradeoff between accuracy and speed is
offered by the EfficientDet model [23], which belongs to the
one-stage detector family.

This architecture was developed with computational effi-
ciency in mind. The authors created a base model

TABLE I
COMPARISON BETWEEN COMMONLY USED DEFAULT VALUES OF

ASPECT RATIOS AND SCALES WITH THE VALUES

WE USED IN THIS WORK

(EfficientDet-D0) that can be scaled up depending on the avail-
able resources. The family of EfficientDet models includes
a total of eight models (D0–D7). However, having a more
complex network does not always lead to an improvement,
especially if the objects are simple like it is in the case
with defects from the UT data. Experimental results that
we presented in Section IV show that the performance of
the smaller and faster EfficientDet-D0 model is better than
those of EfficientDet-D1 and EfficientDet-D2. Like other
one-stage detectors, EfficientDet searches for object presence
at predefined areas called anchors (default boxes). This dense
grid of rectangles covers a variety of different shapes. Every
anchor-based object detector needs a list of aspect ratios and
scales as an input to calculate the shape and size of anchors.
Object detectors predict the locations of the objects with
respect to these anchors. Having proper anchors hyperpara-
meters can speed up model training and improve accuracy.
There are several approaches [30]–[32] that can be used to
estimate good anchors hyperparameters, but it is often needed
to make some assumptions about the objects’ shapes so that
the calculation would be possible. When working with natural
images, most of the researchers simply use default values of
aspect ratios and scales for RetinaNet or EfficientDet. These
values are shown in Table I. Looking at Fig. 3, one can notice
that the aspect ratios of our bounding boxes are much more
extreme. We decided to calculate new values using K-means
with the Jaccard distance, as proposed in YOLOv2 [25].
Values obtained from this procedure can be used directly
for training the YOLOv3 model, but using them to train
RetinaNet or EfficientDet is not straightforward. Aspect ratios
and scales for RetinaNet and EfficientDet were calculated in
the following way.
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TABLE II
DATASET OVERVIEW

1) First, we used K-means with the Jaccard distance to
calculate five default shapes. This procedure calculates
which shapes of bounding boxes will on average fit
the best to the samples (after they are resized to the
input image size) from the dataset. The obtained widths
and heights are expressed as absolute values (in pixels),
so they need to be converted into a list of aspect ratios
and scales.

2) Aspect ratios can simply be calculated by dividing the
height of each shape by its width.

3) Determining scale requires knowledge about the detec-
tion process of EfficientDet. EfficientDet performs
object detection on five different scales. In order for
that to be possible, five feature maps (called P3–P7 in
the original publication [23]) of different resolutions
are used. Each of these feature maps has an assigned
template anchor size. Sizes of template anchors range
from 32 × 32 for the P3 feature map to 512 × 512
for the P7 feature map. We calculated the scales by
finding which of the template anchors is the most similar
to our shape. As a similarity measure, we used the
absolute difference between template anchor size and
the bigger side of our calculated shape. Once we know
which template anchor is the most similar, we can
calculate the scale factor by dividing the maximum size
of our shape by the anchor size. The described procedure
for scales calculation can be written mathematically as
shown in 1a and 1b.

4) To decrease the total number of anchors, we merged the
values of scales that were similar.

The final values are shown in Table I. It can be seen that
the calculated values greatly differ from the commonly used
default values. In Section IV, we proved that using these
values improves the performance of the EffcientDet model by
a significant amount

si = max(width(B Bi), height(B Bi))

BT Ai
(1a)

BT Ai = arg min
Tj

|max(width(B Bi), height(B Bi)) − Tj)|
Tj ∈ {32, 64, 128, 256, 512} (1b)

where
B Bi ith shape calculated using K-means.
Tj template anchor size.

B. Dataset

For the development and evaluation of the proposed method,
we used an in-house dataset. Creating test specimens with

artificial defects inside is a costly process. Companies have
to invest a fair amount of money for the acquisition of
those blocks as well as the equipment that is needed to
perform UT. It is only logical that they would like to keep
that data private in order to maintain their competitiveness
compared to other companies. Besides the dataset provided
in [17], which was artificially generated, there are no publicly
available datasets that could be used for the development
and evaluation of methods for UT analysis. Having a large
dataset ensures the credibility of the obtained results. It also
makes training of a large deep learning model (with tens
of millions of parameters) possible. The data used in this
work was obtained by scanning six stainless steel blocks.
Blocks contained between six and 34 defects. Defects were
artificially created using various methods leading to different
types of defects, such as side-drilled holes, flat bottom holes,
thermal fatigue cracks, mechanical fatigue cracks, electric dis-
charge machined notches, solidification cracks, and incomplete
penetration of the weld. The scanning was done using the
INETEC Dolphin scanner in combination with INETEC dual-
phased-array probe with 2 × 16 elements, element dimen-
sions 1.45 mm (pitch) × 1.3 mm (width), longitudinal wave,
the central frequency of 2.25 MHz, and the frequency average
bandwidth ≥70% at −6-dB gain. The collected data include
only the shallow parts of the blocks (up to 200 mm). After all
of the data were collected, multiple human experts analyzed
it and determined the positions of the defects. The location of
each defect was annotated by a bounding box. Even though all
of the positions of the defects were known from the blocks’
blueprints, manual annotation is needed to ensure that only
the visible defects will be labeled. One of the most important
questions about the experimental setup is how to split the
data. Using a hold-out method is the most common way to
test the performance of the model, but it is not the most
reliable. Even if unique images are contained in the test set,
they often represent some defects that already appeared in the
train set (but on the image from a different angle for example).
Having similar images in the train and test subset would lead
to an unrealistically good model’s performance. To provide
a fair evaluation, we decided to split all of our data into
five subsets (folds) where each fold contains unique defects,
as shown in Table II. This ensures that all of the images used
for testing as well as the defects that are displayed in those
images are unique and will not be used for training. Each
fold was made to contain approximately 20% of all available
annotations. The width of most of the original images is a lot
larger than their height. This can cause problems since some
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Fig. 3. Examples of the used VC-B-scans with ground-truth labels.

defects would not be easily seen after padding and resizing
the image. To avoid this, we split some of the images into
multiple patches. The resulting images have an aspect ratio
closer to 1, so the amount of needed padding is minimized.
The height of the images varies between 200 and 375 pixels,
while their width varies between 300 and 400 pixels. Defects
displayed in a B-scan usually appear slanted, so the bounding
boxes do not fit perfectly around them. Since each of the
acquired A-scans was taken at some angle and projected
into exactly one image column, B-scans do not display the
internal structure of the material realistically. If VC-B-scan
is used, each A-scan is transferred onto the image at the
same angle that the ultrasonic waves were propagated through
the material. This skews VC-B-scans as shown in Fig. 1,
but the orientations of the displayed defects are more similar
to the physical orientation of the defects inside of the material.
Even though image representation of UT data is naturally in
the grayscale colormap, B-scans are often colored for easier
manual inspection. We also used pseudo-colored images that
were exported using the INETEC SignyOne ultrasound data
acquisition and analysis software. A few example images from
the dataset are shown in Fig. 3.

III. EXPERIMENTAL SETUP

A. Model Training

We trained three representatives from the EfficientDet fam-
ily (EfficientDet-D0, EfficientDet-D1, and EfficientDet-D2).
We tried two approaches for weight initialization as follows:

1) randomly initialized weights;
2) weights from a model pretrained on COCO [33] dataset.

Using cross validation to evaluate the performance of the
model means that every model is trained five times. Each
time a different fold is left out as a test set, while the four
remaining folds are used to train the model. In addition,
we also left out 15% of the training subset for validation.
The validation subset was used to decrease the learning rate
on plateaus and early stopping of the training. The training

subset was augmented during the training, which is commonly
done to improve the generalization of the model and increase
precision. Following transformations were used: horizontal
flip, random crop, translation, and visual effects (contrast,
brightness, and color enhancement). We trained EfficientDet-
D0 with batch size 8 and 500 steps per epoch. EfficientDet-
D1 and EfficientDet-D2 were trained with batch size 4 and
1000 steps per epoch. All of the models were trained using
the Adam optimizer with an initial learning rate of 1e−3.
The training was performed on a single NVIDIA RTX
2080 Ti GPU on a machine with AMD Threadripper 1920X
and 128 GB of RAM. We compared the performance of
the EfficientDet model with two popular object detectors
YOLOv3 and RetinaNet (with ResNet [34] backbone). The
same hyperparameters (optimizer, batch size, number of steps,
and callback hyperparameters) as the ones used for the
EfficientDet-D0 model were used when training these models.
To have a fair comparison, these models were also pretrained
on the COCO dataset. We calculated anchors for YOLO using
K-means as described in [25]. For RetinaNet, we used the
same values as for EfficientDet (described in Section II).

B. Evaluation Metric

The mean average precision (mAP) metric as given in the
later versions of PASCAL VOC (2010–2012) [35] was used
as an evaluation metric. This is a common metric to compare
the performance of object detectors. The value of mAP is
determined by the area under the precision–recall curve.
In order to calculate the curve, the number of true positives
(TPs), FPs, and false negatives needs to be calculated first.
Each output detection of the model contains the coordinates
of the bounding box and a probability of that box containing
a defect. To determine which output predictions are TPs,
the intersection over the union between the predicted bounding
boxes and the ground-truth labels needs to be calculated. IOU
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TABLE III
MEAN AVERAGE PRECISION FOR DIFFERENT CONFIGURATIONS OF EFFICIENTDET-D0 MODEL

TABLE IV
MEAN AVERAGE PRECISION FOR EACH OF THE FOLDS. BOLD TEXT INDICATES THE BEST PERFORMANCE FOR THAT FOLD

is calculated as shown in the following equation:

iou = area(B Bpred ∩ B Bgt)

area(B Bpred ∪ B Bgt)
(2)

where

BBpred predicted bounding box.
BBgt ground-truth bounding box.

Predicted bounding boxes that have an intersection over
union (IOU) with some ground-truth label higher than 0.5 are
considered TPs. Predicted bounding boxes that do not have
matching ground-truth boxes are considered FPs, and the
ground-truth boxes that were not matched with any pre-
dicted bounding box are considered false negatives (FN). The
numbers of TPs, FPs, and false negatives are then used to
calculate precision and recall as shown in 3a and 3b

precision = TP

TP + FP
(3a)

recall = TP

TP + FN
(3b)

where

TP number of true positive predictions.
FN number of false negative predictions.
FP number of false positive predictions.

By changing the confidence threshold, we can get precision
values for different recall values and plot the precision–recall
curve. The area under that curve is used to compare the
performances of different models.

IV. RESULTS AND DISCUSSION

In order to determine the best configuration for EfficientDet,
we run a few experiments with different setups. Some of our
findings can be seen in Table III. We showed that calculating
aspect ratios and scales as proposed in this work improves

Fig. 4. Histogram of EfficientDet-D0 confidence scores and the density
estimate lines using a Gaussian kernel. Nonmaximum suppression with
a threshold of 0.3 was done before plotting.

the mAP by almost 6%. We also showed that using a smaller
input image resolution (384 × 384 pixel) decreases the model’s
performance even though most images from our dataset are
smaller than 384 × 384 pixel. We think that this has to
do with the architecture of EfficientNet that downsamples
the input image in an early stage, which leads to infor-
mation loss. Comparison of EfficientDet with YOLOv3 and
RetinaNet is shown in Table IV. We experimentally deter-
mined that RetinaNet performs better if the input images are
only padded, so we did not resize the images as we did
for EfficientDet and YOLOv3. Even the smallest baseline
model EfficientDet-D0, which performs worse than RetinaNet
on common benchmark datasets such as COCO [33] and
PASCAL [35], outperformed the best version of RetinaNet by
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Fig. 5. Detection results obtained with EfficientDet-D0 with confidence threshold 0.3. Each of the bars shows how many appearances of the defect
did the model detect. The color hue of the bar represents the maximum confidence from all of the detection for that defect. Best viewed in color.

more than 4%. EfficientDet-D1 and EfficientDet-D2 perform
worse than the baseline EfficientDet-D0 model. Besides being
the most accurate from all of the tested models, the smallest
architecture EfficientDet-D0 is also the fastest. The average
inference time of the used EfficientDet-D0 model on NVIDIA
RTX 2080 Ti GPU is 26 ms. We determined from the obtained
results that the EfficientDet-D0 is the most suitable choice
for automated defect detection. We did not make any mod-
ifications to the EfficientDet-D0 architecture that is specific
to the used hardware configuration, so we believe that this
architecture can also be applied for similar tasks in the other
NDE technologies. Due to the small number of parameters that
have to be trained, this architecture is also very convenient for
situations in which the number of available images is limited.

When the inference on the new data is performed, a con-
fidence threshold needs to be set to limit the number of FPs.
In Fig. 4, we showed how the confidences of the chosen
EfficientDet-D0 model relate to the number of FPs and TPs.
The Gaussian kernel density estimate lines are also shown
in the figure. This plot was calculated for one specific fold,
but similar distributions are obtained for other folds as well.
Each prediction that has an IOU overlap with the ground-truth
annotation greater than 0.5 was considered TPs. This definition
causes a small increase of the TPs for the small confidence
threshold values because several predictions are matched with
a ground-truth label. The confidence threshold is usually set
to 0.5, but looking at Fig. 4, we noticed that we could set
the threshold to a lower value without significantly increasing
the number of FPs. We set it to 0.3 because it is roughly the
value for which the ratio of TPs and FPs becomes greater

than one. Even if the confidence threshold of 0.3 is used,
some of the TPs will be removed, so it is important to test
whether the proposed model is able to detect all of the defects.
To determine this, we performed a detailed analysis for each
of the test folds. In Fig. 5, we showed exactly how many
times some defect from the test fold can be seen (how many
annotations of the same defect we have). We also showed the
number of detections when using the EfficientDet-D0 model
with a threshold of 0.3. The proposed model successfully
detected 87.5% of the annotations. However, it is important
to note that all of the defects have at least one detection,
meaning that none of the defects will pass undetected. In fact,
the EfficientDet-D0 detected on average 85.7% of appearances
of some defect. Undetected annotations are usually some bor-
derline cases for which the defect’s signal becomes too weak
and even the human operators would not annotate it if they did
not confirm their decision by looking at the block’s blueprints.
The percentage of FPs when using a threshold of 0.3 is 16.7%.
We think that this could be decreased by converting the pre-
dicted bounding boxes into real-life coordinates and perform-
ing some postprocessing/filtering. To compare the results with
the previous state of the art, we performed the same detailed
analysis for the YOLOv3 model. We set the object threshold to
0.3 even though this value is too low for YOLOv3 architecture
and causes a large number of FPs (almost 50%). Even with
such a low threshold, this model was not able to detect all
of the defects. There were two defects from the fold3 (defect
7 and defect 2) and two defects from the fold5 (defects 9 and
10) for which the YOLOv3 did not manage to detect any
annotations. Finally, we also tested the RetinaNet model with
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a ResNet152 feature extractor. We again used a confidence
threshold of 0.3, which resulted in 19% of false-positive
predictions. This model was also unable to detect all of the
defects. Defect 4 from the fold1 and defects 7 and 6 from
the fold2 did not have any detections. The presented results
show that using the proposed EfficientDet-D0 model not only
improves the mAP but also enables the detection of all of the
defects in the material.

V. CONCLUSION

Manual analysis of the UT data is a time-consuming and
laborious process prone to human error. In order to auto-
mate this process and help human experts with the analy-
sis, a reliable method must be developed. In this work,
we demonstrated that the EfficientDet-D0 architecture can
successfully be adapted to detect defects from images obtained
with a phased-array probe. We proposed a novel procedure for
calculating the anchors’ hyperparameters and showed that this
increases the performance of the network significantly. The
proposed EfficientDet-D0 model achieved an mAP of 89.6%,
which is an improvement of 9% compared to the previous
state-of-the-art architecture YOLOv3. While the presented
results prove that the EfficientDet-D0 successfully detects all
of the defects from the material, it would be useful to compare
its performance to the performance of human inspectors. This
can be done by performing a POD study, but such study goes
beyond the scope of this work. If proven to be equally reliable
as the human inspectors, methods similar to the one presented
in this work could soon be used in real-life situations in order
to assist the human operators with the analysis of the UT data.

REFERENCES

[1] L. Cartz, Nondestructive Testing: Radiography, Ultrasonics, Liquid
Penetrant, Magnetic Particle, Eddy Current. Materials Park, OH,
USA: ASM International, 1995. [Online]. Available: ht.tps://books.
google.hr/books?id=0spRAAAAMAAJ

[2] J. Ye, S. Ito, and N. Toyama, “Computerized ultrasonic imaging inspec-
tion: From shallow to deep learning,” Sensors, vol. 18, no. 11, p. 3820,
Nov. 2018, doi: 10.3390/s18113820.

[3] S. Davì et al., “Correction of B-scan distortion for optimum ultrasonic
imaging of backwalls with complex geometries,” Insight, J. Brit. Inst.
Non-Destructive Test., vol. 62, no. 4, pp. 184–191, Apr. 2020.

[4] D. Forsyth, “Nondestructive testing of corrosion in the aerospace
industry,” in Corrosion Control in the Aerospace Industry
(Woodhead Publishing Series in Metals and Surface Engineering),
S. Benavides, Ed. Cambridge, U.K.: Woodhead Publishing, 2009,
ch. 5, pp. 111–130. [Online]. Available: ht.tp://w.ww.sciencedirect.
com/science/article/pii/B9781845693459500050

[5] L. von Bernus, A. Bulavinov, D. Joneit, M. Kröning, M. Dalichov,
and K. M. Reddy, “Sampling phased array: A new technique for
signal processing and ultrasonic imaging,” in Proc. Eur. Conf. Non-
Destructive Test. (ECNDT), Berlin, Germany, 2006. [Online]. Available:
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.218.3412&
rep=rep1&type=pdf

[6] F. Bettayeb, T. Rachedi, and H. Benbartaoui, “An improved automated
ultrasonic nde system by wavelet and neuron networks,” Ultrasonics,
vol. 42, no. 1, pp. 853–858, 2004, doi: 10.1016/j.ultras.2004.01.064.

[7] S. Sambath, P. Nagaraj, and N. Selvakumar, “Automatic defect classi-
fication in ultrasonic NDT using artificial intelligence,” J. Nondestruct.
Eval., vol. 30, no. 1, pp. 20–28, Mar. 2011, doi: 10.1007/s10921-010-
0086-0.

[8] M. Khelil, M. Boudraa, A. Kechida, and R. Drai, “Classification of
defects by the SVM method and the principal component analysis
(PCA),” Int. J. Electr. Comput. Eng., vol. 1, no. 9, pp. 1–6, 2007, doi:
10.5281/zenodo.1060751.

[9] V. Matz, M. Kreidl, and R. Smid, “Classification of ultrasonic signals,”
Int. J. Mater. Product Technol., vol. 27, no. 3/4, pp. 145–155, 2006, doi:
10.1504/IJMPT.2006.011267.

[10] A. Al-Ataby, W. Al-Nuaimy, C. R. Brett, and O. Zahran, “Automatic
detection and classification of weld flaws in TOFD data using wavelet
transform and support vector machines,” Insight, Non-Destructive Test.
Condition Monitor., vol. 52, no. 11, pp. 597–602, Nov. 2010, doi:
10.1784/insi.2010.52.11.597.

[11] Y. Chen, H.-W. Ma, and G.-M. Zhang, “A support vector machine
approach for classification of welding defects from ultrasonic signals,”
Nondestruct. Test. Eval., vol. 29, no. 3, pp. 243–254, Jul. 2014, doi:
10.1080/10589759.2014.914210.

[12] F. C. Cruz, E. F. S. Filho, M. C. S. Albuquerque, I. C. Silva,
C. T. T. Farias, and L. L. Gouvêa, “Efficient feature selection for
neural network based detection of flaws in steel welded joints using
ultrasound testing,” Ultrasonics, vol. 73, pp. 1–8, Jan. 2017, doi:
10.1016/j.ultras.2016.08.017.

[13] M. Meng, Y. J. Chua, E. Wouterson, and C. P. K. Ong, “Ultrasonic signal
classification and imaging system for composite materials via deep
convolutional neural networks,” Neurocomputing, vol. 257, pp. 128–135,
Sep. 2017, doi: 10.1016/j.neucom.2016.11.066.

[14] N. Munir, H.-J. Kim, J. Park, S.-J. Song, and S.-S. Kang, “Convolutional
neural network for ultrasonic weldment flaw classification in noisy con-
ditions,” Ultrasonics, vol. 94, pp. 74–81, Apr. 2019. [Online]. Available:
ht.tp://ww.w.sciencedirect.com/science/article/pii/S0041624X18305754

[15] H. Cygan, L. Girardi, P. Aknin, and P. Simard, “B-scan ultrasonic image
analysis for internal rail defect detection,” in Proc. World Congr. Railway
Res., Oct. 2003, pp. 1–6.

[16] A. Kechida, R. Drai, and A. Guessoum, “Texture analysis for flaw
detection in ultrasonic images,” J. Nondestruct. Eval., vol. 31, no. 2,
pp. 108–116, Jun. 2012, doi: 10.1007/s10921-011-0126-4.

[17] I. Virkkunen, T. Koskinen, O. Jessen-Juhler, and J. Rinta-Aho, “Aug-
mented ultrasonic data for machine learning,” J. Nondestruct. Eval.,
vol. 40, no. 1, pp. 1–11, Mar. 2021.

[18] R. J. Pyle, R. L. T. Bevan, R. R. Hughes, R. K. Rachev, A. A. S. Ali,
and P. D. Wilcox, “Deep learning for ultrasonic crack characterization
in NDE,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 68,
no. 5, pp. 1854–1865, May 2021.
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a b s t r a c t

Non-destructive testing (NDT) is a set of techniques used for material inspection and detection of defects.
Ultrasonic testing (UT) is one of the NDT techniques, commonly used to inspect components in the oil and
gas industry, aerospace, and various types of power plants. Acquisition of the UT data is currently done
automatically using robotic manipulators. This ensures the precision and uniformity of the acquired data.
On the other hand, the analysis is still done manually by trained experts. Since the acquired UT data can
be represented in the form of images, computer vision algorithms can be applied to analyze the content of
images and localize defects. In this work, we propose a novel deep learning architecture designed specif-
ically for defect detection from UT images. We propose a lightweight feature extractor that improves the
precision and efficiency of the detector. We also modify the detection head to improve the detection of
the objects with extreme aspect ratios which are common in UT images. We tested our approach on an
in-house dataset with over 4000 images. The proposed architecture outperformed the previous state-of-
the-art method by 1.7% (512 � 512 px input resolution) and 2.7% (384 � 384 px input resolution) while
significantly decreasing the inference time.

� 2021 Elsevier B.V. All rights reserved.

1. Introduction

Non-destructive testing (NDT) is a popular approach for mate-
rial evaluation and defect detection [1]. It is used for continuous
inspection in numerous domains but most commonly in oil and
gas industries, power and energy industries, aerospace, and con-
struction. NDT includes a variety of techniques such as ultrasonic,
eddy current, thermography, and x-radiography, to name a few.
Each of the methods comes with its own advantages and disadvan-
tages and they are sometimes also used jointly in order to increase
the probability of finding a defect. None of the NDT techniques
cause any damage to the inspected material so the tested compo-
nent can normally be used after the inspection (if no problems
were found) or sometimes even during the inspection. Ultrasonic
testing (UT) is one of the most used NDT methods for detection,
localization and measurement of flaws present in engineering
materials under inspection [2]. UT is simple to perform, yields a
precise location of the defect, and in general has a high signal-to-
noise ratio [3]. Inspection is performed by the generation and

detection of mechanical vibrations or waves within test objects
[4]. There are several ways how this can be done. Pulse-echo
(PE), time-of-flight-diffraction (TOFD), and phased array systems
are the standard three implementations. A phased array system
is a multi-channel ultrasonic system, which uses the principle of
a time-delayed triggering of the transmitting transducer elements,
combined with a time corrected receiving of detected signals [5].
Using the phased array it is possible to inspect the material from
various angles at the same time, which is the main advantage com-
pared to other types of UT probes. Inspecting the component using
different angle values makes the process more reliable but it also
produces huge amounts of data. Fig. 1 illustrates the principle
behind phased array system inspection. Data from UT inspection
can be displayed in different forms. As the probe is moved along
the surface of the inspected material, at each position it transmits
and receives ultrasound waves. The energy of the received ultra-
sound signal can be shown as a function of time in a representation
called A-scan. Each A-scan can be converted into one image col-
umn so multiple A-scans can be stacked to form an image repre-
sentation called B-scan. Since the ultrasound waves are often
transmitted at some specific angle, A-scans can also be transferred
onto the image at that angle. A view created this way is called

https://doi.org/10.1016/j.neucom.2021.12.008
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volume-corrected-B-scan (VC-B-scan) and it is the one used in this
work.

Data acquired during the UT inspection still has to be analyzed
manually by trained experts. This process is laborious and time-
consuming. The number of ultrasonic inspections is increasing
because most of the existing components require more inspections
as time passes and the chance of defect occurrence increases. This
also increases the need for optimizing the process of data analysis.
Automated analysis can be used to improve the reliability when
performing a manual inspection or to speed up the analysis by sev-
eral orders of magnitude if used independently. The idea of auto-
mated analysis of UT data is not new, but the methods proposed
so far are not reliable enough to be used in real-life situations.
Some of the problems encountered when developing automated
analysis of UT data include difficulty with the acquisition of large
and diverse datasets, noise, and irregular signal appearances
caused by odd defects’ shapes and geometry of the inspected com-
ponent. Recently an improvement in automated UT image analysis
was made by employing deep learning approaches for classifica-
tion and object detection. If an existing architecture is used for
object detection, it is assumed that the shapes of the objects that
need to be detected will be similar to the common objects found
in PASCAL VOC [6] and COCO [7] datasets. Taking into considera-
tion aspect ratios of the objects that need to be detected is very
important and in some cases [8,9], proper design of architecture
and training procedure leads to improved results. The goal of this
work is to design an architecture that can precisely localize defects
from B-scans obtained with a phased array probe. The usage of
such probes is increasing in real-life inspections and a proper
method for analysis of the collected data would be very useful.
Depending on the inspected configuration and material, defects’
signals can appear very elongated. This can make training difficult
because popular anchor-based object detectors [10–12] have a lim-
ited number of anchors that are distanced from each other by a
fixed value (stride). Having an extreme aspect ratio (>4) leads to
a small overlap between the neighboring anchors thus reducing
the coverage of an image. This decreases the number of sampled
anchors used during the training which can have a negative impact
on the detector’s performance.

In this work, we propose a deep learning object detector to ana-
lyze VC-B-scans and localize all of the visible defects. We start from
the state-of-the-art object detection architecture EfficientDet [12]
and revise the building components of this model. We first replace
the originally used EfficientNet [13] network with our custom fea-
ture extraction network. A new model is more precise and uses
drastically fewer parameters leading to a faster prediction process.
We then redesign the detection head in order to account for
extreme aspect ratios that appear in UT images. We propose the
usage of asymmetrical feature maps as inputs to the detection

head in combination with lower template anchors stride. This
increases the overlap between the template anchors and the
ground truth labels and leads to a better model performance with
a small computational overhead. The final object detector pro-
posed in this work achieves a mean average precision of 91.3%
which is 1.7% more than the previous state-of-the-art model
EfficientDet-D0 [14]. Furthermore, the proposed model reduces
the needed inference time by more than 30% and has 6 times fewer
parameters compared to EfficientDet-D0.

1.1. Contributions

The main contributions of this work are the following:

� A novel feature extractor for the EfficientDet that improves the
precision while using six-time fewer parameters.

� A method for detection of objects with extreme aspect ratios
based on a modified detection head and dense placement of
the anchors.

� A novel deep learning architecture created by joining aforemen-
tioned components into a new model that outperforms the pre-
vious state-of-the-art in defect detection in ultrasonic images.

1.2. Related work

Analyzing NDT data is a time-consuming process prone to
human errors since it depends solely on the experience and the
knowledge of the person performing the analysis. In order to assist
the experts during the analysis, various methods for defect detec-
tion were proposed throughout the years. Developed methods can
work with different types of NDT data such as the data acquired
during a visual inspection [15,16], thermography inspection [17–
19], radiography inspection [20,21], or ultrasonic inspection [22–
27]. While the exact implementation depends on the used inspec-
tion technique and material, approaches for data analysis and ideas
behind them are usually similar. Most of the recent methods rely
on convolutional neural networks (CNNs) [15–25,27] since this
type of architecture works well with one-dimensional and two-
dimensional data such as sequences and images. It was shown that
CNNs outperform classical approaches based on hand-crafted fea-
tures in many general computer vision challenges like PASCAL
[6], COCO [7], or ImageNet [28]. The authors of several works
[15,3,16,22] tested this hypothesis for NDT data and came to the
same conclusion that deep learning approaches outperform classi-
cal approaches.

Acquiring the data with non-destructive testing can be a costly
process. The equipment required for inspection, as well as the
examples of materials containing realistic flaws, are usually very
expensive. Since only a fraction of the collected data represents
defect signals, collecting a large set of useful images is difficult.
This drawback can be solved in three ways: (I) Analysis of A-
scans instead of B-scans (II) Application of traditional methods
for image analysis that do not require a large dataset (III) Generat-
ing or simulating images that can be used to develop a modern
deep learning model. The main problem with the A-scan analysis
is the lack of context from the surrounding area which makes the
decision-making process difficult. The most popular approach for
defect detection from A-scans is using the wavelet transform to
calculate features and then classifying extracted features using
support vector machines (SVM) [29–31] or artificial neural net-
works (ANN) [32,33]. This way the available data is used solely
for classifier training since the feature extraction is predefined. If
the available dataset of B-scans is not big enough, some traditional
approaches can be used but their performance and generalization
are usually not as good as in deep learning approaches. In [34],
the authors used the adaptive histogram equalization technique

Fig. 1. Illustration of phased array system inspection. An example of volume
corrected B-scan (VC-B-scan) is shown on the right side of the figure.
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followed by morphological operations to separate the defective
zones from the non-defective zones in the ultrasonic TOFD images.
Analyzing TOFD images was also the topic in [35,36] where the
authors showed how the parabola matched filter and Hough trans-
form can be used to locate parabolas in TOFD B-scans. In [37],
Radon transformwas used to detect defects from B-scans that were
denoised using the wavelet transform. Having several hundred
images already allows for deep learning methods to be employed.
In that case, a CNN can be trained with the help of transfer learning
[38] and data augmentation. This approach proved to be useful for
defect detection from UT images [25,14] and X-ray images [19,20].
Another approach is to use simulated [23,39] or generated
[21,24,40] data. While these types of images can be useful for
model training, evaluation should be performed on a real dataset
to ensure the credibility of the obtained results. In [41] the authors
used a generated dataset of B-scans to train a VGG-like classifica-
tion model. They tested the performance on a separate dataset of
real B-scans and reported results almost as good as the one
achieved by the human inspectors. The equipment used for acqui-
sition in that work is quite similar to the one used for the collection
of the dataset in our work but the tested specimen is different. In
[42], the authors tested several deep learning classifiers. The data-
set was acquired by a pulsed laser that transmits ultrasonic waves
through the material while the contact transducer which is
attached to the scanned object captures a series of snapshots of
the propagating waves. Among the tested classifiers DenseNet
[43] achieved the best result reaching an f1 score of 95.33%.

Defect detection from images can be done on various localiza-
tion granularity levels. Some of the work [15,17,16,21,24,23] only
determine if an image contains a defect or not. This is usually done
by employing one of the popular image classification architectures
such as VGG [44], Inception [45–47], ResNet [48,49], MobileNet
[50–52], or by building a custom CNN. Other works [19,20,25,14]
use approaches that determine a coarse location of the defect. This
can be done by using object detection architectures which are usu-
ally divided into two families: One-stage detectors [53,54,11,12]
and two-stage detectors [55–57]. Finally, a fine-grained localiza-
tion (pixel-wise) can also be obtained as an output [17,18] if a
model for semantic segmentation such as U-net [58] is used.

Having a coarse defect location is often good enough. In that
case, using an object detection model instead of a semantic seg-
mentation model is better since the inference time for object
detectors is usually smaller. In this work, we use EfficientDet
[12] architecture as a starting point. This state-of-the-art one-
stage object detector was proven to work well with UT images
[14]. We change the building blocks of the EfficientDet model by
proposing a novel feature extraction network which we use instead
of the standard EfficientNet [13] backbone. We also propose a
modification of the model’s detection head in order to improve
the detection rate of objects with extreme aspect ratios. The
description of the proposed components is given in Section 3.

2. Dataset

The architecture proposed in this work is developed for defect
detection from ultrasonic images. The dataset was obtained by
scanning six steel blocks with a phased array probe. Some of the
images had a lot bigger width compared to their height. This can
cause problems after padding and resizing images to input resolu-
tion so we cropped those types of images into multiple patches.
Before the cropping is performed a desired width of the patches
must be determined. In our case, the desired width was equal to
the image height (all of the images that required cropping had a
height of 375 px) since we wanted to get patches with an aspect
ratio closest to one. We then divided an image into patches such

that the obtained patches have the width as close as possible to
the desired width. We also allowed the overlap of 20% between
the neighboring patches. The final dataset contains more than
4000 VC-B-scans. The distribution of widths and heights of the
images is shown in Fig. 2. The blocks contain 68 defects and each
defect can be seen in multiple VC-B-scans (e.g. in various angles
or scanning directions). All of the scans combined contain 6637
annotated defects. We do not distinguish between different types
of defects so all of them are labeled with the same class. We
divided the data into five folds where each fold contains unique
defects. All of the appearances of a defect are placed into the same
fold to ensure the credibility of the results during the cross-
validation. More details about the dataset can be found in [14].
We used the same split so that we could compare results with
the previous state-of-the-art approach.

3. Methodology

Deep learning object detectors are usually divided into two cat-
egories: one-stage detectors and two-stage detectors. Two-stage
detectors used to be more precise but slower compared to the
one-stage detectors. The accuracy gap between these two families
of object detectors was decreased recently when new one-stage
architectures were proposed [12,59]. In [14], it was shown that
EfficientDet-D0 is the best choice among tested methods for defect
detection from UT images. However, EfficientDet architecture was
developed for general object detection on public datasets like [7],
PASCAL VOC [6], or ImageNet [28]. Even though EfficientDet
achieves good results when used for defect detection in ultrasonic
images, we demonstrate that task-specific knowledge can be used
to develop an even faster and more precise model.

3.1. Backbone design

General deep learning object detection architectures usually
consist of three parts: feature extractor (backbone), feature net-
work (detection neck), and detection head. The first part of the net-
work is used to extract the features from the images. Feature
extractors contain millions of parameters even if a simple network
such as EfficientNet is used. Having a complex backbone ensures

Fig. 2. Distribution of widths and heights of the images from the dataset.
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that the extracted features are discriminative. This is very impor-
tant when the task is to distinguish between dozens of complex
objects which is a common requirement in popular object detec-
tion datasets. In this work, the goal is to detect only one class (de-
fect). It was shown in [14] that simpler feature extractors can
perform better than complex ones. This is why we decided to swap
a standard EfficientNet architecture with a simpler novel network
illustrated in Fig. 3. We propose an encoder-decoder type of net-
work that looks similar to the U-net [58]. However, there are some
key differences between the U-net and the architecture that we
propose: (I) The proposed architecture does not use multiple
blocks for each resolution level. (II) We do not increase the number
of filters as the resolution is decreased. We use 32 filters in the first
encoder-decoder part and 64 filters when creating feature maps
used as input to the feature network. (III) Our blocks also contain
batch normalization and dropout layers which help with the net-
work regularization and improve results. (IV) Recently, to provide
high performance of a deep network, several activation functions
have been applied in different works [60–63]. However, they can
lead to high computational costs and have been applied with dif-
ferent types of images rather than UT images. Instead of ReLu acti-
vation, our model uses the swish activation function (used in
EfficientDet). The proposed network first downsamples the input
features by performing a series of convolutions followed by the
max-pooling operation. The decoding part of the network is similar
to the one used in Hourglass networks [64]. The feature maps are
first upsampled using the nearest-neighbor interpolation. We then
perform addition with the feature map of the same resolution from
the encoder and pass the resulting feature map through the activa-
tion function. We then perform 1x1 convolution followed by batch
normalization and activation before upsampling the layer again.
Once the original input resolution is reached the feature maps
are downsampled again to create feature maps (P3-P7) that are
used as an input to the feature network (bidirectional FPN used
in EfficientDet [12]). Features P6 and P7 are not actually a part of
the backbone. We calculated them using the same implementation
used for their calculation in EfficientDet architecture.

If the EfficientNet backbone is replaced by the architecture pro-
posed in this section, the total number of detector parameters is
reduced from 3.88 million to 0.53 million. We showed in Sec-
tion 4.2 that the proposed backbone increases the accuracy while
simultaneously decreasing the inference time.

3.2. Detection head design

Many state-of-the-art methods use default boxes (anchors) as a
rough starting shape to encapsulate objects and then they perform

an extra step to fit the predicted boxes around the object more
tightly. The shape of the anchors is determined from the hyperpa-
rameters. Since popular object detection datasets display everyday
objects, there is no need for extremely shaped anchors (for exam-
ple extreme aspect ratio or scale). This is why popular deep learn-
ing object detectors are designed to work only with standard
anchor shapes or slightly modified ones. The problem with defect
detection from ultrasonic images is the extreme aspect ratio of
the objects. This can partially be solved by proper calculation of
aspect ratio and scales hyperparameters as shown in [14]. In this
work, we adopted the same aspect ratios and scales values used
in that work. However, setting these hyperparameters does not
solve another core problem that appears when using extreme
aspect ratios which is the default placement of anchors. The default
anchors use stride that is four times smaller than their size (for
example feature map P5 uses a default size of anchor 128x128
and strides of 32x32). When common aspect ratios are used, this
stride is sufficient to get proper coverage of the image meaning
that the template anchors will overlap and no parts of the image
will be left uncovered. However, if an extreme aspect ratio is used,
a stride that is four times smaller is not sufficient.

We show in Fig. 4 how some of the used anchors with extreme
aspect ratios appear once they are placed over the image. We plot-
ted the placement for feature map P5 because it has fewer anchors
compared to P3 and P4 so the image is concise and clear. It can be
seen from the image that vertical gaps appear for these values of
anchors which makes the detection harder. This problem can be
solved by introducing more anchors with reduced horizontal spac-
ing (stride) between them. This requires modification of the archi-
tecture. Originally used feature maps do not have sufficient
resolution to increase the number of anchors so the feature maps
of higher resolutions are needed. To accomplish this we shifted
the input to the feature network (biFPN). This way the feature
maps input to the detection head will also have a sufficient resolu-
tion. We use feature maps P2-P4 from the original network and the
last two feature maps we calculated the same way that was used to
calculate P6 and P7 in the original EfficientDet architecture. Since
the defects from ultrasonic images are always elongated in the
same direction (vertical), the reduction of stride is not needed in
both directions. We inserted extra convolutional layers before
the detection head to create asymmetrical feature maps. These
convolutional layers downsample the height of the feature map
so that the stride in vertical orientation could be left unchanged.
Network which is modified to deal with detection of extreme
aspect ratio objects is shown in Fig. 5. Proposed modifications
can be used regardless of the chosen backbone. In Section 4.2 we
showed that using the modified detection head improves the mean

Fig. 3. The architecture of the proposed feature extraction network.
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average precision on the defect detection task. Described modifica-
tions have a small computational overhead if used in combination
with the custom feature extractor proposed in the previous sec-
tion. If the modified detection head is used in combination with
EfficientNet the inference time is actually decreased. This happens
because the P5 feature map from EfficientNet does not need to be
calculated so the number of parameters is reduced by almost three
times.

4. Experimental setup and results

We evaluated the methods proposed in this work on our in-
house dataset with over 4000 ultrasonic images containing defects.
The dataset split and evaluation procedure are the same as in [14].
This allows us to compare obtained results with the top-
performing method reported in that work which is EfficientDet-
D0. Additionally, We compare the results of our DefectDet with
the state-of-the-art family of object detectors YOLOv5 [65]. We
run experiments that introduce proposed modules individually.
First, we used the EfficientDet model but with the swapped back-

bone (using architecture introduced in Section 3.1 instead of Effi-
cientNet). We then test the EfficientDet model but with the
modified detection head that was proposed in Section 3.2. Finally,
we join the two proposed modules into a new deep learning archi-
tecture that we named DefectDet. We train the proposed model
using the focal loss [11]:

FLðptÞ ¼ �ð1� ptÞclogðptÞ ð1Þ
We test the performance of individual modules and their com-

bination with two input image resolutions: 512x512 pixels and
384x384 pixels. The training details are given in the next section.

4.1. Experimental setup

All of the models evaluated in this work were first pretrained on
the COCO [7] dataset. As standard practice when using pretrained
weights as a starting point, the input RGB images were normalized
by subtracting the mean values (0.485, 0.456, 0.406) and dividing
them with the standard deviations (0.229, 0.224, 0.225). There
was no need for additional intensity normalization which is some-
times done when dealing with unnatural images such as ultrasonic
images or magnetic resonance images [66,67]. RetinaNet, Effi-
cientDet, and DefectDet were then trained using the ADAM opti-

Fig. 4. Placement of anchors with extreme aspect ratios in standard detection head.

Fig. 5. Feature network and detection head that are customized to handle extreme aspect ratios.

Table 1
Impact of design choices on custom model with input size 384x384 pixels. The first
row refer to EfficientDet-D0 from [14].

Custom backbone Custom detection head mAP Inference time (ms)

0.881 57.0
U 0.894 39.1

U 0.891 45.6
U U 0.908 40.3

Table 2
Impact of design choices on custom model with input size 512x512 pixels. The first
row refer to EfficientDet-D0 from [14].

Custom backbone Custom detection head mAP Inference time (ms)

0.896 62.8
U 0.900 39.5

U 0.902 49.4
U U 0.913 41.7
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mizer with an initial learning rate of 10�3. We left out 15% of the
training subset for validation which was used to reduce the learn-
ing rate on a plateau and early stopping of the training. Smaller
models (using 384x384 input) were trained with batch size 8
and 500 steps per epoch while the bigger models were trained with
batch size 4 and 1000 steps per epoch. Batch size 16 was used for
YOLOv5 models and the optimization was done using the SGD
since it achieved better results compared to the ADAM optimizer.
The rest of the hyperparameters for YOLOv5 were set to default
values proposed by its creators. RetinaNet, EfficientDet, and
DefectDet were implemented in the Keras library (version 2.2.5)
using the Tensorflow backend (version 1.15.0). PyTorch version
1.9.0 was used when testing YOLOv5 models. Inference times from
Table 1 and Table 2 were measured on a machine with Titan Xp
GPU and CUDA 11.0. Inference times from Table 3 were measured
on the same machine but the CUDA 11.2 version. We used mean
average precision (mAP) averaged across 5 folds to evaluate the
performance of the models. The results are shown and discussed
in the following section.

4.2. Results and discussion

The results of the experiments are shown in Tables 1 and 2. The
first row of the table corresponds to the EfficientDet-D0 that is the
current state-of-the-art in the defect detection task. Swapping the
EfficientNet backbone with the one proposed in this work
improves the mean average precision (mAP) while simultaneously
decreasing the inference time. The mAP is especially increased for
the smaller model. Since the images from our datasets are all smal-
ler than 400x400 pixels the difference between the performances
of smaller and bigger models should not be big.

For the original EfficientDet architecture the difference between
the models of lower (384 � 384) and higher (512 � 512) resolution
was 1.5%. If the backbone proposed in this work is used this differ-
ence is reduced three times. This indicates that the proposed back-
bone was designed well and that more information is preserved
when analyzing the images in their natural resolution. The third
row shows the benefits of the modified detection head with asym-
metrical feature map inputs and decreased stride. As explained in

Table 3
Mean average precision (mAP) and inference time for various architectures. Results for EfficientDet models and RetinaNet were taken from [14]. All of the models in the table
were tested with input image of 512x512x3 except RetinaNet which achieves better results when the images are only padded.

Model Fold1 Fold2 Fold3 Fold4 Fold5 Average Inference time (ms)

EfficientDet-D0 0.937 0.829 0.879 0.943 0.893 0.896 67.2
EfficientDet-D1 0.927 0.793 0.869 0.917 0.901 0.881 75.2
EfficientDet-D2 0.936 0.780 0.826 0.920 0.895 0.871 76.4

RetinaNet 0.872 0.821 0.830 0.901 0.850 0.855 25.6
YOLOv5-s 0.926 0.853 0.827 0.946 0.830 0.876 12.3
YOLOv5-m 0.924 0.813 0.840 0.947 0.875 0.880 16.0
YOLOv5-l 0.922 0.861 0.869 0.944 0.852 0.890 19.5
YOLOv5-x 0.925 0.839 0.838 0.951 0.823 0.875 22.8
DefectDet 0.942 0.869 0.903 0.956 0.894 0.913 35.8

Fig. 6. A few examples of detection on the test images. The threshold for all of the models was 0.3.
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Section 3.2, using the custom detection head in combination with
EfficientNet actually decreases the inference time since the P5 fea-
ture map does not need to be calculated. Finally, the last rows
show the performance of our DefectDet which was obtained by
joining the custom backbone and custom detection head. If the
custom feature extractor is used, a replacement of the standard
detection head with the one proposed in this work will lead to a
very small increase of inference time. However, the proposed
architecture is still more than 30% faster compared to the baseline
model EfficientDet-D0. At the same time, the mean average preci-
sion increases by 2.7% for the smaller model and 1.7% for the bigger
model.

A comparison of the DefectDet with current state-of-the-art
models is given in Table 3. A state-of-the-art model YOLOv5
achieves similar results as the previously tested EfficientDet. The
proposed DefectDet architecture outperforms all the other tested
models for each fold except the fourth fold. Even the DefectDet
with input resolution 384 � 384 surpasses all of the other architec-
tures with greater input resolution. The quickest model among the
tested ones was YOLOv5-small but the mean average precision of
that model is 3.7% lower than our DefectDet. We also tested the
YOLOv5 family of models with a smaller input resolution
(384 � 384 � 3) and all of the tested models achieved less than
87.5% of mAP which is significantly lower compared to the Defect-
Det with the same input resolution (90.8%). Some prediction exam-
ples can be seen in Fig. 6. Shown examples were randomly picked
from the second fold test set which is the subset for which the
models achieved the lowest mAP on average. None of the tested
models were trained using the picked examples. All of the models
successfully detected the defect on the first example image. The
second example contains a signal that is barely visible and can
not be detected without looking at surrounding B-scans so it is
not surprising that all of the models failed to detect it. When tested
on the third example, EfficientDet and YOLOv5 did not manage to
detect a defect while DefectDet managed. Looking at the example
images one can notice how hard it is to detect a defect in some
of the images, especially when the image is noisier or when it con-
tains geometry signals.

5. Conclusion

In this paper, we propose a novel architecture for detecting
defects from ultrasonic images. We designed a simple feature
extraction network that enables quicker and more precise detec-
tion of defects compared to the previously used models. The pro-
posed feature extractor also reduces the difference in
performance between models with different input image resolu-
tions. Furthermore, we proposed a solution to improve the detec-
tion of objects with extreme aspect ratios by altering the
detection head of the model. With these changes introduced, our
defect detection framework outperformed the previous state-of-
the-art baseline, and at the same time, required fewer parameters,
thus reducing memory usage and inference time. Compared to the
state-of-the-art EfficientDet-D0 model, our architecture improves
mean average precision by 1.7% for the bigger model, and 2.7%
for the smaller model while simultaneously decreasing the infer-
ence time by more than 30%. Even though the developed architec-
ture was designed for a specific application, we believe that the
proposed ideas can be generalized to other domains with similar
problems as defect detection.
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a b s t r a c t

Non-destructive testing is a set of techniques for defect detection in materials. While the set of imaging
techniques is manifold, ultrasonic imaging is the one used the most. The analysis is mainly performed by
human inspectors manually analyzing the acquired images. A low number of defects in real ultrasonic
inspections and legal issues concerning data from such inspections make it difficult to obtain proper
results from automatic ultrasonic image (B-scan) analysis. The goal of presented research is to obtain
an improvement of the detection results by expanding the training data set with realistic synthetic sam-
ples. In this paper, we present a novel deep learning Generative Adversarial Network model for generat-
ing realistic ultrasonic B-scans with defects in distinct locations. Furthermore, we show that generated B-
scans can be used for synthetic data augmentation, and can improve the performances of deep convolu-
tional neural object detection networks. Our novel method was developed on a dataset with almost 4000
images and more than 6000 annotated defects. When trained only on real data, detector can achieve an
average precision of 70%. By training only on generated data the results increased to 72%, and by mixing
generated and real data we achieve almost 76% average precision. We believe that synthetic data gener-
ation can generalize to other tasks with limited data. It could also be used for training human personnel.

� 2021 Elsevier B.V. All rights reserved.

1. Introduction

Non-destructive testing (NDT) is widely used in science and
industry to evaluate properties of materials, components, or sys-
tems without causing damage [1]. Many different methods are
available such as visual examination, ultrasonic, eddy current, to
name a few. Among them, ultrasonic testing (UT) stands out due
to its versatility. Some of the advantages of UT include high sensi-
tivity for most of the materials [2], high signal to noise ratio [3] and
the ability to precisely determine the location and the type of the
defect [2]. Ultrasonic data can be represented in several different
formats suitable for analysis including A, B, or C-scans [4]. An A-
scan shows signal’s amplitude as a function of time, B-scan dis-
plays a cross-sectional view of the inspected material, and a C-
scan provides a top view of its projected features [5]. During anal-
ysis, inspectors simultaneously use multiple data representations
in order to make a decision and evaluate the data.

Automated analysis has long been used in many NDT systems.
However, so far it has been limited to classical decision-making
algorithms such as amplitude thresholding [6]. Complex data such
as the one from ultrasonic inspection makes it hard to develop an
automated analysis. All ultrasonic analysis is, to the best of our
knowledge, done manually by a trained human inspector. It makes
ultrasonic analysis highly reliant on the inspector’s experience. The
automated analysis could make the process much faster and more
reliable. There have been some attempts in developing an auto-
mated UT analysis [5–9], but very few of them involve using deep
learning and modern deep convolutional neural networks (CNNs)
on B-scans. The prerequisite for using deep learning is a large,
annotated dataset. Due to a low number of flaws in real ultrasonic
inspections and legal issues considering data from such inspections
available data is limited. Data is the biggest drawback in the devel-
opment of proper automated/assisted ultrasonic analysis. This
challenge can also be found in many medical image analysis tasks
[10] where, due to the rarity of some pathology and patient privacy
issues, data availability is very modest. Furthermore, unlike medi-
cal datasets, there are no publicly available UT datasets.

Researchers attempt to overcome this problem by using trans-
fer learning [11] in combination with freezing the backend CNN
layers [12] which is shown to enhance the accuracy of models.

https://doi.org/10.1016/j.neucom.2021.06.094
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Using data augmentation is also the standard procedure for net-
work training. However, data augmentation methods are limited
and only slightly change some aspects of existing images (e.g.
brightness modulation). Very limited additional information can
be gained by such modifications. Synthetic data generation of
high-quality images is a new type of state-of-the-art data augmen-
tation [13]. Generative models such as generative adversarial net-
works (GANs) offer more variability and enrich the dataset to
further improve the training process.

In this work, we present a novel GAN architecture for generat-
ing high-quality and realistic UT B-scans. Afterwards, we demon-
strate that generated images can be used to train an object
detection neural network to detect defects in real images. We show
that images generated using our method improve the detector’s
average precision by more points than previous state-of-the-art
augmentation techniques.

1.1. Contributions

The main contributions of this work are the following:

� a novel GAN architecture for generating high-quality ultrasonic
images with objects at precise locations,

� experimental demonstration that expanding the ultrasonic
dataset with generated synthetic data increases the perfor-
mance of the defect detector,

� to the best of our knowledge, this is the first time a GAN is
trained on ultrasonic NDT images.

1.2. Related work

Data availability is a major problem when using deep learning
for defect detection. B-scans are the ideal data representation for
accurately detecting defects and further estimating their depth
and size. However, most authors focus on developing methods
for A-scan analysis because it is easier to gather enough data.
Developed algorithms for defect detection can be divided into
three groups related to data representation being used; A-scans
[7,8,14–23], B-scans [5,6,24,25] and C-scans [26,27]. The A-scan
analysis is the most researched group of all which is also related
to the data problem. Developed algorithms mostly include a com-
bination of wavelet transform [14–19,9], discrete Fourier trans-
form [7,21] or discrete cosine transform [21] and a support
vector machine or artificial neural network classifier. B-scans keep
the geometrical coherence of the defect, as can be seen in Fig. 1,
which leads to a better noise invariance [24]. However, the analysis
of B-scans can only be seen in a few works [5,6]. In [5] two popular
deep learning object detection models, YOLOv3 [28] and SSD [29],
have been used for defect detection. In [6] a deep learning classifier
has been tested on augmented images, but with only three defects
in the specimen block. Regarding C-scans, in [26] a method based
on the comparison of the scan with a reconstructed reference
image has been made. The method was able to detect all defects
in their dataset, but with a high number of false-positive detec-
tions. There have also been some attempts in estimating defects
from noisy measurements using Bayesian analysis [27].

There have been some attempts in using data augmentation to
enlarge existing datasets. As mentioned, in [6], although only three
defects were present in the test block, a copy/pasting data augmen-
tation has been used to enlarge the dataset for training a deep
learning detector. There are many variations on pasting and blend-
ing objects on the background in order to make the images look as
realistic as possible. For instance, it can be done using Gaussian
blur or Poisson blending [30] to smooth the edges. In [31] a com-
parison between different merging techniques has been made,
using a combination of blending methods performed the best for

most objects. On the other hand in [32] authors have pasted
objects on random backgrounds and achieved improvements with-
out any blending. Finally, generative adversarial networks (GANs)
have recently become a popular choice for synthetic data genera-
tion and augmentation. GANs were first conceptualized in [33] in
2014. They can be used to generate images, video, audio, text,
and much more. The development of the GAN came a long way
in a short period of time. There are many different GAN architec-
tures. Interesting approaches to GANs are image-to-image transla-
tion models. They are used for style transfer between images [34],
image inpainting [35] and even generating images from masks
[36]. One of the examples of those models is the Pix2pixGAN
[36] and its successor pix2pixHD [37]. GANs show promising
results in generating realistic images for human faces from noise
with StyleGan2 [38] or converting position mask images to
street-view with Pix2pixHD. A lot of work has been done for
enlarging data sets in medical imagery. Pix2pixHD has proved to
be useful in generating skin lesion images using semantic label
maps [39]. An Inception-v4-based classifier [40] has been trained
using real and combined real and data generated with the Pix2-
pixHD. Training the classifier on a combined real and generated
data achieved a 1% improvement of the area under the ROC curve.
In [13] authors have applied the GAN framework to synthesize
high-quality liver lesion images for improved classification. In
[41] authors have developed a multi-channel GAN (M-GAN) to
generate PET images from CT scans. A similar approach with a
cGAN has been made in [42,43]. Using generated data, they have
achieved a 28% reduction in average false positive per case. Gener-
ating MR images from CT scans with paired and unpaired data has
been researched in [44]. An MR-GAN with a concept inspired by
CycleGAN [34] has been developed for this purpose. In [45] a
DCGAN has been employed to generate realistic brain MR images.
Data augmentation using non-convolutional GAN has been tested
on three different non-image datasets [46]. Generated data has
performed even better than real data when classifying using a
Decision Tree (DT) classifier.

1.3. Outline

The rest of the paper is organized as follows. Section 2 gives a
detailed description of the used dataset. Section 3 describes the
experimental procedure. Proposed GAN architecture and copy/-
pasting method are presented in Section 4. Results are shown in
Section 5 follow by the conclusion in Section 6.

Fig. 1. Example of an ultrasonic B-scan with defects. The defects are indicated by
bounding boxes.
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2. Dataset

The dataset was obtained by scanning six steel blocks contain-
ing artificially created defects in the internal structure. Blocks var-
ied in size and contained between six to 34 defects. In total there
were 68 defects. Blocks were scanned using INETEC Dolphin scan-
ner with a phased array probe. An INETEC phased array ultrasound
transducer with a central frequency of 2.25 MHz was used. Angles
ranging from 45 degrees up to 79 degrees with a 2-degree incre-
ment were acquired during the scanning. Blocks were also scanned
with a skew of zero and 180 degrees. INETEC SignyOne data acqui-
sition and analysis software was used to process the data and cre-
ate B-scans (further noted as images) that were used in the dataset.
Data were converted to B-scans as-is, without pseudo-coloring, as
grayscale images. All images were converted into patches of size
256x256 pixels and annotated by multiple human experts. There
were in total 3825 images with a total of 6238 annotations. We
split the dataset into subsets for training, validation and testing.
Details of the train, validation and test subsets can be seen
in Table 1. Each subset contains unique defects that do not appear
in other subsets. Our dataset is highly realistic and finding all of the
defects is challenging even for the human inspectors. As for the
copy/pasting method, we copied the defects from the training sub-
set in the form of the rectangle patches from the annotations and
pasted them on the empty UT backgrounds. There were 3400
empty UT backgrounds from all of the blocks and 4283 defect
patches from the training subset.

3. Synthetic data generation

The acquired dataset is not large enough to properly train an
object detector to detect defects. For this reason, we propose two
methods to expand our dataset with synthetic data.

In this section, we have described the procedure of the experi-
ment in this work. We developed two methods for synthetic image
generation and use a state-of-the-art object detector for defect
detection to test the quality of the generated data. We start by
describing the current state-of-the-art method for generating
images and proceed to describe a deep learning approach with
our GAN. We then explain the usage of the object detector in the
experiment.

Our first generative method is a copy/pasting (C/P) technique.
Copy/pasting is a very logical method for enlarging the ultrasonic
dataset because of the large number of B-scans without defects.
We call these images canvases because we paste extracted defects
on them. We extracted all of the defects from the training set and
pasted them on canvases in random locations. The exact method is
explained in the next section. An example of an empty image can-
vas, extracted defect, its pseudo mask, and the resulting image can
be seen in Fig. 2.

The second method we propose is our own GAN architecture for
the purpose of generating UT B-scans. Our GAN is an image-to-
image GAN. This means that the position mask used as the net-
work’s input is translated to a realistic B-scan with defects at spec-
ified positions. We make position masks from all annotated images
in the training set. An example of an input–output pair is shown in
Fig. 3. Position masks on the input of the generator serve as a loca-
tion label for the desired position of the defect on the generated

image. The main novelty of our GAN is the usage of a pre-trained
object detector for training the GAN. We use the object detector
as an additional discriminator to provide information on the qual-
ity of the defect on the generated image when compared to the real
image. It is important that the defect is positioned accurately as
drawn in the position mask and that it is merged well with the
background. After training the GAN we generated new position
masks used for the generation of synthetic data. We determine
the sizes and shapes of the defects on the position masks by
extracting the aspect ratios of all annotations from the training
set. Our generated images contain between one and four defects
per image.

To estimate the quality of the generated images we used a pop-
ular object detector YOLOv3 [28]. This detector was already proven
to work well for the task of defect detection from UT images in [5].
It is currently the state-of-the-art in defect detection. We first
trained the detector using only real images and some traditional
augmentations explained in the next section. We then tried train-
ing the object detector with images generated using the copy/paste
method. We also trained the detector with a combination of real
and generated images. Finally, we generated synthetic data with
our GAN and again trained the object detector with generated
images and a combination of real and generated data. Each of the
trained versions of the object detector was tested on the same test
dataset described in the previous section. Also, the same validation
set was used in all three training variations.

4. Methods

In this section, a detailed explanation of developed methods is
given. First, the copy/pasting method is described. Then the archi-
tecture of our proposed GAN is described with all of its special fea-
tures. In the end, a short overview of the used object detector is
given.

4.1. Copy/paste method

We used copy/paste method as a baseline to illustrate the com-
plexity of generating synthetic data. While these images might
look visually appealing, they are not of the same quality as the ones
generated by the GAN.

As mentioned in Section 2 we have previously extracted
defects from images in the training set. We paste them on ran-
dom locations on images without visible defects. The process
goes as follows. First, we randomly pick a canvas and randomly
select the defect that will be pasted on it. We then put a thresh-
old on a defect image. We make a binary pseudo mask by creat-
ing a binary image from the thresholded image and dilate it for
two iterations with a 5x5 kernel. We then use the mask to
extract only the defect from the initial defect patch image. We
randomly select the position where we will paste the defect
and calculate the compatibility of the selected defect background
and the canvas on that location. We calculate the compatibility
by calculating an intensity value of the background of the canvas
and the defect. If these two values do not differ by more than
5%, we accept the proposed location. If these two values differ
by more than 5% we try to select another location. We then
select another image/canvas pair and repeat the process. For
each new image, we set the limit of 100 attempts after which
we just move on to generate another image. Usually, this limit
is rarely reached since the right pair of canvas/defect nad loca-
tion is usually found quickly. When the right pair is found, we
proceed to paste the defect on the canvas. We first adapt the
brightness of the defect to even further match the one from
the canvas. We calculate the brightness of the location on the

Table 1
Number of images and annotations in train, validation and test subsets

TRAIN VALIDATION TEST

Number of images 2278 379 1168
Number of annotations 4283 745 1210
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canvas and adapt the brightness of the defect to it. All that is left
after that is to paste the defect. We concatenate the canvas and
the defect, calculate the per pixel minimum of the two and
merge it into one resulting image.

Samples of the real image, image generated with our GAN, and
image generated with a copy/paste method are shown in Fig. 5.

4.2. GAN

The basic architecture of GAN is a combination of two neural
networks, a generator, and a discriminator. The generator gener-
ates high-quality images from random noise. Noisy input helps
generate a wide selection of images from the learnt distribution.
Discriminator on the other hand tries to distinguish between gen-
erated images and the real ones. The constant rivalry between the
generator and the discriminator is what makes GANs adversarial.
Mathematically, discriminator and generator play a minimax game
with the following function [47]:

min
G

max
D

VðD;GÞ ¼Es½logðDðsÞÞ�þ ð1Þ
Ez½1� logðDðGðzÞÞÞ�

where : G ¼ the generator
D ¼ the discriminator
s ¼ training sample
z ¼ random variable

The goal of the generator is to maximize the probability of dis-
criminator labeling generated images as real samples and the dis-
criminator has the goal of minimizing that probability while being
able to label real data as such. This neural network configuration
enables unsupervised learning of both generator and discrimina-
tor. For image generating purposes it is convenient to use convolu-
tion operations in GAN which is presented in Deep Convolutional
GAN (DCGAN) [48].

We call our GAN the DetectionGAN (DetGAN) for its specific
architecture. We base it on the Pix2pixHD implementing some of
the features from it. Our DetectionGAN consists of a U-net genera-
tor with skip connections, two PatchGAN discriminators [36] that
work on different scales and a pre-trained object detector which
serves as an additional discriminator. We train the proposed GAN
with image pairs of real images and their position masks. Position
masks can be viewed as a conditional input of the generator and
the discriminator. This version of GAN is called a conditional
GAN and its objective can be express as:

Fig. 2. Example of (from left to right) an empty canvas (B-scan without defects), an extracted defect and its binary pseudo mask, and resulting generated image.

Fig. 3. Example of GAN input position mask (left) and corresponding desired output with the defect (right).
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min
G

max
D

VðD;GÞ ¼ ExÞ½logðDðx; sÞÞ� þ Ez½1� logðDðx;Gðx; zÞÞÞ� ð2Þ

where: x = conditional variable
Input to the generator is the position mask defining the position

of the defect. Proposed GAN does not have an input noise. The out-
put of the generator is connected to the discriminators and the
object detector. There is a total of 54,409,603 parameters in the
generator. All of them are randomly initialized and trained. Unlike
in Pix2pixHD, we do not use a two-stage generator nor do we
upscale the position mask to generate a higher resolution image.
We use skip connections with concatenation in the generator.

Discriminator has a position mask concatenated to the gener-
ated or real image as an input. Image and mask are concatenated
across the channels axis. The goal of the concatenation of the posi-
tion mask and the image is to provide information on the position
of defects in the image for the discriminator. This concatenation
leads to an improvement as shown in Section 5. Discriminator gets
the real and the generated image during each step as an input. In
order to discriminate images on two different scales, we use two
discriminators. This way we can generate more realistic images
with both coarse and fine details. Both discriminators have
1,391,554 parameters that are randomly initialized.

For the additional discriminator we use a YOLO object detector
during this experiment, but any other object detector could be
used. Usage of the YOLO discriminator helps the GANwith the gen-
eration of highly realistic images with defects in precise, desired
locations. We input the generated image and then the real image
and compare the outputs. We want these two outputs to be the
same so that there is no difference between the generated and real
image for the detector. This way we ensure defects are placed on
the exact locations and without any artifacts. Using an object
detector as a discriminator provides a significant improvement as
shown in Section 5. To the best of our knowledge, this is the first
time an object detector has been used as a discriminator in a
GAN in order to enhance the quality of generated images.

An illustration of the proposed GAN is shown in Fig. 4. Filter
sizes of each layer of the generator and discriminators are noted

in the figure. Overall, the forward pass of our model can be
explained as:

GðxÞ ¼ g

D1ðconcatenateðx; rÞÞ ¼ d11; fm11

D1ðconcatenateðx; gÞÞ ¼ d12; fm12

ð3Þ
D2ðdownsampleðconcatenateðx; rÞÞÞ ¼ d21; fm21
D2ðdownsampleðconcatenateðx; gÞÞÞ ¼ d22; fm22
YðupsampleðrÞÞ ¼ y1
YðupsampleðgÞÞ ¼ y2

where : G ¼ the generator
D1 ¼ the discriminator 1
D2 ¼ the discriminator 2
Y ¼ the YOLO discriminator
g ¼ generated image
x ¼ positional mask
r ¼ real image
dij ¼ output of the discriminator
fmij ¼ second to last layer of discriminator
downsampleðÞ ¼ downsampling by a factor of 2
upsampleðÞ ¼ upsampling to 416x416 px

We train our GAN using a set of loss functions. For the genera-
tor, we use four different losses. At the output of the generator, we
calculate the L1 loss on the generated image and the paired real
image:

Ggloss ¼ jg � rj ð4Þ
For propagating discriminator output to the generator we use

the mean squared error loss:

Gdloss ¼ 1
2

X2

k¼1

dk1 � dk2ð Þ2 ð5Þ

We also use the feature matching loss for training the generator,
similar to the one in [37]:

Fig. 4. Simplified architecture of our DetectionGAN.
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Gfmloss ¼
X2

k¼1

1
2
jfmk1 � fmk2j ð6Þ

We also compare the output of all three scales of the object
detector when inputting the real image and the generated one.
We again use the L1 loss to propagate the error down to the
generator:

GYloss ¼ jy1 � y2j ð7Þ
For training the discriminator we use the mean square error

loss, just like it is used in Pix2pixHD. Since we have two discrimi-
nators we have a multi-task learning problem of

min
G

max
D1 ;D2

X

k¼1;2

LGAN G;Dkð Þ ð8Þ

4.3. Object detector

Our object detector, You Only Look Once (YOLO) version 3 is
taken from [5] where it proved to be able to detect defects with
high average precision.

YOLOv3 is an object detector that belongs to the one-stage
detector family. This means that the model directly searches for
objects’ presence at predefined places without performing a region
proposal step. The detector consists of a backbone network,
Darknet-53 [28], used to extract useful features from the image
and the detection head. The detection head is used for the localiza-
tion and classification of the objects. To improve invariability to
objects sizes, the detection process is performed at three different
scales using feature maps with resolutions: 13x13, 26x26, and
52x52. Each value of the feature map is used to perform three pre-
dictions (for objects of 3 different aspect ratios). The coordinates of
the bounding boxes can then be determined by decoding the pre-
dictions. Non-maximum-suppression and object threshold are also
performed after the decoding to limit the number of predicted
bounding boxes and keep only the boxes that encapsulate the
object the best. For the training of the GAN, we use outputs of
the three mentioned feature maps from the YOLO.

The aim of this work is to improve the performance of the object
detector using synthetic data. We train the object detector on real,
generated data, and a combination of those two. We train the net-
works with the same hyperparameters in order to have a fair com-
parison. We first trained the detector on real data, tuned the
hyperparameters to achieve the best possible performance and
used the same hyparameters for training with other data combina-
tions. We input images of size 416x416 pixels. We used a pre-
trained backbone and froze its parameters while training. Hence,

we trained only 20,974,518 of a total number of 61,576,342
parameters.

5. Experimental setup and results

5.1. Experimental setup

In this section, we describe the experiment and hyparameters
used to train our GAN and the object detector. Our experiment goes
as follows. We first trained an object detector with real data. This
trained network is used as the YOLO discriminator of our GAN.
We generated synthetic images using the copy/pasting method
and the GANmethod. We generated 200,000 synthetic images with
both the copy/paste and DetectionGAN method. We also trained
the DetectionGAN without using the object detector discriminator
and concatenation in the discriminators to compare the effective-
ness of each proposed modification. For each version of the pro-
posed GAN, we use the same position masks to generate
synthetic images. We again train the object detector using the gen-
erated data and compare results.

For training the object detector we used the following configu-
ration. We use batch size eight and Adam optimizer with a learning
rate of 1e-3. Anchor hyperparameters were calculated using the K-
means with Jaccard distance as proposed in [49]. Custom anchors
were calculated on the training set for all of the training combina-
tions. We slightly changed only the ignore threshold hyperparam-
eter to 0.6 from the original YOLO implementation. We used
checkpoints while training the model. An early stopping callback
was used to stop the training after the validation loss didn’t
improve for over eight epochs. We reduced the learning rate after
every two epochs with no improvement on the validation set. We
also used some basic augmentations while training all of the mod-
els. Those augmentations include horizontal image flipping, ran-
dom cropping, and HSV space modulation. We also tried training
the object detector without augmentations. It took us around
30 min to train the object detector. For testing the object detector
we used the following hyperparameters. The object threshold of
YOLO was 0.001 while the non-maximum suppression threshold
was 0.5 and the intersection over union threshold was 0.5. These
hyperparameters are a standard for evaluating object detection
challenges and were used in [5].

We train our GAN as follows. Position masks for the input of the
GAN are of size 256x256 pixels, as well as the generated images.
For training the generator we use an Adam optimizer with a
first-moment term of 0.5, the second one of 0.999, and a learning
rate of 0.0002. One of our discriminators has an input image of
256x256 pixels, while the other one has a downscaled image of

Fig. 5. Samples of (from left to right): real image, an image generated with copy/paste method, an image generated with DetectionGAN. In each image, the defects are
indicated by a bounding box.
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128x128 pixels as an input. We train discriminators using Adam
optimizer with the same parameters as the generator.

We use the pre-trained object detector and do not train it dur-
ing training the GAN. We implement a set of simple data augmen-
tations for training the GAN including horizontal flipping,
brightness modulation, and random cropping. These data augmen-
tations enable us to achieve great results in training the GAN and
generating high-quality images. With data augmentation, we
expand the training subset to over 9000 images. We train the
GAN for 800 epochs and for the last 100 epochs we linearly reduce
the learning rate to zero. Each epoch corresponds to one pass
through all the images in the training dataset. We trained with a
batch size eight. The training takes around 96 h using a single NVI-
DIA RTX 2080Ti graphics card. Although this may seem like a long
time it is similar to the training time of pix2pix [36]. Taking into
consideration the number of images in the training subset, the
number of epochs, and the complexity of the whole GAN it is the
expected training duration.

5.2. Results and discussion

The performance of the proposed approach was tested on a test
subset. As described in Section 3 we test the quality of generated
images by training an object detector on real and generated
images. We used an average precision (AP) metric for assessing
the performance of an object detector on a test set. Each experi-
ment with the object detector was run three times. In tables, we
present the mean value and the standard deviation for each result.
Generated images used in this test were not handpicked but ran-
domly generated.

Detailed results can be seen in Table 2. We ran the training of
the object detector on real data with and without data augmenta-
tion. Using the C/P method for image synthesis did not provide any
improvements in the detection. When training only on C/P images
we acquire a result of only 51% AP on the same test set. When
training on the combination of both real and C/P images we again
do not get any improvements. The reason could be that this data
has some artifacts when compared to the real images. Although
visually, both images generated with DetectionGAN and with the
copy/paste method look realistic, the object detector tends to learn
wrong features and can not converge to a better model than the
one trained on real images. However, we achieved an improvement
with DetectionGAN-generated images when opposed to training
the object detector with only real images. An improvement of 2%
has been achieved while training only on DetectionGAN-
generated images, and an improvement of almost 6% of AP was
achieved when training on a combined dataset of real and images
generated with our GAN. As a reference, experiments with two ver-
sions of the DetectionGAN without the object detector discrimina-
tor and without position mask and image concatenation in the

discriminator were made. Both versions perform worse than our
DetectionGAN.

The final score for defect detection is almost 76%, which seems
rather low, but this is due to a very difficult dataset used, which is
problematic even for human inspectors. Such problematic datasets
are the primary target for result improvements. The presented
results demonstrate that we have obtained our initial goal of
improving the detection results using realistic synthetic samples
produced by our generation method. The results also show that
the existing generative methods are not capable of generating
images of sufficient quality to improve the performance of the
defect detector.

This experiment indicates that it is important to have the most
realistic data as it is possible to achieve an improvement. We illus-
trated the complexity of the problem of generating synthetic data
for training the object detector. Our proposed GAN can generate
highly realistic data that can improve the object detector’s
performance.

6. Conclusion and future work

In this paper, we propose a novel generative adversarial net-
work for generating highly realistic B-scans (images) from position
mask images. Our DetectionGAN generates highly realistic ultra-
sonic images from position masks that can be used to train an
object detector. We achieved an improvement of almost 6% while
training on a combination of generated and real data. We also
developed a copy/pasting method based on the previous state-of-
the-art approach for data augmentation to compare it to our pro-
posed method. As we didn’t cherry-pick DetectionGAN-generated
images all of the generated images were proven to be of high
quality.

With the increasing problem of lack of data and advances in
generating high-quality synthetic data, networks such as our
DetectionGAN could be used in many science and industry fields.
In future work, DetectionGAN should be tested using different
object detectors as discriminators. Also, other state-of-the-art
object detectors should be tested on this dataset.
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Abstract—Ultrasonic testing (UT) is a commonly used ap-
proach for inspection of material and defect detection without
causing harm to the inspected component. To improve the
reliability of defect detection, the material is often scanned from
various angles leading to an immense amount of data that needs
to be analyzed. Some of the defects are only seen on B-scans taken
from a particular angle so discarding some of the data would
increase the risk of not detecting all of the defects. Recently there
has been significant progress in the development of methods for
automated defect analysis from the UT data. Using such methods
the inspection can be performed quicker, but it is still necessary
to inspect all of the angles to detect defects. In this work, we
test a novel approach for accelerating the analysis by merging
the images from various angles. To reduce the information loss
during the process of merging, we develop a new model with a
weighting module that dynamically determines the importance
of each of the scanning angles. Using the proposed module, the
loss of information is minimal, so the precision of the detection
model is comparable to the model tested on each of the images
separately. Using the merged images input, the analysis can be
accelerated by almost 15 times.

Index Terms—image processing, image analysis, convolutional
neural networks, ultrasonic imaging, nondestructive testing, au-
tomated flaw detection

I. INTRODUCTION

Ensuring the safety and proper functioning of a system

includes continuous monitoring of its critical parts. The flaws

can appear inside the material due to harsh working conditions

such as high temperature, or direct material stressing. Types

and sizes of flaws can vary, and some of the material imper-

fections do not actually pose a safety threat or influence the

system’s proper functioning. However, a method that can de-

tect even the slightest imperfection is desirable because it can

be used to monitor critical parts and keep track of previously

found flaws. This can help with the maintenance planning and

proper timing of the replacement of the components which is

an economically better option than the early retirement of the

perfectly functioning and safe parts.

Ultrasonic testing (UT) is a widely used Non-destructive

evaluation (NDE) technique for the inspection of material and

flaw detection [1], [2]. This method is fairly simple to employ

and allows a precise defect localization [2], [3]. This NDE

technique uses an ultrasonic probe both as the transmitter and

the receiver of the ultrasonic waves. The ultrasonic waves

are propagated through the material until some change in the

Fig. 1. Illustration of UT scanning with a phased array probe. Examples of
B-scans that are obtained for various angle values are shown on the right side
of the figure. Red bounding boxes mark the defect’s location.

material density is encountered. When this happens, a fraction

of the waves will be reflected and this will be picked up by

the probe. The amount of received energy can be plotted as a

function of material depth which allows the precise extraction

of the flaw’s location. This view of the acquired data is called

an A-scan. One A-scan is obtained for each combination of

the probe’s position and angle of the transmitted ultrasonic

waves. A sequence of A-scans will be obtained when the probe

is moved along the surface of a material. A sequence of A-

scans can be used to form an image representation called B-

scan. This is done by transferring each A-scan into one image

column by converting the amplitude of the A-scan into pixel

values. Higher amplitudes are usually converted into darker

pixel values so if some defect is present in the material it

will be shown as a dark shape inside the image. Material is

usually inspected using a special type of probe called a phased

array probe. This probe allows simultaneous inspection of the

material at various angles. An illustration of such probe is

shown in Figure 1. As shown in the illustration, by moving

the probe from one side of the material to the other several

images will be obtained (one for each angle). The number

of acquired images depends on the initial angle, final angle,

and the increment. Defects look different when acquired at

different angles, and sometimes a defect can not even be

detected unless a convenient angle is chosen. This is why in

real-life inspection, the procedures often require that all of the

data, that was acquired at various angles, must be analyzed.

This also means the analysis lasts longer regardless of whether
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the analysis is performed manually or by using some data

analysis software.

An immense amount of data motivated the researchers to

develop methods for automated UT data analysis. Developed

methods work with different types of data (A-scans, B-scans,

C-scans) as well as the other NDE techniques such as eddy

current, radiography, and thermography to name a few. Early

attempts of automated analysis of UT data relied on signal

processing techniques. The most popular such approach is to

calculate the coefficients from the A-scans using the wavelet

transform or Fourier transform. The calculated coefficients can

then be fed into a classifier such as support-vector machine

(SVM) [4]–[6] or artificial neural network (ANN) [2], [7],

[8]. In [9] the authors rearranged the calculated coefficients

into a matrix and then used a special type of ANN called

convolutional neural network (CNN). CNN’s have been a

dominant approach in computer vision tasks [10]–[12] for

a long time and recently several authors demonstrated the

merits of such architectures for UT data analysis [9], [13]. Due

to increased availability of computing power and improved

efficiency of the recent CNNs [14]–[16], the training of such

models on a small dataset became feasible and yields good

results when applied on NDE data analysis [17]–[21]. Even

if the amount of available UT B-scans data is not sufficient

some authors managed to develop solutions based on CNN by

using the simulated [22] or artificially expanded (augmented)

datasets [23]. To the best of our knowledge, there were no

previous attempts of simultaneous analysis of UT images taken

at different angles. All of the solutions for the automated

analysis presented so far have to be run separately for each of

the acquired angles which can be very time-consuming. We

are trying to tackle this problem by developing a novel method

for simultaneous analysis of B-scans taken at different angles.

II. METHODOLOGY

In this work, we propose a novel approach to speed up the

analysis of the data by merging the images taken at various

angles. To minimize the information loss during this process,

we extended the used detection architecture with a module that

performs image merging. We call the proposed module An-

gles Analysis Module (AAM). AAM dynamically determines

which of the input images contain relevant information and

gives higher importance to such images. The proposed module

is trained jointly with the deep learning object detector that is

used to localize defects. Using the AAM the defects’ signals

are more likely to remain in the resulting image while the noise

from irrelevant images can be decreased. We experimentally

confirmed that the proposed solution improves the results of

defect detection compared to default image merging.

We start the development of our method by taking a

well-established deep learning object detection architecture

EfficientDet [25]. We use the smallest available model from

the EfficientDet family called EfficientDet-D0. Additionally,

we decreased the input image resolution size to 384x384 since

most of our images are smaller than that. We trained and

evaluated this model on a full dataset of volume corrected

B-scans (VC-B-scans) that were taken at different angles. We

then test several approaches for merging the information from

many B-scans images into a new image that can be fed to

the object detector. The merging process must be simple and

fast in order to retain the advantage over the approach that

analyzes the full dataset. To test the performance of a new

model, we created a new dataset with appropriate bounding

boxes. It is important that the new dataset still has labeled all

of the defects. More details about the used datasets are given

in section III-A.

The first approach that we tried was to simply merge all

of the images with a minimum pooling along the angles axis

while giving each of the input images equal importance. In the

rest of this section, A denotes the number of different angles

that were used during the acquisition of the images. The value

for each of the resulting pixels can be calculated by finding

the pixel among the A images that has the smallest value:

Im(x, y, z) = min
∀a∈{0,1,...,A−1}

I(a, x, y, z) (1)

As stated in the introduction, smaller pixel values represent

a larger amount of reflected ultrasound energy. Performing

the minimum pooling in the described way will highlight the

defects’ signals but it will also increase the noise. If some of

the images from the sequence do not contain any defect, using

them during the merging process can unnecessarily increase

the noise. However, we do not know in advance which of

the images are useful and which are not since the defects

appear uniformly across all angles in the dataset. To solve

this issue, we extend the standard object detector pipeline.

The proposed approach is shown in Figure 2. Our model

first takes a quick look at all of the angles using the Angles

Analysis Module. The output of the module is a vector of

weights W that determines the importance for each of the

images from the input sequence. Since the images are passed

through minimum pooling operation after the weighting, the

images of greater importance will get a smaller weight value.

This has the effect of preserving more information from that

image after the minimum pooling. The vector of weights W

contains one value per angle, but this vector is broadcast into

a matrix to enable element-wise multiplication with the input.

The input to the object detector (denoted with Im) can then

be calculated by multiplying the sequence of images with the

appropriate weights (W ) followed by the minimum pooling

along the first axis.

Iw = W ⊗ I (2a)

Im(x, y, z) = min
∀a∈{0,1,...,A−1}

Iw(a, x, y, z) (2b)

where: W ∈ R
A×H×W×C = weighting vector

I ∈ R
A×H×W×C = input images sequence

⊗ = element-wise product

A = number of used angles

H = image height

W = image width

C = number of image channels
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Fig. 2. Illustration of the proposed approach. Illustration for the channel attention module was taken from the original article [24].

The architecture of the AAM is shown in Table I. In-

TABLE I
ANGLE ANALYSIS MODULE ARCHITECTURE

# Layer type Hyperparameters Input resolution

1 Conv3D

filters=32

18x384x384x3kernel=(1,3,3)

stride=(1,1,1)

2 MaxPooling3D pool size=(1,2,2) 18x384x384x32

3 Conv3D

filters=32

18x192x192x32kernel=(1,3,3)

stride=(1,1,1)

4 MaxPooling3D pool size=(1,2,2) 18x192x192x32

5 Conv3D

filters=32

18x96x96x32kernel=(1,3,3)

stride=(1,1,1)

6 MaxPooling3D pool size=(1,2,2) 18x96x96x32

7 CBAM [24]* reduction ratio = 2 18x48x48x32

*We use only a channel attention module from CBAM.We modified
the original implementation to make it compatible with our 4D input.

formation is extracted from the sequence of images using

the combination of three Conv3D layers and MaxPooling3D

layers. We then apply a channel attention mechanism from

the convolutional bottleneck attention mechanism (CBAM)

[24]. The intended usage of the original channel mechanism

is to weigh the feature maps inside of some CNN. In this

work, we replace the originally used GlobalAveragePooling2D

and GlobalMaximumPooling2D layers with their 3D imple-

mentations in order for the module to be compatible with

the dimensions of our data. The used attention mechanism

feeds the extracted features into a small multi-layer perceptron

(MLP) network. The hidden layer of the MLP has a lower

number of neurons compared to its input and output layers.

This bottleneck forces the attention mechanism to choose the

important channels or in our use case the important input

images. We used a reduction ratio of 2 meaning that the

attention module has to pick a half of the input images that

are of greater importance. Parameters of the inserted Angles

Analysis Module are trained jointly with the deep learning

object detection architecture. The module is independent of the

used object detection architecture so it can easily be adapted

to other object detectors.

III. EXPERIMENTAL SETUP

A. Dataset

For the training and evaluation of the used models, we used

an in-house dataset with over 4000 images. The dataset was

obtained by scanning 6 steel blocks that contained between 6

and 34 artificially created defects inside. In total there were 68

defects. The blocks were scanned using an INETEC Dolphin

scanner and a phased array probe with a frequency of 2.25

MHz. The angles between 45 and 79 with an increment of 2

degrees were used during the scanning for all of the blocks.

Since the defects are artificially created inside of the blocks,

their positions are known and can be used to manually annotate

all of the signals that belong to the defects. Some of the

defects’ signals were marked even though they were barely

visible. Detection of such cases is not crucial since the defects

are usually seen across multiple cross-sections of the material

and at different angles.

To test the possibility of simultaneous analysis of images

at all angles we created a new dataset from the existing one.

The dataset was created by performing the minimum merge of

the images taken at different angles. For each of the resulting

images, 18 input images were used. The same defects are

depicted differently in each of these input images as shown in

Figure 3. This illustration shows that for some of the angles

the defects appear more elongated and the exact position of

the defect can vary a bit. Areas of the defects’ signal are

increased by performing the described merging because of

these variations in appearance. To label the locations of the

defects in the merged images, we performed a union between
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Fig. 3. Upper image displays heatmaps for all of the defects annotated for
some material cross-section. It can be seen how the shape of the defects vary
across different angles. Lower image shows the resulting image obtained with
minimum merge of all the images displaying the same material cross-section
(but at 18 different angles).

all of the annotations of a defect. If the location for one of the

annotations from the source images is wrong it will impact

a lot the resulting annotation generated by the annotations

union. We manually inspected the generated annotations for

such cases and corrected them. An example of the resulting

image after the merging can be seen in figure 3 down.

The final dataset contained 244 images and 534 annotations.

Even though image representation of UT data is naturally in

the grayscale colormap, B-scans are often colored for easier

manual inspection. We also used pseudo-colored images since

the models were achieving equally good or better performance

compared to the grayscale image analysis.

B. Experimental setup

We trained four different models in total. First, we trained

the EfficientDet-D0 object detector on a full dataset. This

means that the model separately analyzes images taken at

different angles. We then compared three approaches that

directly predict the bounding boxes of the image obtained by

merging as described in section III-A. The first such model

simply expands the input of the object detector from a standard

3-channel RGB image to a 54-channel input. This 54 channel

input is obtained by concatenating 18 VC-B-scans taken at

different angles. Next, we test a standard minimum merging.

The model trained this way takes a 3-channel input image

obtained by the minimum merging of the 18 input images

Fig. 4. The upper image displays heatmaps of weight obtained after passing
random 10 samples from the test subset through the Angles Analysis Module.
It can be seen how the network gives different values to each of the 18 input
images. Below we showed average weights values outputted by the AAM.

as described in Section II. Finally, we tested the extended

merging approach that dynamically determines the weights of

the input images by passing them through the proposed Angles

Analysis Module. The first three models from the Table II were

trained with a batch size 8 and 500 steps per epoch. The last

one was trained with a batch size 4 and 1000 steps per epoch.

These batch sizes were the maximum batch size values that we

could use (because of the memory limitation) while training

these models on Nvidia Titan Xp GPU. To test the models,

we randomly selected 20% of the available images. 20% of

the remaining data was set aside for validation and the rest

was used for training. We repeated this process 5 times and

report the mean average precision (mAP), as given in the later

versions of PASCAL VOC (2010-2012) [11], and a standard

deviation for each of the models. During the training, we

augmented the data to improve the generalization of the model

and increase precision. Following transformations were used:

horizontal flip, random crop, translation, and visual effects

(contrast, brightness, color enhancement). The test data was

not augmented.

IV. RESULTS AND DISCUSSION

The results of the experiments are shown in Table II. The

first row shows a mean average precision of the EfficientDet-

D0 model trained on a full dataset. These results are not

directly comparable to the rest of the results reported in the

table since the angles are analyzed separately. However, this

result gives a rough idea about the possible EfficientDet’s

performance on a defect detection task. This result also

demonstrates that even when the separate analysis of images

taken at various angles is performed, there will be some
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TABLE II
MEAN AVERAGE PRECISION AND ANALYSIS SPEED FOR DIFFERENT APPROACHES

model mAP Time needed to analyze a
block with 70 VC-B-scans

EfficientDet-D0 - full dataset 0.881 261 seconds

EfficientDet-D0 - input expansions (54ch) 0.843 σ = 0.0148 16.6 seconds

EfficientDet-D0 - minimum merge of input 0.850 σ = 0.0146 15.8 seconds

EfficientDet-D0 - minimum merge + AAM 0.866 σ = 0.0213 17.8 seconds

undetected defects. We found out, by manually inspecting the

false negatives, that the cases for which the model fails to

detect a defect are usually some borderline cases for which

the defect’s signal almost completely diminished. Failing to

detect these cases is not a big problem as long as the defects

are detected in some other images where they are seen better.

The second row of the table shows the performance of the

model that simply feeds all of the images (18 images showing

the same material slice but at different angles) instead of

merging the images. This model is also able to inspect the

data very quickly but the mean average precision is not as

good as in the others tested models. The third row shows the

performance of the baseline minimum merging when all of

the input images are given the same importance. It can be

seen that the mAP of such an approach is still a few percent

lower than the expected EfficientDet’s performance (first row).

This is not surprising since (I) the number of images in the

training subset is smaller, (II) Some of the defects’ signals

become hardly noticeable because of the noise introduced

by the merging. The final row shows the performance of

the proposed approach that extends the standard minimum

merging with AAM for input image weighting. It can be seen

from the results that dynamically weighting the input images

before merging leads to an improvement of 1.6% compared

to the uniform weighting. Even though this approach did not

surpass the mAP of the model trained on a full dataset, it

reaches a similar value while being a lot faster. Instead of

performing separate analysis for each of the 18 angles, only

one pass through the material cross-section would be needed.

This leads to a speedup shown in the third column of Table II.

It can be seen that the application of the proposed approach

in a real-life scenario leads to a speedup of almost 15 times.

In Figure 4 we showed an example of weights obtained by

passing a sequence of images through AAM. The AAM gives

different importance for each of the input images, and the

importance of an angle is changed depending on the inputted

sequence of images which is the intended behavior of the

module. However, by plotting the average weights outputted by

AAM, it can be concluded that some of the angles carry more

information and will be given higher importance in general.

The network will usually focus more on the two borderline

angle values on each side (49,51 for the lower angle values

and 75,77 for the larger angle values) as well as the central

values of the angles (59-67).

V. CONCLUSION

In this work, we take a look at the current approach for

UT data analysis and defect detection that is based on a

separate analysis of VC-B-scans at each of the acquired angles.

We realized that by merging the images taken at different

angles we can obtain a new image that keeps the relevant

information about the defects’ locations. The resulting image

can then be used as an input to an object detection algorithm.

By performing analysis on such merged images instead of

separately analyzing all of the angles, a speedup of almost

15 times is achieved in real-life scenarios. Furthermore, we

proposed a novel angles analysis module that can be paired

with an arbitrary deep learning object detector. We train the

proposed module jointly with the object detector. The proposed

module is able to determine the importance for each of the

input angles and merge the images in a way that minimizes

information loss and noise. We experimentally confirmed that

the EfficientDet-D0 model paired with the proposed Angles

Analysis Module achieves almost the same mAP as the

EfficientDet-D0 model that performs the separate analysis for

each of the angles. We believe that the proposed module can

be further improved by using a spatial attention mechanism.

This way the module could not only determine which of the

input images are important but also which exact parts of the

chosen images are important.
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Deep Learning-Based Defect Detection From
Sequences of Ultrasonic B-Scans

Duje Medak , Luka Posilović , Marko Subašić , Member, IEEE, Marko Budimir , Member, IEEE,
and Sven Lončarić , Senior Member, IEEE

Abstract—Ultrasonic testing (UT) is one of the commonly
used non-destructive testing (NDT) techniques for mater-
ial evaluation and defect detection. The acquisition of UT
data is largely performed automatically by using various
robotic manipulators which can ensure the consistency of
the recorded data. On the other hand, complete analysis
of the acquired data is still performed manually by trained
personnel. This makes the reliability of defect detection highly
dependent on humans’ knowledge and experience. Most of
the previous attempts for automated defect detection from UT
data analyze individual A-scans. In such cases, valuable infor-
mation present in the surrounding A-scans remains unused
and limits the performance of such methods. The situation is
better if a B-scan is used as an input, especially if the dataset
is large enough to train a deep learning object detector. However, if each of the B-scans is analyzed individually, as it was
done so far in the literature, there is still valuable information left in the surrounding B-scans that could be used to improve
the precision. We showed that expanding the input layer of an existing method will not lead to an improvement and that
a more complex approach is needed in order to effectively use information from neighboring B-scans. We propose two
approaches based on high-dimensional feature maps merging. We showed that proposed models improve mean average
precision (mAP) compared to the previous state-of-the-art model by 2% for input resolutions of 512×512 pixels, and 3.4%
for input resolutions of 384 × 384 pixels.

Index Terms— Image analysis, deep learning, convolutional neural networks, defect detection, ultrasonic testing.

I. INTRODUCTION

NON-DESTRUCTIVE testing (NDT) is a group of tech-
niques for evaluation of material’s properties and flaw

detection, commonly used in industry and science [1]. NDT
includes a variety of methods such as eddy current, thermogra-
phy, radiography, and ultrasonic testing. Being non-destructive
by its nature makes the mentioned approaches popular for con-
tinuous monitoring of critical components of some systems.
Some of the areas where NDT is often used include the oil and
gas industry, various power plants, and aeronautics. Ultrasonic
testing (UT) has several advantages compared to other NDT
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methods. It is simple to employ, enables precise extraction
of the defect location [2], and has a high signal-to-noise
ratio [3]. UT can be implemented using different technologies
but the main idea is based upon the generation and detection
of mechanical vibrations or waves within test objects [4].
Ultrasonic waves can be produced and received by the same
probe (ultrasound transducer). One of the commonly used
types of probes is called a phased array. A phased array probe
is a multi-channel ultrasonic system, which uses the principle
of a time-delayed triggering of the transmitting transducer
elements, combined with a time corrected receiving of detected
signals [5]. This probe enables simultaneous inspection of the
material from different angles which increases the reliability
of flaw detection. During an inspection, a robotic manipulator
moves the ultrasonic probe along the surface of the inspected
component. At each position, the probe transmits ultrasonic
waves and receives the reflected signals. The value of the
reflected signal is altered if the wave is reflected from an
object with a different density compared to the surrounding
area. This property makes the detection of various types
of flaws possible. The received signal can be displayed in
different forms as shown in Figure 1. During the analysis,
trained experts manually inspect the acquired data to localize

1558-1748 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Fig. 1. Examples of different ultrasonic data representations [10]. Upper
left image shows an A-scan. Beneath it is the C-scan representation.
Right side of the image displays B-scan (top) and volume corrected
B-scan (bottom).

and size the defects. The amount of data that needs to be
analyzed in the majority of the cases is immense, especially
if a phased array system is used. Even though the inspectors
go through years of training, the repetitive work of UT data
analysis can lead to fatigue and some of the flaws might go
unnoticed due to human error, not to mention the considerable
amount of time and personnel needed for such activity. These
are the key motivations for the development of a method that
could non-trivially assist the inspectors with the analysis of
the data, or even automate this whole process in the future.
An overview of existing methods for the analysis of NDT data
is given in Section II. The main problem with the development
of a reliable method for defect detection is that the work
logic of the human inspectors can not be simply expressed
with an algorithmic description [6]. A more complex approach
based on machine learning or deep learning is needed. It was
already shown in the literature [2], [7]–[9] that deep learning
models outperform methods based on hand-crafted features
and classical image analysis algorithms. However, training a
deep learning model requires a large dataset of labeled data
which can be difficult to obtain.

Defects in UT data usually span across multiple B-scans.
The signal of a defect can be very weak, especially on the
first and the last B-scan displaying the defect so it is very
difficult to distinguish such signal from the noise. In real-
life scenarios, inspectors would take a look at the surrounding
area or the same coordinates from a B-scan viewed from a
different angle to confirm their decision. However, currently
proposed solutions for automated defect detection do not use
this additional context to improve the precision of classifica-
tion and localization. In previous work [11] it was indicated
that the lack of context from the neighboring slices is the
main limitation of defect detector’s precision. To the best of
our knowledge, a method that performs defect detection by
looking at the multiple B-scan images (surrounding volume)
was not yet proposed in the literature. In this work, we propose
several methods that can be used to include information from
the neighboring B-scans. We first showed an important fact
that the simple expansion of the input does not improve
detector’s mean average precision (mAP). This was tested
by expanding the input layer of EfficientDet-D0 architecture,
a model that was already proved to work well for the defect
detection task [11]. Feeding a 9 channel input, produced by

concatenation of three neighboring B-scans, did not increase
the precision of the model demonstrating the need for a
more complex solution. We then propose two other novel
approaches that successfully use the additional information by
performing high-dimensional feature maps merging. Proposed
approaches first separately extract multi-scale features from
the sequence of B-scans and then combine all of the extracted
features before localizing the defects. We demonstrated that
the proposed architectures significantly improve mean average
precision compared to the baseline 2D model.

II. RELATED WORK

Since the results of the NDT data analysis mostly depend
on the abilities of the inspectors, they are susceptible to human
errors and can thus be inconsistent and unreliable. To tackle
this problem and assist inspectors with the analysis, many
methods for signal and image processing methods were devel-
oped. Those methods can work with different types of NDT
data such as the data acquired during a visual inspection [7],
[8], thermography inspection [12]–[14], radiography inspec-
tion [15], [16], or ultrasonic inspection [6], [9], [17]–[20].
Since the format of the acquired data depends on the used
technique, the exact implementation of these methods differs.
However, the main idea of the proposed methods are usually
similar and rely either on hand-crafted descriptors in combi-
nation with some classifier or the direct application of con-
volutional neural networks (CNNs). Because of their structure
that is based on a series of convolution operations, CNNs can
naturally process sequences and grid-like representations of
the data. CNNs usually outperform classical approaches [2],
[7]–[9] so it is not surprising that this approach became the
most popular choice in recent years. [6]–[9], [12]–[18], [20].

Before CNNs began to be used for the analysis of UT data,
the most popular approach for defect detection was based on
the analysis of ultrasonic A-scans using the wavelet transform
in combination with some classifiers. Commonly used clas-
sifiers were Artificial Neural Networks (ANN), used in [21],
[22], and Support Vector Machine (SVM) used in [23]–[26].
The main drawback of A-scan analysis is the lack of valuable
information from the surrounding area of some A-scan. Having
this information would make it easier to distinguish between
defect signal and geometry or noise signal. This is why the
analysis of ultrasonic B-scans is becoming more popular nowa-
days, but the unavailability of the image data is a major factor
limiting the research of the automated analysis of UT images.
This can partially be solved by using transfer learning [27]
and data augmentation techniques [28]. In [18] the authors
applied those techniques and trained existing one-stage called
detectors Single Shot Detector (SSD) and You Only Look
Once (YOLO) to detect defects from ultrasonic B-scan. The
reported results were promising but the dataset used for devel-
opment and testing contained only several hundred images.
In [17] the authors used ultrasonic images simulated with
OnScale software to create their dataset. They simulated 400
B-scans with four different types of defects. The authors
evaluated several different CNN architectures and the best
among the tested ones achieved an average accuracy greater
than 92%. In [29], the authors trained a VGG-like [30] CNN
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TABLE I
DATASET OVERVIEW

on artificially generated ultrasonic images. The performance
of the developed model was compared to the performance of
a human expert. The CNN model detected two cracks less
compared to the human inspector but the inspector made more
false calls. The authors also noted the importance of training
data selection on the model’s performance. In [11], several
one-stage object detectors were tested on the largest dataset
of real UT B-scans that was by that time used in the literature.
The best results among the tested models were achieved by
the EfficientDet-D0 architecture that reached a mean average
precision of 89.6%. The authors showed that even though
a perfect precision of 100% was not achieved, all of the
defects were detected because each defect appears on several
B-scans and not all of the appearances need to be detected.
It was pointed out that false detections are usually caused by
a lack of context. This means that one of the possible ways to
improve the precision is taking into account the surrounding
area of inputted B-scan which is done in this work. In [31]
the authors demonstrated that a CNN mostly trained with
simulated data and with a small amount of experimental data
can be used to detect, locate and size a defect from ultrasonic
phased array data. The used dataset was created by GPU-
accelerated finite element simulations and then expanded with
a small percentage of real data. The authors trained a two-stage
detector Faster-RCNN that reached the area under the curve of
0.95 when tested on simulated data. When testing the detector
on real data with an intersection over union (IOU) threshold
of 0.4, the model was able to locate 70% of the flat bottom
hole defects. All of the aforementioned methods confirm that
the most promising approach at the moment is to use a deep
convolutional neural network to analyze ultrasonic images and
detect defects.

III. DATASET

For the training and evaluation of the proposed method,
we used an in-house dataset. The data was obtained by
scanning 6 stainless steel blocks for internal UT acquisi-
tion equipment qualification training. The blocks contained
between 6 and 34 defects. Defects were artificially created
using various methodologies leading to different types of
defects: side-drilled holes, flat bottom holes, thermal fatigue
cracks, mechanical fatigue cracks, electric discharge machined
notches, solidification cracks, and incomplete penetration of
the weld. The scanning was done by the INETEC Dolphin
pulser-receiver instrument and a phased array probe with a
central frequency of 2.25 MHz. The collected data used for
this work includes only the shallower parts of the blocks (down
to 200mm depth). After all the needed data was collected,

multiple human experts analyzed it and determined the posi-
tions of the defects. The location of each defect was annotated
by a bounding box. Defects in B-scans usually appear slanted
so the bounding box would not fit perfectly around the defect.
Therefore we have decided to use volume corrected B-scans
(VC-B-scans). In VC-B-scans each A-scan is transferred onto
the image at the same angle that the ultrasonic waves were
propagated through the material. This skews VC-B-scans as
shown in Figure 1 and keeps the orientations of the displayed
defects more similar to the physical orientation of the defects
inside of the material. Defects in the VC-B-scan appear
vertical so the exact location is more precisely captured with
a rectangle bounding box. After gathering all of the images
and annotations we split the data into 5 subsets/folds. Each
fold contains unique defects as seen in Table I. The dataset
is the same as in [11] and the results of the best performing
model EfficientDet-D0 were taken as baseline results in this
work. The procedure for splitting was designed in a way that
allows expansion of the images with the neighboring slices
without giving an unwanted advantage to the model trained
this way. In other words, surrounding images for each of the
images in the training subsets are also always contained in
the training subset. This ensures that all of the sequences
used for testing as well as the defects that are displayed in
those sequences are unique and will not be seen during the
training. The sequences we used in this work were created
using only the immediate neighbors of some image so all of
the sequences consist of three images. This is the smallest odd
number of B-scans that can be used for defect detection that
includes some additional context. We believe that looking at
the closest neighboring images is enough to decide whether
the target (middle) B-scan contains a defect at some specific
location or not. We did not perform experiments with the
sequences of greater length since that would decrease the
number of samples in our dataset and also increase the time
needed for a forward pass through the model. However, the
approaches we propose in this work are not in any way limited
to sequences of length three and can easily be extended to
work with an arbitrary number of input B-scans. For the target
images that only have one neighboring slice, we replace the
missing slice with the existing neighboring B-scan. All of the
images from one sequence have the same height and width.
The height of the images varies between 200 and 375 pixels
while their width varies between 300 and 400 pixels. A few
example images from the dataset are shown in Figure 2.

IV. METHODOLOGY

A. Baseline Architecture - EfficientDet-D0
EfficientDet [32] is a family of object detection models

proposed by the Google research team in 2019. The authors
proposed a novel baseline architecture called EfficientDet-D0
that can be scaled up depending on the available resources.
This idea of scaling a baseline model was already proven to
work well with the EfficientNet [33] classification architecture.
This model was thus a logical feature extractor choice since
it can easily be scaled up alongside the other parts of the
object detection model. The scaling is performed jointly for all
of the components of the detection model (backbone, feature
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Fig. 2. An example sequence of VC-B-scans with ground truth labels.

Fig. 3. Illustration of the EfficientDet architecture. source [32].

network, and detection head). The authors used a heuristic-
based approach for determining the best scaling coefficient
values. The EfficientDet family of object detectors consists of
eight object detectors in total. Several of those detectors were
tested for a defect detection task in [11] and it was shown that
the smallest of the tested architectures achieved the best mean
average precision. This is probably caused by the simplicity of
the ultrasonic dataset compared to the large-scale dataset such
as ImageNet [34] and COCO [35] that are commonly used for
the development of object detectors. Also, since our dataset is
quite small, a model with fewer parameters can be trained
more easily. However, the methods that we use to expand the
analysis from one image to the analysis of sequences of images
are not dependant on the choice of object detector and so they
can be applied to other models as well.

B. Approaches for Sequence Analysis
An arbitrary object detection model that was developed for

image analysis can be expanded to work with a sequence of
images in several ways:

(I) The simplest approach for including the surrounding
images while performing the object detection is to expand
the input dimensions of the model. In this case, one training
example would have dimensions: (image height, image width,
N × number of channels), where N is the number of images in
the sequence. In this work, we set the value of N to three (only
immediate neighbors are considered). Information from all
of the VC-B-scans is simultaneously extracted while passing
through the network. If the number of filters is not increased
compared to the baseline network, the computational overhead
of the described modification is negligible.

(II) Another approach is to separately extract the features
from all of the images in the sequence and merge the obtained
features before the detection head. We decided to perform
merging after the feature network (BiFPN). We experimen-
tally determined that merging the feature maps at this stage
works better than merging the feature maps before the feature
network. The merging can also be performed in other stages
of the network but the two mentioned and tested positions
are the most logical choices. As shown in Figure 3, the
feature network outputs feature maps at 5 different scales.
Dimensions of these feature maps are equivalent to the ones
outputted by the feature extractor. For a standard EfficientDet-
D0 model, mentioned feature maps have a depth of 64 and
spatial resolution spanning from 4 ×4 for the P7 feature map,
up to 64×64 for the P3 feature map. If we separately pass the
sequence of N images through the backbone, we will obtain
N feature maps for each of the levels (P3-P7). We can then
fuse the information from multiple feature maps by using the
standard convolutional layer or by using a convolutional long
short-term memory (ConvLSTM) layer. Illustrations of these
approaches are shown in Figures 4 and 5.

If the standard (two-dimensional) convolutional layers are
used to merge features, the outputs of the feature extractor first
need to be concatenated along the channel axis. The resulting
feature maps will then have 192 channels, regardless of the
spatial resolution. To force the model to choose important
features from the sequences of images, we inserted a convo-
lutional layer that decreases the number of channels by three
times. The resulting layers contain information extracted from
the whole sequence and their shapes are the same as the shapes
of the original feature extractor (and feature network) outputs.
This means that the original detection head from EfficientDet
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Fig. 4. Merging feature maps from neighboring slices using the Conv2D layer.

Fig. 5. Merging feature maps from neighboring slices using the ConvLSTM layer.

architecture can be used without any modifications. We tested
several values for kernel size and activation function of the
inserted layer. We experimentally determined that the best
combination is to simply use a 1 × 1 convolution without
activation function. The described process of feature maps
merging can be described as written in Equation 1.

Pout
p = Conv

(
Concatenate(Pi−1

p , Pi
p, Pi+1

p )
)

(1)

where:

Pi
p =feature map of level p obtained by

passing image i through the feature
extractor

p ∈ {3, 4, 5, 6, 7} =pyramid level
i =index of the image that is being

analyzed
Concatenate =concatenation operation along the

last (channel) axis

Another approach for fusing feature maps from the sequence
of images is by using a ConvLSTM layer [36]. Long Short
Term Memory (LSTM) is a type of Recurrent Neural Network

TABLE II
BATCH SIZE AND NUMBER OF STEPS

FOR EACH OF THE TESTED MODELS

that is useful for the analysis of data collected over time.
This type of model has an internal state in which the most
important information about the previously seen inputs can
be stored. Having a glimpse at previously inputted data can
be very useful when deciding on the current input. In our
case, the observed time series is a sequence of images. Since
convolutional layers are commonly used to build models for
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TABLE III
MEAN AVERAGE PRECISION (MAP) AND INFERENCE TIME FOR MODELS WITH INPUT RESOLUTION OF 3 × 512 × 512 × 3.

BOLD TEXT INDICATES THE BEST PERFORMANCE FOR THAT FOLD

image analysis it would be beneficial to use convolution
operation in combination with LSTM to analyze sequences
of images. This is why in this work we use a special type
of LSTM called ConvLSTM [36]. ConvLSTM layer replaces
the internal matrix multiplication of a standard LSTM with
the convolution operation. This modification helps the net-
work learn dependencies along the time (depth) axis while
preserving the spatial information in the feature maps.

P Ei−1
p = Expand

(
Pi−1

p

)

P Ei+1
p = Expand

(
Pi+1

p

)

P Ei
p = Expand

(
Pi

p

)

Pout
p = ConvLSTM

(
Concatenate(P Ei−1

p , P Ei+1
p , P Ei

p)
)

(2)

where:
Pi

p =feature map of level p obtained by
passing image i through the feature
extractor

p ∈ {3, 4, 5, 6, 7} =pyramid level
i =index of the image that is being

analyzed
Concatenate =concatenation operation along the

first (expanded) axis

This layer requires the data with an extra dimension that
represents the temporal axis. We first calculate the feature
maps for each of the images in the sequence. We then expand
the dimensions of these feature maps by inserting another axis
at the beginning of the tensor. Obtained feature maps can now
be concatenated along the first (inserted) axis and used as
an input to ConvLSTM. The most recent feature map that
is inputted into the ConvLSTM layer is the one for which
the prediction is made so it is important to reshape the input
tensor correctly. We do this intentionally so that the most
important features that are calculated from the middle image
are preserved the best. The described process of feature maps
merging with ConvLSTM can be written down as shown in
Equation 2. ConvLSTM layer can return a whole sequence as
an output but since we do not perform additional analysis after
merging the feature this option was not used. The dimensions
of the feature maps calculated using the ConvLSTM are the
same as the ones calculated with Conv2D from the previous
approach. This means that the detection head of the standard
EfficientDet-D0 does not need to be modified.

V. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup
Proposed methods were tested on the dataset described in

Section III. We used mean average precision averaged across
five folds to evaluate the performance of the models. We used
mAP calculation as given in the later versions of PASCAL
VOC (2010-2012) [37], with an intersection over union (IOU)
threshold of 0.5. We trained and evaluated all the models’
variations with two spatial input resolutions: 512 × 512 and
384×384. Pretrained weights obtained by training the models
on the COCO dataset were used as a starting point in each
of the experiments. All models were trained using the ADAM
optimizer with an initial learning rate of 1e−3. The learning
rate was reduced by 10 times if there were no improvements
of mean average precision on the validation subset for six
consecutive epochs. The training of the models was stopped if
there were no improvements of mean average precision on the
validation subset for 10 consecutive epochs. The batch size and
number of steps for each of the models can be seen in Table II.
The training subset was augmented during the training which
is commonly done to improve the generalization of the model
and increase precision. Following transformations were used:
horizontal flip, random crop, translation, and visual effects
(contrast, brightness, color enhancement). When training the
models on sequence data, all the images in the sequence were
augmented using the same transformations.

B. Results and Discussion
The results of the evaluation can be seen in

Tables III and IV. Expanding the input of the model to
simultaneously analyze all of the images from the sequence
does not lead to an improvement for the bigger (512 × 512)
model. For the smaller model, the improvement of such an
approach is very small. However, the other two presented
approaches for sequence analysis increase the mean average
precision by 2% and 3.4% for the models with input
resolutions of 512 × 512 and 384 × 384 respectively. The
approach based on Conv2D merging worked better for
the larger input resolution while the approach based on
ConvLSTM worked better for the smaller one. These results
show the effectiveness of the proposed approaches and prove
how useful the information from the surrounding VC-B-scans
can be when performing defect detection. The increased
precision comes at the cost of the higher inference speed. The
method for merging the feature maps using the convolutional
layer takes 60% longer compared to the baseline method with
an input resolution of 512 × 512. The method based on the
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TABLE IV
MEAN AVERAGE PRECISION (MAP) AND INFERENCE TIME FOR MODELS WITH INPUT RESOLUTION OF 3 × 384 × 384 × 3.

BOLD TEXT INDICATES THE BEST PERFORMANCE FOR THAT FOLD

ConvLSTM layer needs twice as much time as the baseline
model for that same resolution. However, the inference time in
a real-life scenario could be significantly decreased. If the long
sequence of VC-B-scans needs to be analyzed, it is possible to
reuse the feature maps that were already calculated. This way
each image would pass through the feature extractor only once
and the only additional computational complexity would come
from the feature merging which would not significantly slow
down the model. We also wanted to note that the time reported
for the model with a nine-channel input is not a mistake.
That model should theoretically take longer for inference but
in our experiments, we got a slightly faster time compared to
the baseline model. We believe that this anomaly is caused
by the better optimization of that model for GPU execution.

VI. CONCLUSION

In this paper, we propose two novel approaches that can be
used to incorporate information from the surrounding B-scans
while performing defect detection from ultrasound images.
We tested the effectiveness of the proposed approaches on the
in-house dataset with over 4000 sequences of VC-B-scans.
We showed that the simple expansion of the EfficientDet’s
input does not lead to a significant improvement proving the
need for a more sophisticated approach for sequence analysis.
Using the methods proposed in this work, the mean average
precision can be improved by 2.0 % for the model with an
input resolution of 512 ×512 and by 3.4% for the model with
an input resolution of 384 × 384. In the future, some other
approaches for feature merging as well as some other object
detection models should be considered.
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