
Web application frameworks as reusable components

Prstačić, Svebor

Doctoral thesis / Disertacija

2021

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:413013

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-04-25

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:413013
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://repozitorij.unizg.hr/islandora/object/fer:7389
https://dabar.srce.hr/islandora/object/fer:7389

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Svebor Prstačić

WEB APPLICATION FRAMEWORKS
AS REUSABLE COMPONENTS

DOCTORAL THESIS

Zagreb, 2020

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Svebor Prstačić

WEB APPLICATION FRAMEWORKS

AS REUSABLE COMPONENTS

DOCTORAL THESIS

Supervisor:
Professor Mario Žagar, PhD

Zagreb, 2020

FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Svebor Prstačić

APLIKACIJSKI OKVIRI WEBA KAO PONOVNO
ISKORISTIVE KOMPONENTE

DOKTORSKI RAD

Mentor:

Prof. dr. sc. Mario Žagar

Zagreb, 2020.

This dissertation was prepared at the University of Zagreb, Faculty of Electrical Engineering
and Computing, Department of Control and Computer Engineering

Mentor:
Professor Mario Žagar, PhD

Dissertation has: 161 pages

Dissertation number: __________

ABOUT THE SUPERVISOR:

Mario Žagar was born in Kupjak (Gorski kotar) in 1952. He received his dipl.ing., M.Sc.CS

and Ph.D CS degrees, all from the University of Zagreb, Faculty of Electrical Engineering and

Computing (FER) in 1975, 1978 and 1985 respectively.

From January 1977 he is working at the Department of Control and Computer Engineering at

FER and was since involved in scientific projects, educational activities, improvements of

educational programs, laboratories and computer equipment. He was visiting researcher at the

University of Rostock, Germany (1980), received British Council fellowship (UMIST –

Manchester, 1983) and Fulbright fellowship (UCSB – Santa Barbara, 1983/84). In 2002 he

was promoted to Tenure Professor of Computing. He participated in numerous domestic and

international research projects. He was a member and project leader in five scientific projects

financed by Ministry of Science, Education and Sports of the Republic of Croatia. He was

also co-leader/leader in Unity Through Knowledge (UKF) project, TEMPUS project (in

cooperation with the University of Paderborn, Germany), several projects in cooperation with

the Mälardalen University, Västerås, Sweden. M. Žagar is author and co-author of more than a

hundred articles and five books on computer architectures, distributed, ubiquitous and

pervasive computing, Internet of Things (IoT), Open computing, e- learning and other Internet

related technologies.

Prof. Žagar is a senior member of IEEE/CS, honorable president of Croatian Society for Open

Systems, member of Croatian Academy of Technical Sciences. He participated in

international conference program committees, he is a member of two journal editorial boards

is a technical reviewer for various international journals. M. Žagar was awarded a Bronze

plaque Josip Lončar (1975), awards INFORMATIKA93 (1993) and INFORMATIKA96

(1996) from the Croatian Informatics Society. He also received the Golden plaque Josip

Lončar for the improvement of education, scientific and research work and organization of the

Faculty from FER (2002), “Best educator” award, IEEE/CS Croatia Section (2006), Croatian

Academy of Sciences and Arts (HAZU) award “Josip Juraj Strossmayer” for the most

successful scientific work in Croatian in the field of information science (2007), for e-edition

of “Unix and how to utilize it” book. He also received the “Acknowledgment for leading the

development of the dynamic FERWeb application” started in 2001 and currently the central

FER Web site, first prize for the best e-course at the University of Zagreb (academic year

2009/2010), Open Computing course and several other awards and acknowledgments.

O MENTORU:

Mario Žagar rođen je u Kupjaku (Gorski kotar) 1952. godine. Diplomirao je, magistrirao i

doktorirao u polju računarstva na Sveučilištu u Zagrebu Fakultetu elektrotehnike i računarstva

(FER), 1975., 1978. odnosno 1985. godine.

Od siječnja 1977. godine radi na Zavodu za automatiku i računalno inženjerstvo FER- a. i od

tada je uključen u različite znanstvene projekte, nastavne aktivnosti, poboljšanja nastavnih

programa, laboratorija i opreme. Bio je gostujući istraživač na Sveučilištu u Rostocku

(Njemačka, 1980. godine), nositelj je stipendija „British Council fellowship“ (UMIST -

Manchester, 1983. godine) i „Fulbright fellowship“ (UCSB - Santa Barbara, 1983./1984.

godine). Godine 2002. izabran je za redovitog profesora računarstva u trajnom zvanju.

Sudjelovao je u brojnim domaćim i međunarodnim istraživačkim projektima. Bio je član i

voditelj pet znanstvenih projekata koje financira Ministarstvo znanosti, obrazovanja i sporta

Republike Hrvatske. Bio je također suvoditelj/voditelj projekata „Unity Through Knowledge

(UKF)“, „TEMPUS“ (u suradnji sa Sveučilištem Paderborn, Njemačka) te više projekata sa

Sveučilištem Mälardalen, Västerås, Švedska. M. Žagar autor je i koautor više od stotinu

članaka i pet knjiga iz područja računalnih arhitektura, raspodijeljenog, sveprisutnog i

prožimajućeg računarstva, Interneta stvari, otvorenog računarstva, e-učenja i drugih Internetu

usmjerenih tehnologija. Prof. Žagar je član senior IEEE-a i IEEE CS-a, počasni predsjednik

udruge HrOpen (Hrvatske udruge za Otvorene sustave i Internet) te redoviti član Akademije

tehničkih znanosti Hrvatske (HATZ). Sudjelovao je u više programskih odbora međunarodnih

konferencija, član je dva urednička odbora i recenzent u više međunarodnih časopisa. M.

Žagar primio je Brončanu plaketu Josip Lončar FER-a 1975. godine, nagrade

INFORMATIKA93 i INFORMATIKA96 Hrvatske Informatičke Zajednice (HIZ), najviše

priznanje Zlatnu plaketu Josip Lončar za unaprjeđenje nastave, znanstveno-istraživačkog rada

i organizacije dodjeljuje FER 2002. godine, nagradu „Najbolji edukator“ Hrvatske Sekcije

IEEE-a, 2006. godine, nagradu Hrvatske akademije znanosti i umjetnosti (HAZU) “Josip

Juraj Strossmayer” za najuspješniji znanstveni rad u Republici Hrvatskoj u polju

informacijskih znanosti, 2007. godine (za e-izdanje knjige „UNIX i kako ga iskoristiti“).

Također je dobitnik „Priznanja za vođenje razvoja dinamičke aplikacije FERWeb“ koja je od

2001. godine do danas središnja stranica Weba FER-a, prvu nagradu za najbolji e-kolegij na

Sveučilištu u Zagrebu za predmet Otvoreno računarstvo (akademska godina 2009./2010.) i još

niz drugih nagrada i priznanja.

ACKNOWLEDGEMENTS

Before you lies a dissertation, a bit overdue in the making and almost neglected at certain

periods of time since I started my PhD work.

I owe a great deal of thanks to patience, guidance and professional inspiration that my mentor

Mario provided, almost from the first day that we met. Mario, you were crucial in finding the

direction for my professional growth, as well as finding meaning to technology. Small acts of

encouragement and nudges in the right direction at key points in time are things that got me

where I am today, and that made it possible to finish this thesis.

To my parents, Ivana and Miroslav, who set the standard for achievement, perseverance and

patience to a reasonably high level, who encouraged me, and without any doubts believed and

pushed me to finish this thesis. Thank you.

I was writing this thesis with great support from my girlfriend Ivona. There was a period

when I spent all my free time in darkened rooms, staring at the screen. Hearing a simple you

got this now and then, made me really believe it.

My colleagues Vlatka, Ivana, and Siniša, who tirelessly read what I wrote and pointed at the

weird bits, and encouraged me to fix them, thank you.

Thank you to all my other colleagues, especially Krešimir. I owe a great debt in knowledge

and cooperation. You were always open to debate, full of encouragement, ideas, and at times,

the right questions.

And also to everyone else, that listened to my, sometimes endless, meanderings about writing

this PhD thesis, who directly or indirectly bolstered my resolve, thank you for listening and

sharing that vision, faith, sometimes also doubt, but mostly excitement.

ABSTRACT

Component-based software engineering is one of key disciplines for efficient production of

high quality software. As software industry evolves and focus moves to advances in fields like

AI, big data or blockchain and crypto technologies, component-based software development

remains the key method for efficient development. However pervasive component-based

software engineering, there still are limitations to the way certain types of software

components are built and assembled. For example, three-tier Web application components that

are built adhering to a specific component model, using a certain development framework are

only reusable inside other instances of applications adhering to the same component model.

WordPress components are usable only inside other WordPress instances, Laravel components

are unusable inside applications built using CodeIgniter or Yii frameworks etc.

These limitations stem from the fact that components are tightly coupled with the underlying

development framework or platform, that is responsible for providing integration interfaces to

connect multiple components. These interfaces provide required data and interface to

framework’s components that provide services for custom-built components to run. Through

such interfaces, frameworks even provide base building blocks to build components. Many

similar, but incompatible, critical building blocks are present in different development

frameworks, while required component interfaces and data provided are similar. However

small, differences exist and tight coupling limits reuse and portability to other components

built using different component models.

Ideally, it should be possible to reuse components in whichever environment, just like an LCD

display can be used in both the home monitor, car dashboard or a plane cockpit. The goal of

this research is to define a technique to lessen that limitation and enable systematic

component reuse outside of it’s originating component model. The focus is on three-tier Web

application components that include multiple code constructs, such as: models, controllers and

user interfaces.

To achieve this overall goal of research (i) a model of software framework as complex

reusable Web application component is defined; (ii) a method for building Web applications

using heterogeneous components based on the proposed software framework model has been

proposed; and (iii) a prototype of the software development framework and evaluation of the

component model applicability for popular Web applications is tested and validated.

Keywords: component architectures, component model, component reusability, framework as

a component

APLIKACIJSKI OKVIRI WEBA KAO PONOVNO ISKORISTIVE KOMPONENTE

Programsko inženjerstvo orijentirano na komponente (PIK) je jedno od ključnih područja

računalstva, koje je omogućilo efikasnu proizvodnju sve većeg i kompleksnijeg, ali i

kvalitetnog softvera. Industrija softvera napreduje i posljednjih je godina fokus sve više na

novim područjima kao što su umjetna inteligencija, analiza podataka (engl. big data),

kriptografija i tehnologija povezanih blokova (engl. blockchain), a programsko inženjerstvo

orijentirano na komponente ostaje osnovni način razvoja softvera u tim područjima.

Usprkos tome, PIK donosi i ograničenje u načinu na koji je moguće graditi komponente i u

načinu na koji je komponente moguće sastaviti u kompozitne komponente. Na primjer,

komponente troslojne (engl. three-tier) arhitekutre za web aplikacije su uvijek građene za neki

komponentni model, korištenjem nekog razvojnog okvira (engl. framework) koji određuje

platfomu i tehnologiju. Komponente za sustav WordPress su iskoristive samo unutar instanci

sustava WordPress, komponente za razvojni okvir Laravel samo u aplikacijama građenim

pomoću razvojnog okvira Laravel. Iz perspektive razvojnih okvira CodeIgniter ili Yii, Laravel

i WordPress komponente su nefunkcionalni fragmenti programskog koda.

Ova ograničenja proizlaze iz činjenice da su komponente uvijek čvrsto povezane s razvojnim

okvirom pomoću kojeg su nastale, a isto tako i s platformom i tehnologijom koje su korištene

za razvoj razvojnog okvira. Ta veza je ostvarena kroz sučelja komponenti pomoću kojih

komuniciraj s razvojnim okvirom, osnovnim i sistemskim komponentama, te na taj način

dobivaju podatke i upravljačke signale koji su portebni za njihovo izvršavanje. Mnogo je

sličnih i međusobno nekompatibilnih sučelja i podataka u različitim razvojnim okvirima, koji

služe sličnoj namjeni.

Na primjer, svaki razvojni okvir za razvoj web aplikacija osigurava uslužne mehanizme (engl.

utilities) za rješavanje ponavljajućih potreba aplikacije. Između ostaloga, to su mehanizmi za

upravljanje sjednicom (engl. session) korisnika, pohranjivanje datoteka koje korisnici

presnime na poslužitelj kroz aplikaciju, pristup pojedinih komponenti relacijskoj bazi

podataka; mehanizmi za povezivanje manjih komponenti na različitim slojevima na primjer,

korisničko sučelje, upravljački dio i dio za upravljanje modelima podataka. Na svakom od

slojeva aplikacijski okvir implementira vrlo slične mehanizme, ponekada i temeljene na istim

tehnologijama. Na primjer, mehanizmi za šabloniranje definicije korisničkog sučelja (eng.

templating) kao što su Mustache1, Smarty2, Blade3 mogu biti korišteni u različitim razvojnim

okvirima, ali način na koji razvojni okvir kroz njih pruža pristup uobičajenim informacijama

koje su potrebne prilikom izgradnje korisničkog sučelja je gotovo uvijek drugačiji. Svaki od

mehanizama za šabloniranje pruža mogućnosti za nadogradnju, kako bi aplikacijski okvir u

koji su integrirani bio u mogućnosti na jednostavan način dodatnim komponentama omogućiti

izgradnju ponavljajućih dijelova sučelja. To mogu biti na primjer komponente kojima

aplikacijski okvir omogućava brzo stvaranje linkova ili gumba koji pokreću neku akciju

komponente kojoj pripadaju, upravljačke strukture kojima je moguće upravljati koje

informacije se prikazuje svim korisnicima, a koje samo prijavljenim korisnicima ili

određenim korisnicima.

Takav pristup pomaže u brzoj izgradnji sučelja komponenti za neki aplikacijski okvir, ali tako

definirana sučelja nije lako preseliti u drugi razvojni okvir, bez obzira koristi li isti

mehanizam za šabloniranje.

Jednaki uzorci se ponavljaju i na drugim slojevima različitih aplikacijskih okvira. Način na

koji upravljačke komponente (engl. controller) funkcioniraju obično vrlo slične između

aplikacijskih okvira, ponekad djeluju i kao da su iste – kada korisnik izvrši neku akciju kroz

korisničko sučelje, na primjer klikne link, poziva se metoda upravljačke klase komponente

čije je sučelje korišteno. No, način na koji potom komponenta dolazi do ulaznih informacija

čije je stvaranje uzrokovao taj klik, kao što su informacije o korisniku, sjednici, razini prava

korisnika itd., su specifični za svaki pojedini aplikacijski okvir.

Razlog za to je ustvari vrlo jednostavan. S vremenom se programski jezici razvijaju, a s

vremenom se razvijaju i aplikacijski okviri, te nastaju novi. Ponekad s ciljem kako bi ispravili

propuste ili poboljšali način na koji je neki stariji aplikacijski okvir rješavao neke od tih

uobičajenih problema. No istovremeno, to je ujedno i razlog zašto komponente koje su nastale

u različitim aplikacijskim okvirima nisu prenosive u druge razvojne okvire.

U idealnom slučaju bi trebalo biti moguće ponovno koristiti softverske komponente baš kao

što je to moguće u drugim inženjerskim područjima, kroz standardizaciju sučelja. LCD zaslon

tako može biti iskorišten u automobilu, monitoru u uredu ili avionu. Cilj istraživanja čiji je

1 https://github.com/bobthecow/mustache.php

2 https://www.smarty.net/

3 https://github.com/jenssegers/blade

rezultat ova disertacija je definirati način na koji je moguće ublažiti negativne utjecaje

postojanja različitih komponentnih modela kroz mehanizam za sistematsko ponovno

korištenje komponenti i izvan njihovog komponentnog modela i razvojnog okvira. Fokus je

na troslojnim komponentama za web aplikacije koje sadrže više programskih konstrukcija ili

podkomponenti na sva tri sloja.

Ove probleme razvoja softvera industrija rješava arhitekturama kao što su Arhitektura

orijentirana na usluge (engl. Service-oriented architecture) i mikroservisima (engl.

microservices). U jednom i drugom slučaju je cilj zamijeniti komponente ili dijelove

komponenti na nekom od nižih slojeva aplikacije web uslugama kojima je moguće pristupiti

na uniforman način, putem HTTP protokola. Time je postignuta veća iskoristivost pojedinih

komponenti ili funkcionalnosti koje pružaju utoliko da pojedine web usluge nisu nužno

korištene samo za web aplikacije, već služe i kao komponente ili dijelovi komponenti

mobilnih ili desktop aplikacija.

No, kada pričamo o web aplikacijama, primjena takvih arhitektura je dovela do povećanja

kompleksnosti samih aplikacija. Testiranje pojedine web aplikacije, a time i njeno ispravno

funkcioniranje ovisi o komponentama koje su potencijalno udaljene logički, fizički i

tehnološki. Replikacija takve arhitekture ponekada postaje vrlo teška na laptopu razvojnog

inženjera: potrebno je pokrenuti uslugu u javnom oblaku, 10-ak mikroservisa, te ponekad i

nekoliko komponenti koje poslužuju i samo korisničko sučelje. Dodatno, i sama korisnička

sučelja su postala kompleksnija na način da su to sada aplikacije troslojne arhitekture, često

koriste MVC ili MVVM arhitekturne obrasce, pisane u JavaScript programskom jeziku.

Ovakva arhitektura je nužna za razvoj visoko dostupnih i kompleksnih modernih web

aplikacija kao što su Facebook, YouTube i slične. No, većina manjih poslovnih aplikacija, te

jednostavne web stranice kao što su privatne web stranice, web stranice tvrtki ili manji web

dućani postaju vrlo teški i kompleksni za implementaciju. Iz tog razloga, starije monolitne

arhitekturne paradigme i dalje odolijevaju, usprkos nedostacima i velikoj količini

aplikacijskih okvira kako je ranije navedeno. Da monolitne arhitekture neće tako brzo nestati

pokazuje i najpopularniji sustav za izgradnju stranica, je sustav otvorenog koda, monolitne

arhitekture – WordPress.

Istraživanje koje je tema ove doktorske disertacije se bavi arhitekturom aplikacijskog okvira

za razvoj monolitnih web aplikacija, no s ciljem da to ne bude još samo jedan okvir koji

omogućava razvoj komponenti koje je teško iskoristiti izvan njegovih granica, već je cilj

istraživanja aplikacijski okvir kao ponovno iskoristiva komponenta weba. U tom slučaju

aplikacijski okvir je i sam komponenta, s dobro definiranim aplikacijskim sučeljima kroz koja

omogućava integraciju s proizvoljnom web aplikacijom.

Preduvjet za takvu integraciju je pak identifikacija svih uobičajenih kontekstualnih podataka

koje web aplikacije prilikom izvođenja pojedine komponente stvaraju ili koriste. S obzirom na

razlike strukture i moguće razlike u interpretaciji tih podataka između različitih web

aplikacija, ili između različitih aplikacijskih okvira, aplikacijski okvir kao ponovno iskoristiva

komponenta weba mora definirati i mehanizme za prijevod takvih podataka.

Za postizanje ciljeva istraživanja je (i) definiran model programskog okvira kao ponovno

iskoristive kompleksne komponente aplikacije weba; (ii) definirana metoda izgradnje

aplikacija Weba korištenjem heterogenih komponenti temeljena na predloženom modelu

programskog okvira; i (iii) napravljen prototip programskog okvira i izvršena evaluacija

primjenjivosti komponentnog modela na primjerima popularnih aplikacija weba.

Model programskog okvira kao ponovno iskoristive kompleksne komponente aplikacije

weba

Okviri za razvoj softvera su zbirke građevnih blokova i uslužnih programa koji omogućuju

izgradnju komponenata i pružaju kontekst izvršavanja tijekom izvođenja. Aplikacijski okviri

su ujedno dio definicije komponentnog modela ali i primjer njegove primjene. Postoje mnogi

načini na koje je aplikacijske okvire za razvoj web aplikacija moguće kategorizirati, između

ostalog ih je moguće podijeliti u dvije kategorije: (i) okviri opće namjene i (ii) okviri koji su

dio aplikacije koja pruža određenu osnovnu funkcionalnost, te proširivost kroz komponente.

Okvir opće namjene, npr. Laravel, je aplikacijski okvir za programski jezik PHP, koji

omogućava jednostavan razvoj komponenata i pruža osnovne gradivne blokove za uobičajene

funkcionalnosti: usmjeravanje; pristup bazi podataka, prijenos datoteka i upravljanje, itd.

Aplikacijski okvir ne pretpostavlja i ne čini ograničenje koje će funkcionalnosti izgrađena

aplikacija sadržavati. Kompleksna JavaScript aplikacija, aplikacijsko sučelje ili web usluga,

blog, sustav za upravljanje sadržajem itd. Komponente izgrađene pomoću takvih okvira mogu

se, uz manje ili više truda, integrirati unutar drugih aplikacija koje su izgrađene pomoću tog

istog okvira. Jednostavnost s kojom se to može učiniti obično opada kako složenost

komponente raste, jer je tada obično povezanost s ostalim komponentama u izvornoj aplikaciji

veća.

Aplikacijski okvir koji je dio aplikacije je sličan, ima istu svrhu i obično također ima sve

potrebne osnovne blokove za postizanje zajedničkih funkcionalnosti, ali je na neki način ipak

restriktivniji. Omogućuje izgradnju komponenata ili modula koji proširuju osnovnu

funkcionalnost aplikacije. Npr. takav okvir omogućava stvaranje nove komponente za sustav

upravljanja sadržajem Drupal ili WordPress. Komponente izgrađene pomoću takvih okvira

mogu se koristiti samo unutar različitih instanci te iste aplikacije. Same mogućnosti razvoja

takvih komponenti su više restriktivne, ali je ponovna iskoristivost unutar drugih instanci

obično lakša, jer je način proširenja osnovne funkcionalnosti aplikacije bolje definiran, tj.

ograničen.

Obje ove vrste aplikacijskih okvira pružaju načine za izgradnju komponenti koje kao rezultat

toga čine aplikaciju. No, jednom kada ove komponente napuste okruženje u kojem se

smatraju komponentama, više ne rade. Svi uslužni programi koje okvir pruža moraju biti tamo

da bi komponenta nastavila funkcionirati, a način na koji bi programeri komponenti mogli

zaobići taj problem jest izgradnjom adaptera - softverskih komponenti koje prevode i

prilagođavaju nekompatibilna sučelja. Ovo je vrlo složen pristup jer podrazumijeva

osiguravanje da su svi podaci i drugi osnovni građevinski blokovi i osnovne komponente

dostupni ili da se barem čine dostupnim komponentama – putem adaptera.

Model aplikacijskog okvira kao ponovno iskoristive složene komponente se temelji na ideji

da je moguće zaobići složenost opisanu u prethodnim odlomcima iz perspektive programera

svake komponente, ako je aplikacijski okvir dizajnirani i izgrađeni kao komponenta web

aplikacije, dizajnirana i izrađena za ponovnu upotrebu [30]. Takav je aplikacijski okvir

komponenta i ujedno univerzalni adapter za komponente koje su njegovim korištenjem

izgrađene. Kao adapter, uvijek stoji između dvije komponente, bez obzira jesu li te

komponente izrađene pomoću građevnih blokova koje on sam pruža, ili je njima povezana

"strana" proizvoljna komponenta, proizvoljne aplikacije, tj. proizvoljna aplikacija.

Metoda izgradnje aplikacija Weba korištenjem heterogenih komponenti temeljena na

predloženom modelu programskog okvira

Komponentni model zasnovan na okviru kao složenoj komponenti web aplikacije koja se

može ponovno upotrijebiti (ili kraće, okvir kao komponenta - FAC) definira metodu za razvoj

suvremenih komponenata web aplikacija i način njihove integracije i sastavljanja u cjelovite

aplikacije. FAC model uključuje heterogeni i homogeni sastav komponenata kao i dobro

definirani ponovljivi postupak, koji je uvijek isti za bilo koje dvije komponente. Također

definira razvoj troslojne komponente koji se temelji na arhitektonskom uzorku MVC-a.

Budući da je sastav komponente uvijek isti, razvojni proces i značajke komponenata uvijek su

primarni fokus programera, a ne planiranje i razvoj komponente posebno za ponovnu

upotrebu.

Da bi to bilo moguće, svaka komponenta mora dobiti kontekst za izvođenje, kao što je na

primjer trenutni korisnik, razina korisničkog odobrenja i drugi relevantni podaci od roditeljske

komponente. Svaki dio konteksta, osim podataka iz nadređene komponente (koju nadređena

komponenta, roditelj, sama osigurava), uvijek pruža platforma, a to su osnovni blokovi i

usluge koje pruža razvojni okvir. U web aplikacijama podatke koje koristi ili stvara

komponenta roditelj se definiraju kroz naziv i jedinstveni prikaz tih podataka.

Primjer kojim je to moguće objasniti: svaka web aplikacija započinje svoj kontekst izvršenja

iz te dvije komponente podataka: naziv je URL, a jedinstveni prikaz podatka je stvarni URL,

npr. www.fer.hr. Aplikacija koja se nalazi iza te adrese zatim odlučuje koje će komponente

prikazati za navedenu adresu. Te komponente zauzvrat odlučuju koje će podređene

komponente one pokrenuti, te dati isti par identifikatora: imena i referenci, temeljenih na

podacima kojima one upravljaju. Iz toga je vidljivo da se komponente na neki način spajaju

na par (ime podatka, jedinstvena reprezentacija podatka) koje roditelj pruža. Taj par je u

istraživanju nazvan kuka (engl. hook).

Na primjer, ako www.fer.hr prikazuje članke vijesti i svaki od njih želi koristiti komponentu

„Komentari“, par „kuka” koji bi dobila komponenta „Komentari” bi bio (Naziv: članak

vijesti; stvarni ID pod kojim je članak pohranjen u relacijskoj bazi).

Stoga su kuke podataka i univerzalna sučelja za ponovnu upotrebu komponenata ključni

koncepti za metodu izrade web aplikacija pomoću heterogenih komponenti na temelju

predloženog modela aplikacijskog okvira.

Prototip programskog okvira i izvršena evaluacija primjenjivosti komponentnog modela

na primjerima popularnih aplikacija weba

Razvijen je prototip aplikacijskog okvira weba kao ponovno iskoristive komponente, koji je

iskorišten za procjenu i provjeru valjanosti modela aplikacijskog okvira. U disertaciji je kroz

dvije eksperimentalne integracije prototipa FAC-a evaluirana primjenjivosti u stvarnim

scenarijima izrade softvera. Kroz eksperimentalne je integracije je izgrađen softver s jasno

definiranim funkcionalnostima, od kojih je dio implementiran kroz komponente izgrađene

pomoću FAC-a. Time je pokazano da se na način koji je dobro definiran i koji je moguće

ponoviti za različite postojeće web aplikacije, komponente izgrađene pomoću FAC-a mogu

integrirati u popularne postojeće web aplikacije koje se temelje na, spram FAC-a, heterogenim

komponentnim modelima. Time se poboljšava ponovna upotrebljivost komponenti građenih

FAC-om, spram komponenti koje su građene ostalim monolitnim aplikacijskim okvirima.

Primjenom metrika za računanje ponovne iskoristivosti programskih komponenti je nad

eksperimentalnim integracijama prototipa pokazano da je uz primjenu FAC-a moguće

izgraditi zadani softver uz manje programerskog rada i manje je koraka potrebnih za

integriranje i ponovnu upotrebu komponenata heterogenim komponentnih modela, te da

primjena FAC-a čini ponovnu upotrebu komponenata dobro definiranim ponovljivim

postupkom, a da ponovna iskoristivost svake komponente koja je izgrađena korištenjem FAC-

a raste s brojem implementiranih, tj. iskorištenih komponenti koje su izgrađene FAC-om.

Ključni pojmovi: arhitekture komponenti, komponentni model, ponovna iskoristivost

komponenti, razvojni okvir kao komponenta

CONTENTS

1. Introduction...1

1.1. Research questions..1

1.2. Research contribution..4

1.3. Research methodology..6

1.4. Thesis outline...8

2. Theoretical background...11

2.1. Software engineering sub-disciplines..12

2.1.1. Software requirements...12

2.1.2. Software design...12

2.1.3. Software construction..17

2.1.4. Other sub-disciplines...19

3. Component-based software engineering...21

3.1. Component models..24

3.2. Component lifecycle..27

3.3. Component construction..28

3.4. Component-based software engineering in web application development...................30

3.4.1. Model-view-controller architectural pattern..32

3.4.2. An example..32

3.4.2.1. ASP.NET..34

3.4.2.2. ASP.NET MVC 3...34

3.4.2.3. Groovy on grails..35

3.4.2.4. Django framework...35

3.4.2.5. PHP Symfony framework..36

3.4.3. Common component reuse failings...36

3.5. Web application frameworks...37

3.6. Building web application components..39

3.6.1. Building a HelloWorld component using Laravel...40

3.6.2. Building a HelloWorld component using Quilt CMS..41

3.6.3. Building a HelloWorld component using WordPress..43

4. Measuring software components’ reusability..45

4.1. Object-oriented software metrics..47

4.1.1. Cohesion and coupling..50

4.1.1.1. Component coupling..50

4.1.1.2. Component cohesion..52

4.2. Component-based software metrics and reusability..54

4.2.1. Measuring component reusability..55

4.2.2. Measuring reusability from complexity...56

4.2.3. Criticality metrics and implications for reusability...57

4.2.4. Reusability through properties of black-box components.....................................58

5. Framework as a component (FAC) component model...61

5.1. Domain and premise..62

5.2. Architecture...63

5.2.1. Architecture overview..64

5.2.2. Universal adapter...66

5.2.3. Hooks...67

5.2.4. Context mappers and integration components...70

5.2.4.1. Database access and persistent storage..70

5.2.4.2. Context mapper..71

5.2.4.3. User data mapper...72

5.2.4.4. Permission mapper...74

5.2.4.5. Configuration mapper..75

5.2.4.6. Event broker...76

5.2.5. Extensions..76

5.2.5.1. The presentation tier..78

5.2.5.2. Application logic tier and data tier...79

5.2.5.3. Extension lifecycle...80

5.2.6. Extension manager...82

5.3. Limitations...85

6. Building software using FAC framework...89

6.1. Method for building software using framework as component model.........................90

6.1.1. Design principles application..92

6.1.2. Integration of FAC and host application..94

6.1.3. Building extensions...95

6.2. FAC framework implementation...97

6.2.1. FAC framework root folder and components..98

6.2.2. FAC framework folder and components..99

6.2.2.1. The framework/lib/core folder...101

6.3. Building software using FAC framework..104

6.3.1. Building software using FAC framework and WordPress...................................105

6.3.1.1. FAC extension HelloWorld component structure..106

6.3.1.2. WordPress theme..108

6.3.1.3. WordPress plugin...109

6.3.1.4. Implementing WordPress mappers...112

6.3.1.5. Composing software..115

6.3.2. Building with Quilt CMS...118

6.3.2.1. Implementing hooks...118

6.3.2.2. Data change events...119

6.3.2.3. Implementing Quilt mappers...121

7. Evaluation of applicability..127

7.1. Component structure and framework utilities...128

7.1.1. HelloWorld component structure comparison...128

7.2. Framework utilities..129

7.3. Evaluation of reusability...132

7.3.1. FAC component reusability...133

7.3.2. FAC and extensions’ component reusability...135

7.3.3. Measuring reusability from complexity...137

7.3.4. Coupling complexity...140

7.3.5. Black-box reusability metrics..142

7.3.6. Object-oriented software metrics...142

7.3.7. Criticality...144

7.4. Performance impact of FAC..145

8. Conclusion..149

Bibliography..151

Biography..158

Životopis...160

1. INTRODUCTION

In software engineering, there is no shortage of component models. The abundant and highly

competitive market of emerging and declining tools, programming languages, applications,

and frameworks that define ways in which software and software components are built

persistently grows and changes. Some component models are specific to a certain application

domain, some have been honed to perfection for very specific purposes e.g. big data analysis,

deep learning and artificial intelligence, and some are built to provide means for application

development for a certain platform. Some component models and tools built around them are

focused primarily on the description of components, interfaces of those components and ways

in which components are assembled into composite components, whilst leaving the

implementation to another set of tools or a programming languages, but most are

accompanied by concrete implementations in the form of development frameworks.

The development frameworks are part of the component model – they define how to build,

compose and execute components, but are also sets of building blocks to create components.

Frameworks provide base components that enable developers to create components that

adhere to a given set of rules – the component model. A framework and a resulting

applications or platforms built on top of them make component development and reuse

predictable and manageable, but only to a degree. Components built using a framework,

conforming to a specific component model cannot be composed with components built using

a different framework. A framework will tie a component to a certain execution environment,

or computing platform: the operating system, programming language and a set of sub-

components or libraries used to build components.

Software architectures like Service-oriented architecture (SOA) and microservices have been

invented to lessen software and components’ coupling to their platform and make them

reusable through standard interfaces. In this thesis a component model is defined that makes

reuse of complex components predictable, manageable and possible beyond their component

model, through a defined and repeatable integration process.

1.1. Research questions

The overall goal of this research is to provide advancements in development of reusable

complex three-tier web application components that include graphical user interfaces, and to

1

enable their efficient reuse outside of their component model – the execution environment or

framework.

To achieve this, current prevailing component models and their properties and methods for

building and composing components are analyzed and their common shortcomings identified.

To achieve this goal, the following research questions were posed:

Research question 1: Can a component model be defined that doesn’t restrict, but rather

simplifies component reuse, through a set of universal interfaces provided by the development

framework, that serves as a universal component adapter?

Making components reusable translates to making components that have simple standardized

interfaces. There are two sets of component interfaces: interfaces used to communicate with

the underlying platform, and interfaces used for component reuse. If every component had a

single standardized set of interfaces – the one for reuse, than it would be easier to reuse that

component outside of its native framework or execution environment. In fact, it would mean

that a component still is a component, not just inside a strictly defined context. This is hardly

achievable for complex web application components, that span multiple application layers.

For example, a discussion forum built as a Laravel application, can hardly be used as a

WordPress plugin. In fact, it is unreasonable to expect that building such components, or

rather applications, using any development framework without them having required

interfaces and being coupled to other platform components could be possible. But a software

development framework may be defined as a component, that is also a universal adapter for

all the components that were built on top of it. Than it is possible to consider components as

having just one set of interfaces – the one for reuse. It could then be possible leverage the

framework to interface to all the components in a uniform way.

The framework as a component, as a universal component adapter should then have two sets

of interfaces – the one for component reuse, and the one that provides and requires interfaces

for integration with the underlying application platform, or rather the component that is

reusing the framework component. Once the framework integration interfaces are connected,

components built on top of the said framework can be reused. And uniformly – using only the

dedicated set of interfaces – the one made for simple component reuse.

2

In terms of existing frameworks, consider for example that Laravel framework can be used as

a WordPress plugin. And that as a consequence, every application built using Laravel is a

reusable WordPress module, or plugin.

Research question 2: How can components be defined using the framework as a component

component model, and how can they be built and assembled?

If the framework as a component model simplifies reuse of components, how can components

be developed on top of it? Would there be any limitations, and if so, would those be

acceptable? If components adhering to such a component model have to be assembled, would

they also be assembled through the framework as a component, the universal adapter? If not

always, then when and why? Because components should be easily combined into composite

components and the developer shouldn’t have to feel the strain of the framework as

component.

From the first two questions, the following (third) research question naturally arises.

Research question 3: How can it be proved that components built are more easily reusable?

Reusability of components is a common issue in all software engineering fields, and

researchers have tried to develop various methods and metrics for measuring reusability of

software components. Because of the complexity of the issue, there is no single approach that

can give the answer on how reusable a component is, for example on a scale 1 – 10, but it is

possible to apply various techniques to get meaningful results and indicators of component

reusability in various cases.

Because of this, this research will answer whether it is possible to measure the effort required

to reuse a number of components built using the framework as a component model, in

unrelated applications. For example, WordPress and Laravel, compared to the effort required

to write a component for one and then modify it for reuse in the second application.

In other words, is it worth integrating the framework as a component and then simply reusing

all the components built on top of it, rather than building components for multiple platforms

or applications?

3

1.2. Research contribution

Research questions, posed in the previous section, yielded the following research

contribution, divided into three parts.

Research contribution 1 (RC1): Model of software framework as complex reusable Web

application component.

Software development frameworks are collections of building blocks and supporting software

utilities that enable building of components, and provide execution context during runtime.

They are both a part of the definition of a component model and the implementation of it.

Among many ways in which web application development frameworks can be categorized, it

is also possible to assign them to two categories: (i) general-purpose frameworks and (ii)

frameworks that are part of an application that provides some base functionality and

extendability through components.

A general purpose framework, e. g. Laravel, is a PHP framework that enables easy

development of components and provides base building blocks for common functionalities:

routing; database access, file uploads and management, etc. It doesn’t make a presumption

what the application will be. A single page application, an API, a blog, a content management

system. It can be anything. Components built using such frameworks can be integrated inside

other applications that are built using the same framework. Ease with which it can be done

usually drops as complexity of a component rises, and when integration of the component

with other components in the original application is higher.

A framework that is a part of the application is similar, has the same purpose and usually also

has all the required base building blocks to achieve common functionalities, but is more

restrictive. It is there to enable building of components or modules for the base application

functionality. E.g. create a new module for the Drupal content management system, or a new

plugin for WordPress. Components built using such frameworks can only be used inside

instances of that same application.

Both these types of frameworks provide ways to build components that as a result, make up

an application. Once these components leave the environment in which they are considered

components, they no longer work. All the utilities that the framework provides have to be

there in order for the component to continue functioning, and the way in which component

4

developers could circumvent this problem is by building adapters – software components that

translate and adapt incompatible component or framework interfaces. This is a very complex

approach because it entails making sure all the data and other base building blocks and base

components are reachable, or seem reachable, to components through the adapter.

Model of a software framework as complex reusable web application component is based on

the idea that it is possible to circumvent the complexity described in previous paragraphs from

the perspective of each components’ developer, if development frameworks are designed and

built as application components, designed and built for reuse [30]. The framework is thus a

component and also a universal adapter for components that are built on top of it. It always

stands in between two components, no matter if those components are built using building

blocks it provides, or whether it is interfaced by a “foreign” arbitrary component of an

arbitrary application. This is the first research contribution of this dissertation.

Research contribution 2 (RC2): A method of building Web applications using heterogeneous

components based on the proposed software framework model.

The component model based on a framework as a complex reusable web application

component (or shorter, framework as a component – FAC) defines a method to develop

modern web application components and a way to integrate and assemble them into whole

applications. FAC model includes heterogeneous and homogeneous component composition

as well-defined repeatable process, that is always the same for any two components. It also

defines three-tier component development that is based on MVC architectural pattern. Since

component composition is always the same, the development process and component features

are always the primary focus of the developer, rather than planning and development of a

component specifically for reuse.

To make this possible, each component needs to receive the execution context, such as the

current user, user permission level, and other relevant data from the parent component. Every

part of the context, except the data from the parent component (which the parent component

provides itself) is always provided by the platform, the base building blocks and services the

development framework provides. A standardized format for the parent component’s data is

needed. In web applications hat data is defined through two components: the name and a

unique representation of that data.

5

Every web application starts its execution context from such data, the name is URL and the

unique representation is the actual URL, e.g. www.fer.hr. The application serving that URL

then decides what components to render. These components in turn decide which child

components to render, and can feed them the same name-identifier pair to reference. From

that it is visible that components, in a way, hook onto these two components of the data a

parent provides. These are called these hooks, and hook data.

For example, if www.fer.hr was showing news articles, and each of these wanted to use a

“Comments” component, the hook data it would provide would be: news article – as the name

and the actual id of the article.

Data hooks and universal interfaces for component reuse are thus key concepts for the method

of building Web applications using heterogeneous components based on the proposed

software framework model (FAC).

Research contribution 3 (RC3): Prototype of the software development framework and

evaluation of the component model applicability for popular Web applications.

The prototype of FAC has been developed that can be used to evaluate and validate the model

(RC1) and all the depending methods (RC2) and their applicability in real-world scenarios.

This thesis shows that components built using FAC can be integrated into popular existing

web applications, that are based on different component models. There are gains in

component reusability, less development work and fewer steps required to integrate and reuse

components across heterogeneous component models. The FAC approach makes reusing

components a uniform process, with no need for a developer to examine a component in detail

before being able to connect it to the rest of the system. As a consequence, it is possible to

measure improved reusability using common software component reusability metrics.

1.3. Research methodology

Research has been conducted according to the following steps:

1. Investigation of state-of-the-art and state-of-the-practice in component-based software

engineering for Web application development

2. Definition of a concrete research problem, followed by an in-depth literature review

and definition of a research goal.

6

3. An iterative process of: (i) development of a theoretical research result, (ii)

implementation of a prototype development framework adhering to the FAC

component model, (iii) evaluation of the method using the prototype FAC.

4. Validation of the method using a metrics-based approach, a case-study and a set of

tests.

Existing methods were investigated to develop reusable three-tier web application

components, that can be used across different component models, i.e. using different

development frameworks or for different applications. Is there e.g. a way to build a

component that works in both WordPress and Drupal, that writes structured data into the

database and references some common WordPress data and also, without separate integration

modification, that same data in Drupal? This could be user details, permissions, site or page

data. No such research or methods were found, and the only solution that researchers were

addressing were microservices or service-oriented architectures in general. That is a

completely different architecture and approach, and doesn’t include reusing components that

have multiple layers, and it especially doesn’t include components with graphical, or any

other for that matter, user interfaces. Since the approach of microservices, or service-oriented

architectures, requires a complete application rewrite and redesign, and in addition

implementation of components that expose microservices to the end user through graphical

user interfaces, which might also need to be implemented using different component models,

it doesn’t satisfy the criteria that was defined for research.

There were similar approaches and techniques in other domains, devised for different

purposes, application domains and always addressing more low-level components than our

research is about. Most notable approaches of all are Java beans, CORBA, and Microsoft’s

COM. These target reuse of parts of the user interface, but the developer is supposed to

connect them to other components that connect those to components that implement business

logic, provide data etc. Once all this is connected, simple reuse is again impossible.

Consequently, research was approached in the following way: investigate the state-of-art

approaches (i); based on existing methods and solutions define the research goal and problem

that would be based on recent advances and methods of component-based software

engineering (ii); and go through the iterative process of developing, prototyping tools and

models, evaluation (iii) and in the end testing their applicability in real-world applications

7

through a case study. The real-world case study was done using the actual instance of FAC

framework prototype and a number of components. The FAC prototype was with different

host applications, thus testing functional correctness of extensions and data integrity of data

that those extensions manipulate. Finally, component reusability was measured through the

application of known software and component metrics (iv).

1.4. Thesis outline

This thesis is divided into 8 chapters. The first chapter introduces the PhD topic, research

methodology, research questions and the research contribution.

Chapter 2, the theoretical background on software engineering is introduced, which provides

one of two pillars which will be used to define the method of building software using FAC

(RC2).

Chapter 3, component-based software engineering is introduced. This is a more in-depth look

at how software can be built by applying component-based methods. This is another pillar for

defining the method of building software using FAC (RC3), and building the prototype of

FAC (RC3).

Theoretical background on component models is also introduced in this chapter, contributing

to body of knowledge required to define the Model of software framework as complex

reusable Web application component (RC1).

Chapter 4 introduces software and component and component reusability metrics and

concepts, that will make it possible to evaluate component reusability that results from the

application of FAC to composing components and building software.

Chapter 5 introduces the Model of software framework as complex reusable Web application

component (RC1) in detail.

Chapter 6 goes into detail on the implementation of the prototype of the software

development framework and evaluation of the component model applicability for popular

Web applications (RC3).

It also describes in detail how software can be built, through two example implementations of

two different host applications. Implementations then yield a method of building Web

8

applications using heterogeneous components based on the proposed software framework

model (RC2).

Chapter 7 applies the software and component reusability metrics to evaluate the prototype

and method for building software using FAC.

9

2. THEORETICAL BACKGROUND

Component based software engineering practices emerged in the 1960’s. The decade when the

boundaries between software and hardware were getting more and more visible and with

rising complexity of both software and hardware, the need for a more efficient and formal

development disciplines became unavoidable and needed. It is in this decade that NATO

science committee organized the first conference on software engineering in Germany, to

discuss the challenges of creating more complex and reliable software.

It is in 1968 that Doug McIlroy, then head of the Bell Labs Computing Sciences Research

Center, at the NATO conference, said: “My thesis is that the software industry is weakly

founded, and that weakness is the absence of a software components sub-industry.”. It wasn’t

by accident that McIlroy was one of the authors of the first Unix operating systems, and the

inventor of the Unix pipes, a system that made it possible to use Unix command-line

programs as components that could exchange text data and through that chaining, work as a

system of reusable components.

Today, software engineering is a complex field, that is comprised of many sub-disciplines [1].

One of the main goals of software engineering is to reduce complexity of the real world,

employ computers to work for us. Since human beings are not good at holding large amounts

of data in memory, especially complex data in short-term working memory, reduction of

complexity is also the goal that spans all the sub-disciplines of software engineering. Software

is created only by reducing complexity and dividing a complex real-world problem into

smaller manageable problems engineers can tackle. Sub-disciplines of software engineering

that are employed, are analyzed in great detail in a book IEEE Software Engineering Body of

Knowledge [46]. There are 15 chapters, each focusing on one of the sub-disciplines. While

each is equally important, only a few are shortly introduced, directly relevant for this

dissertation topic, especially as an introduction to methods of building software using FAC, in

chapter 6.

11

2.1. Software engineering sub-disciplines

2.1.1. Software requirements

Every software development project begins with software requirements definition. In this

first phase, software engineers, among others, try to define user stories, functional, non-

functional and other types of requirements for the software, so that it will fulfill a real-world

requirement, or solve a real-world problem.

Software requirements are changed and updated as the software is built, so it is a process that

lasts throughout the whole lifecycle of the software. Although the term is “Software

requirements”, it often encapsulates other requirements tied to the software or the software

development or management process.

Non-functional properties may implicitly describe how a low-level feature should be built,

e.g. visual feedback to the user should be shorter than one second. This would probably cause

many design decisions and technical solutions. To reiterate the continuity of software

requirements process, such a requirement may be proven very difficult to achieve, and might

even be changed in the future.

Product or process requirements might also be placed upon the software. For example, it

might be required that the development team develops software using the SCRUM

methodology. Other process or even documentation and administration requirements might be

placed upon the software if for example specific funding by the government is used. Another

product requirement might be “Users will only be able to log-in using Open ID protocol”.

Some requirements might emerge from other integrated software, or simple truths about the

real-world. For example, a user interface on the phone must be adapted to small screens, since

phones are – small.

2.1.2. Software design

Software design are software lifecycle activities, that transform software requirements into

software blueprints, that developers will build. Software design is done by software architects

– software engineers that define the architecture of the whole software system. This usually

entails identifying components that can be reused, programs and development frameworks

that will be used, operating systems and platforms that will run the resulting application. Both

12

functional and non-functional requirements influence the resulting architecture. Naturally, the

more existing software is identified that can be used to achieve the desired requirements, the

shorter and simpler consequent phases will be. This, more broad approach, to software design

is called software architectural design.

Software design activities can also be more detailed, focused on defining how smaller parts of

the software will work. For example, how a component architecture would look internally,

what algorithms will be used for component methods, which interfaces will be built etc. These

are called software detailed design, and the goal is to simplify programming of each part or

component of the software.

One of key issues that software design deals with is packaging, decomposition and

organization of software components. In other words, software design always entails, among

concerns like performance, security, reliability, usability..., the component model for the

software. Engineers thus follow the seven software design principles:

• Abstraction is a process through which only relevant properties of an object are

identified for observation and analysis. There are two key concepts for abstraction in

software design. The first is by parametrization, which means defining names of

parameters and data types that a function takes, and the second is by abstraction by

specification. Abstraction by specification means defining what a part of code or a

module does. It can entail outlining functions in pseudocode, sketching-up classes or

objects in UML, or defining what data will be collected and what properties data

entities might need to have. Abstraction by specification is thus divided into:

procedural abstraction, data abstraction and control (iteration) abstraction. Through

abstraction, only the most relevant information that servers the purpose of the object is

extracted, while the rest is ignored.;

• Coupling and cohesion – planning for low coupling between modules, and high

cohesion of modules will greatly improve the architecture of future software. The

higher cohesion, and the lower coupling is, the more reusable modules (software

components) will be. Parts of the software, its modules or the system, will more easily

be replaced or changed in future software construction activities. A more detailed

overview what coupling and cohesion are and how they affect software is given in

section 4.1.1.;

13

• Decomposition and modularization are concepts tied to coupling and cohesion

concerns in design activities, the aim of decomposition and modularization is to

separate functionalities into separate modules or components of the software, plan

their interactions and interfaces for communication.;

• Encapsulation and information hiding – just like classes hide their internal

functioning, through private properties, on a grander scale the goal of encapsulation

and information hiding is to make sure all module or component internals are hidden

from other parts of software. Or rather, it should be exposed only in a certain way –

through component interfaces or functions.

• Separation of interface and implementation – tied to encapsulation, separation of

interface and implementation makes sure users of a component aren’t exposed to its

internal specifics. The public interface definition is thus a separate design concern,

from encapsulation.

• Sufficiency, completeness and primitiveness – software, and components that will

be built will be sufficient and complete if all the needed abstractions are defined, for

functional requirements that are defined. Primitiveness is satisfied if design is based

on known design patterns, that are easy to implement.

• Separation of concerns – just like concerns are separated in software implementation,

they should be separated when designing software architecture [47]. The most

common is the 4+1 architectural view model, defined by P. Kruchten [48]. The system

should be designed with 4+1 use cases (views) in mind: development view – the

blueprint for the developer, like UML of components, classes, packages; logical view

– descriptions of functionalities for end-users, description of how the software

achieves functional requirements; physical view – the topological view of components,

connections between components; process view – describes processes of parts of

software, how they communicate; scenarios – examples of how parts of the system

will work and communicate for certain test use cases.

There are key issues, that software design must address. At first, a good software design must

encompass both the technical details and visuals of software. From the technical point of

view, it is important for software to have a satisfying performance, that it scales when needed.

It should also be secure and reliable. The usability aspect can be observed through all the said

14

properties, with the addition of intuitive graphical (or other) user interfaces. One of key issues

software design must deal with is decomposition, organization and packaging of software

components.

Other key issues that software has to deal with, or problems it needs to solve, don’t directly

contribute to the software problem domain, but rather the properties of the system and

functioning of the software. These issues are called software design aspects [2], and are are

equally important to domain problems. Those are usually properties that affect the

performance or semantics of components in systemic ways.

Software design aspects

Concurrency – designing software by decomposing it into threads, processes, tasks, and

dealing with synchronization, scheduling etc.

Control and handling of events – designing software so that it has efficient data flow, and

reactivity to data changes and other occurrences in the system.

Data persistence is another important design aspect, for an application that doesn’t efficiently

handle storing the data that the user creates will hardly be of any use.

Distribution of components also needs to be well designed so that software components that

reside on different hardware, use networks to communicate, do so efficiently.

Error and exception handling is another systemic aspect of software design. Software

should always work in exceptional conditions and, it should report those conditions and

eventual errors, so that they can be fixed.

Designing ways in which software interactions for users are programmed, the way these

concerns are separated from the actual implementations, is an aspect of interaction and

presentation. This is not the aspect of specifying the actual user interface, but rather patterns

to implement it, such as Model-View-Controller approach.

Structure and architecture

After aspects are defined, they will directly and indirectly influence structure of the software,

which is “the set of structures needed to reason about the system, which comprise software

elements” [68]. In essence, software structure is part of design that specifies abstractions.

Some structural abstractions are made to deal with architectural design, like architectural

15

styles, and some with detailed design like design patterns, for example MVC, architectural

viewpoints. To be able to reason about structure and architecture of FAC, key architectural

concepts are introduced.

Architectural structures and viewpoints

There are different viewpoints which can be used to reason about design and structure of a

software system – behavioral, functional, structural or data modeling. One doesn’t exclude the

other, and many can be used in parallel to reason and design the software. For example,

structure of modules, mapped to behaviors with data models.

Architectural styles

Architectural styles define specialization of elements and relations, and constraints on how

they can be used. Architectural styles define high-level properties of software, for example,

software layers, distributed systems, interactive systems, interpreted systems etc.

Architectural styles can also be mixed, for example, web applications are distributed systems,

that are interactive though user interfaces, whose structure can be split to at least three layers.

Design patterns

Design patterns are common solutions to common repeating problems for various

architectural styles. For example, it is possible to apply the MVC pattern to achieve

interactivity for software.

Architecture design decisions

During software design, which is a creative process, software designers have to make

decisions that influence many properties of software and the software development process

itself. Thus, it is important to view the software design from the decision making perspective,

not just as an activity of software engineering.

Families of programs and frameworks

One of key results of architectural design are families of programs or frameworks – software

whose components may be ported and integrated into different separate instances, for

Example, WordPress websites with different plugins installed. This is also one of main

16

methods of building software by component reuse, and one of main limitations for reusability

of components, one that FAC is designed to better.

2.1.3. Software construction

Software construction is linked to all other activities and phases of the software lifecycle, that

are a part of all other software engineering sub-disciplines. But, most tightly, software

construction is linked to software design and software testing. In essence, software design is

the input for software construction activities, which create input for software testing activities.

The most important deliverable of software construction is code – software constructs such as

files, software components and implementation of architectures, but is not limited to it.

Documentation and test cases are also outputs of software construction.

Software construction includes both constructing software from existing components, and

developing new software components, or other smaller, simpler code constructs, that can be

integrated to provide a larger whole. The more detailed software design, the simpler the task

of software developers becomes, that transform design into working software more quickly.

The more roughly defined the design, the more additional software abstractions will be

created during software construction, and the more additional documentation will be created.

When constructing from existing components, software developers sometimes create

additional components, called adapters, to simplify integration or interaction of two

components, or to satisfy functional or non-functional requirements.

Software project management is also related to software construction activities, and in

practice has proven to present considerable challenges [3].

Software construction fundamentals can be divided into:

• Minimizing complexity,

• anticipating change,

• constructing for verification,

• reuse

• and standards in construction.

17

Minimizing complexity is fundamental to software construction because humans cannot hold

large complex data structures and algorithms in mind, or computer terms, working memory.

So, engineers create abstractions that will divide the problem into smaller programmatic

entities to minimize complexity,

Software changes with time, and anticipating those changes will influence construction

decisions. Software components help with building software with anticipated change, because

a component-based architecture enables easier replacement of parts of software.

Which also helps with constructing software for reuse. Building software that is reusable

will speed-up all future software construction activities that can benefit from available

reusable components. Systemic reuse can also considerably raise software quality,

productivity and speed of construction [3], [30]. Constructing software with reuse, or in

some literature referred to as build by reuse, is the process of analyzing software design, and

achieving software purpose through choosing and composing existing components, described

in more detail in chapter 3.

Standards in construction make it possible to achieve software construction project’s

objectives, like cost, efficiency, quality, code readability and reliability etc. Examples of

standards in construction are:

• communication methods – standardized documents, decision workflows,

communication channels…,

• programming languages,

• coding standards – file, variable, class… naming conventions, indentation and code

formatting…,

• platforms,

• tools.

Standards can be external or internal to the development team, institution or company.

External standards are most often industry or open standards that are applied to certain aspects

of technology, for example ISO standards, XML, SQL, etc.

18

2.1.4. Other sub-disciplines

Once a complex system is deployed, it is usually configured in a specific way – the platform,

the operating system, the various integrated components. Every single property, and why it is

set has to be documented – why and when was it set. Also, every change has to be

documented. This is a Sub-discipline of software engineering, called Software configuration

management. Purpose of software configuration management is to understand how a

software, after it has been deployed, changed with time, and how changes were made through

configuration through time.

Other software engineering sub-disciplines, that deal with software engineering economics,

software development teams’ organization, computer science and mathematics theory,

business and engineering process management, etc. will not be considered or applied in this

PhD, thus will not be extensively introduced here. Though, it is important to note that in real-

life scenarios, when producing software, one has to consider each and every of those sub-

disciplines if successful software production is to be expected.

19

3. COMPONENT-BASED SOFTWARE ENGINEERING

Software is inherently complex [44]. Software engineers are in business of converting ideas,

concepts and processes into working abstractions presented by algorithms and abstracted data

structures. This means that there is often a large gap of understanding between humans that

directly or indirectly define software requirements and humans that understand computers and

translate software requirements into code. Abstractions, component models, underlying

architectures and platforms are almost exclusively something a software engineer will

understand. The effect that this has on software development processes, quality and reliability,

and software development projects is hindering. Non-technical managers have a hard time

understanding how long, why and what it takes to build software. On the other hand, software

engineers often have a hard time realistically predicting the complexity and time it will take to

achieve the desired software functionality – to create the product. In general, the complexity

of abstractions of real-world ideas into software is the main reason why many projects fail, or

considerably break deadlines [44], [45].

The industry thus came up with the use of software components, and ideas like commercial

off the shelf (COTS) components, to solve these problems. Well tested components, used in

multiple products, well documented and with predictable behavior provide a well rounded set

of properties that both software engineers and businesses value. Splitting functionalities,

abstractions, processes into pieces that are manageable, interchangeable and not too complex

on their own makes the process of software development more measurable in both time and

effort, and makes it possible for multiple engineers to work on different parts of the system

simultaneously. It also makes replacement, development or upgrade of existing components,

or parts of a software system, easier. This means that development and maintenance can be

better predicted, planned, and executed, and it also makes it possible to automate tests of

separate components and the whole system.

Considering other engineering disciplines, like construction or vehicle manufacturing, in

contrast to software engineering, many of the pieces of the final product are visible and

intuitively recognizable to users, non-engineers. Consider a bridge. A bridge will not be

secure or usable without solid foundation and strong columns that support it. Every

component of the bridge is a solid object, built using widely available materials and

21

components, intuitively understandable without the need to understand low-level technical

intricacies like e.g. material elasticity, load limits or physics and material properties needed to

build the structure. In a way, this simplicity and intuitiveness of reuse should be the goal of

component-based software engineering. And yet, after more than 50 years of software

development, the industry is not ready to provide software construction with the same level of

ease of component composition and reuse as competing engineering fields. Again, a much

higher level of abstraction than that of competing engineering fields is the culprit.

To define a software component, one has to consider the platform and the application domain

in which the component exists [6]. Overall performance of the system is influenced by

individual performance of its components. If one component fails, the whole system can fail.

Therefore, one has to consider all the functional and non-functional requirements of the

system when designing and building each component. Component definition also stems from

the domain in which it is to be used. It also depends on the current development context, i.e. it

depends on the actual work a certain software engineer is doing at a certain time: when

creating e.g. a development framework, one has to think very low-level. In that case,

components might be classes, namespaces, functions or other data or code structures, even

variables. When developing a user-oriented Web application, components are almost always

defined as more complex code constructs, containing multiple classes, namespaces, spanning

different layers of code of the application [18], [19], [20], [21], [23], [24], because many of

the low-level concerns are already addressed by the underlying framework.

Certain application domains, like web applications which is the focus of this dissertation, have

the same or similar definition of what a component is. Referenced literature shows that Web

applications are most commonly constructed from components built using a model-view-

controller [24] design pattern, which enables separation of code that handles user interface

and presentation to the user, from code that processes user actions and executes those actions

on models that manipulate actual data stored in databases.

An example might be log-in component in a content management system. A log-in component

would include a user interface layer that provides username and password entry, a controller

that would receive data entered by the user and then execute the required actions on models.

In this case, models would e.g. represent a user, user’s roles etc. If the data was retrieved from

22

the database, it would usually be done through a database access layer (or sometimes called

database middleware [31]) - Illustration 1.

MVC pattern is additionally described in section 3.4.1. Here, it is only important to note that

each of the layers consists of a set of components that make up a single complex (MVC) web

application component. A view consists of many smaller UI components, such as buttons,

links, forms, etc. In the same way, a controller might employ an array of smaller components

or libraries to process user input before it is translated into actions on models or one of the

models or components of the business layer. Illustration 1 shows that models are part of the

UI layer. But the model is also a part of the business logic, so models are also contained

within the business layer. Each MVC component may have its own parts in the business layer,

or use other available services or components from it, that persist the data to the database, or

some other data storage (the data layer).

It is clear that MVC components are complex code constructs, made up of many smaller

components spread out through different layers. Complex components like these can be

perceived as applications themselves [13]. Components like these can only run when used in

an application environment, a stack of software (a platform), family of software that they

were built for [2], [12], [18], [19], [20]...

Rules that define what is required and provided, how the component it is executed, how the

underlying platform is constructed and how it runs, how components are assembled and built

are part of a component model. The following section provides a more detailed overview of

component models.

23

3.1. Component models

The software engineering industry and community has developed and employed many

different component models over the last decade. Each of the models in some way improves

our ability to use software components effectively, and does it in a different way – by trying to

provide a different, and hopefully better definition of what a component is, and isn’t, specific

to a certain application domain, requirements of that domain, requirements or properties of the

system, specific to a certain technological platform. In the literature component models are

often described in a similar way, as a set of rules, standards and conventions for developing or

designing software using components and components themselves, e.g. [7]: “A component

model defines a set of standards for component implementation, naming, interoperability,

customization, composition, evolution and deployment”.

Extensive research on component models and their classification has been done by I.

Crnković et al. [11]. Authors have tried to classify different component models through

enumeration of concepts employed. Different models prioritize various aspects of software

and component lifecycle, component composition and construction methodologies.

Components and component systems that are built by component composition, conform to the

component model. There are exceptions, sometimes composite components don’t conform to

the component model, i.e., two components can be composed using standard provided

interfaces defined by the model, but a composed component no longer provides those same

interfaces, thus, doesn’t conform to the component model.

Some components models, especially the ones that are technology-specific like Java Beans or

DCOM, define both the platform which executes the components, and provides both

conventions and building blocks (development frameworks) of components.

Others component models focus on the design phase of the software lifecycle, like UML [37].

Such component models are platform agnostic, bat can provide tools to transform designed

components into executable software entities.

Although different, definition of properties of components and the component-based system

is pervasive to all component models. This defines various functional and extra-functional

properties of components, how components bind and interact among themselves, how they

24

interact with the platform, how they can be assembled and composed into a system or

composite components, sometimes in the literature also called assemblies.

Component models also define which interfaces a component should have so that other

components and the platform can communicate with it. When a component interface is

connected to another component’s interface, the components are bound, but it isn’t possible to

just connect any two components using two interfaces. Generally, there are two types of

interfaces: required and provided interfaces. Provided interfaces most often depend on the

component design and specification, while required interfaces are interfaces through which a

component receives data or signals from the platform. For example, a greatly simplified

analogy for a provided interface would be the “accelerate” interface of a car engine, while

required interfaces would be the gasoline and air input pipes.

One of the best ways to visually represent components is UML. Although it can also be

considered a component model focusing on the design phase of the component lifecycle it is

also for practical purposes a design tool. In UML notation, a component is shown by a

rectangle. Required interfaces are represented by open receptacles – halves of circle, and a

single provided interface is represented by a full circle. From the example shown in

Illustration 2, it is intuitively understandable how these two can be used to represent

connected interfaces – the circle goes inside the receptacle. It also intuitively signals the

viewer that an empty receptacle means the component will not work unless connected.

This representation does not show other properties or internals of the component, but they can

be ignored for general design-time considerations, that UML is used.

So finally, to formally define a software component model, one has to define a component. A

component is represented with a letter C. C is an entity consisting of two sets, properties P

and interfaces I:

C = <I, P>, where I = {i, i2, i3,… }and P = {p1, p2, p3, … }.

25

Depending on the component model, these can be interfaces and properties of a class,

multiple classes, or collections of various code constructs. Whatever the case, the definition

stands. Only the methods to determine a component’s properties or identifying what interfaces

of the component are would change according to the component model.

A component model also includes a description of the platform, or in case of technology-

specific models, provides the platform for component execution and also provides

methodologies and interfaces for component binding – for both inter-component binding and

component-platform binding. Such a union is called a component-based system, and formally

I. Crnković et al. [11] define it as:

CBS = < P, C, B >

Where P is a system platform; C is a set of components and B is a set of bindings, visualized

in Illustration 3 ([11]). An important property of the component-based system that this

definition implies, is that there is no component-based system without a platform. In essence,

this means that a component-based system does not exist without the platform, and that all the

components don’t exist without the platform. The platform being a specific family of

applications that employ their own component model, or applications that are built using a

certain technology, like Oracle’s Java Beans that will execute on the Java platform, or

Microsoft’s ASP.NET that will execute on the Internet Information Services Web server,

loaded up with the .NET framework, etc. That is the exact reason why so many component

models exist today, and since the definition depends on the platform, why there are many

definitions of what a component is and how bindings between the components are made.

26

3.2. Component lifecycle

A component lifecycle resembles that of a typical software product lifecycle, shown on

Illustration 4.

A component lifecycle can be viewed as a set of tools and services that a component model

provides to various component-focused activities during the lifecycle of a component [33].

The modeling stage

During the modeling stage a component is described, a blueprint documentation is made that a

component developer will transform into code. Models are used for either architectural

description of systems, or for defining state transitions, functional aspects of the system or

component.

Implementation stage

Component models may also be responsible for supporting production of code. In most cases,

this is done through frameworks built as a part of a component model description. In the

implementation stage, designed abstractions and desired functionality, states and transitions

are transformed into code constructs such as classes, functions, libraries etc.

Packaging stage

Packaging a component transforms it into a portable format – that can be copied and deployed

into another instance of the compatible system. This is usually done by creating compressed

archives or folders that contain all the component code and data. Depending on the

technology, code may be compiled. Usually, components built using frameworks in

27

interpreted programming languages contain source code, while components of programming

languages that have to be compiled are packaged compiled.

Deployment stage is the moment in which a packaged component is copied to a system that

will execute it.

3.3. Component construction

Component construction activities are not much different from software construction. Indeed,

building a component is building a reusable software entity. In fact all the activities that lead

up to construction, introduced in section 2.1, should be equally performed. The difference to

software construction in general is tied to the nature of components, and it is only in the focus

on building for reuse, building software that conforms to a certain component model.

The rest of software construction fundamentals are the same: minimizing complexity,

anticipating change, constructing for verification and standards in construction.

To minimize complexity, components can be divided into sub-components. Well designed and

constructed components will also be configurable. The ability to configure and replace sub-

components will contribute to changeability of components.

Standards in construction are essential to building components effectively, since they usually

entail standards that contribute to practice that directly contributes or enables reusability.

These can be standard platform, programming language, coding standards, design and

architectural pattern application etc. [33]. Conforming to a standard architecture of the

component model, having clear purpose of the component defined, with interfaces and data

types that contribute to that purpose.

28

Once the component itself is built, construction activities will have yielded additional extra-

functional properties of the component. These are properties of a component that contributes

to its description, such as performance, complexity, capacity etc. These, are usually achieved

during testing and will, along with the documentation describing functional properties of the

component, be of essential value for the builders of the system that have to reuse the

component.

The V process says that during creation of requirements for a specific software and during the

design phase, engineers should inspect available components, and choose which ones should

be reused. Extra-functional properties are of great value in this phase. Component

construction can be a parallel or preceding activity to system construction. The most usual

way to describe system and component construction is the v development process model [33],

illustration 5.

The ones that are selected should then be adapted (if possible), and tested if they indeed

satisfy the requirements of the system. If there are no available components that satisfy the

requirements, then new ones should be built.

29

Illustration 5: V development process [33]

Once the components are integrated, the whole system should be tested if requirements are

met. Once the result is satisfactory, the built software system will become operational.

During software system operation, requirements might be changed, components may prove

unsatisfactory, and revision of system architecture, or replacement of components may be

required. The process of finding or building suitable components is repeated in the same ways

as when the software system was being built. This is also visualized in illustration 5.

3.4. Component-based software engineering in web application

development

By analyzing how websites are built, especially using open source tools and content

management systems, since those systems and component repositories are available for

inspection online, there are examples of components that had to be developed multiple times,

or integrated into multiple systems. An example might be CiviCRM4. Analysis of CiviCRM

documentation shows separate adapter components have been built for different systems [26].

The alternative to that is building separate components for different component models, or

different software families, that implement a solution’s domain functionality that has already

been created or modified at least once for a different component model, software family,

system or platform.

The simplest examples of this can be found if one takes time to explore the Web, searching

most popular Web search providers with for example, a term “Photo gallery”, followed by a

name of a web application development framework will always yield many results, linking to

various components or packages of components that should provide the searched for

functionality. Of course, there are dedicated Web applications that may provide that same

functionality, and these applications often provide various ways and levels of integration, for

example, Flickr5, Google photos6, or open source solutions like the Gallery project7.

4CiviCRM, an open source customer relationship management web application for non-profits

5www.flickr.com, online photo sharing platform by Yahoo!

6photos.google.com, online photo sharing platform by Google

7galleryproject.org, open source self-hosted photo sharing web application

30

Opposed to the component-based approach, dedicated applications are completely decoupled

from the rest of the applications or services a company or individual might use. That is a good

thing as long as the gallery application has mature APIs that encapsulate all the

functionalities. This approach is the basis of Service-oriented architecture (SOA). SOA isn’t

about giving up on using software components, it is rather a way in which software engineers

were able to standardize ways of communication between services – components in SOA.

However, building everything as services is not the right approach. Using services has more

processing and communication overhead than using components. Services usually

communicate over the Internet using a HTTP protocol, are stateless just like Web applications,

and thus need to authenticate clients on each request. This makes them inappropriate for

rendering parts of a Web page, which is usually done by software components.

Additionally, let’s consider an arbitrary applications that needs to communicate with the

gallery. Achieving this communication and full integration includes use of multiple additional

components that provide various integration points, checking user authentication, user

permissions, quotas, photo and gallery creation, photo and gallery search and retrieval. For the

sake of the example Flickr is considered as the gallery application with which an arbitrary

web application is integrated. Flickr provides various integration possibilities through the use

of APIs that are accessible as web services. To integrate it in an arbitrary application,

integration components have to be implemented in that specific application. So, an arbitrary

web application has to handle and mediate user requests to Flickr. This means a complete user

interface has to be created along with components that connect to Flickr.

It is possible to group all the components: classes or functions that are responsible for

communication with Flickr into a library and use it in other applications one might want to

integrate with Flickr. But components would have to be created for each new family of

applications, or rather for each component model a certain application uses. It would be

required to create a user interface, a controller and integrate and reuse the Flickr library.

When built, all these components will provide the same basic functionality, yet they will be

incompatible and different in order to conform to different component models and

architectural requirements of their respective platforms. The component-based software

engineering approach would ideally mean the integration component is created just once and

then used everywhere, without repeating the work that had already been done for some other

application or component model.

31

3.4.1. Model-view-controller architectural pattern

Today, modern web applications are built using many different frameworks, that implement

similar component models, based on the model-view-controller

(MVC) architectural pattern [24] for implementation of domain

components. In MVC architecture, domain components are

complex software entities, consisting of various code constructs

like classes, functions, user interface templates. All the code that

contributes to a component belongs to one of the three layers:

model, view or controller.

MVC pattern defines the way in which the component’s code is

structured and it promotes separation of concerns in code: data

retrieval and manipulation; user input processing; data and user interface visualization.

The user controls the application, or rather a certain component, through the view that

implicitly exposes the controller of the component, for the data that is visible to the user. This

data is usually a model that has been exposed through the view.

So, the view is populated by the data of the model that the controller and requested. The

model itself usually accesses the data through a database abstraction layer, that can sometimes

even create entity class instances – models. While the model instances usually represent

database entities they also include business logic and methods that simplify the task of

manipulating models for the Controller.

Once the data is retrieved and model instances created, the controller then passes the data on

to the view which again exposes it to the user, possibly in the form of controls that could

again trigger new actions by the controller. The controller always includes a default method,

or action, that fires when there is no explicit user action. In these cases it retrieves a default

data-set of model instances and presents them to the user through the default view. An

example of this would be loading up a title page of a web application.

3.4.2. An example

To further elaborate on the component-based software engineering for the web, architecture of

what an architecture of a photo gallery application might look like is inspected. Let us

suppose that the application requirements are as follows:

32

The user should be able to log in, and when logged in she should be able to create photo

galleries and upload photos to them. It should be possible to upload an infinite number of

galleries. When she is not logged-in, she should be able to view the galleries.

The title page of the application should show the list of galleries. When the user clicks a

certain gallery, another page should load, showing thumbnails of photos in the gallery. If the

user clicks a photo, it should be loaded by the web browser.

Let us suppose the application was implemented using one of the popular Web application

frameworks, for example Laravel. Just like many other Web development frameworks [14],

components in Laravel are built using a model-view-controller architectural pattern.

To build it, three models have to be defined, the user, gallery and photo. Each of those

representing a relational entity, a row in the database table. User can be the owner (creator) of

the gallery and the owner (uploader) of the photo in a gallery.

After the models have been defined, and the underlying database created, one would continue

with setting-up routing. The main route “/” would be setup, to load a view that lists all the

galleries. In Laravel, that is done by specifying which controller and controller action to

invoke. The controller then loads up the models, defines which view to render, and feeds the

data (models) to the view.

The view would then just iterate through the received data and render the list of galleries and

create links to the route that shows the photos of the gallery, for example “/gallery/1”. Where

one is the unique identifier that a particular library would have assigned by the database. That

route would again specify the controller action, and so on.

This principle and architecture repeats throughout all the popular web application frameworks

available today [14], for example: ASP.NET and ASP.NET MVC 3 [29], Groovy on Grails

[20], Django Framework (Python) [21], Symfony framework …

The following sections will briefly introduce the frameworks and component models that they

define. These frameworks employ the MVC architectural pattern. This shows that the

architecture and implementation of the example would be done in a similar way.

33

3.4.2.1.ASP.NET

ASP.NET provides a few different component models to build Web application components,

one of them is Web forms and ASP pages, that are a paradigm to separate application

presentation from application logic similarly to MVC [24], [28], and make Web application

development similar to the event based desktop Windows programming.

ASP.NET and Web forms provide a fast and simple way to reuse components of varying

complexity: data access, user interface components, common application logic and

combinations of those. However, the is no way to easily integrate architectural unit type of

components. For example, a more complex application, such as .NET Nuke CMS, provides its

own array of interfaces to create architectural unit type of application components [29].

Components for such applications are not easily reusable inside other applications, regardless

being built with the same underlying framework. Additionally, more problems can arise if a

component is built using another component model than the application uses, for example

ASP.NET MVC (explained in the following section). Integrating such a component would

require additional programming work to both the application which would reuse it, and the

component itself.

3.4.2.2.ASP.NET MVC 3

ASP.NET MVC 3 [12], [16] is the newest component model available in ASP.NET. It

provides an alternative way to define Web application components: a “Razor” template

engine, which strongly resembles Smarty [13], for PHP, both in syntax and the way it is used.

Razor also provides “HTML helpers” which are a way to provide functionality that Smarty

plugins [13] provide. Consequently, various components can be nested inside each other so

that they combine various views of various models. For each reuse case however, one has to

know what parameters a component expects, or in other words, a component can define an

arbitrary required interface. This provides flexibility when developing components, but also

has adverse side effects to component reuse.. For example, reusing components might have to

do the work of preparing data that a reused component expects, or a reused component could

be implemented in a way to integrate with a specific reusing component, making the reused

component hardly reusable for other arbitrary components.

34

3.4.2.3.Groovy on grails

Groovy on grails [20] is a modern and versatile Web application framework that provides Web

development using a dynamic language (Groovy) and runs on a Java virtual machine. This

combination provides easy use of all the power of Java and Java components, and flexibility

of Groovy. Groovy provides a MVC pattern for development and a strong Object-relational

mapping (ORM) database access layer. Classes that define data entities are called domain

classes, and controllers are called domain controllers. Groovy on grails defines its own

template language to define views.

Domain classes, controllers and views can be packed as plug-ins, which makes them easily

portable to other Groovy on grails applications or projects. Integration of plug-ins consists of

configuration editing – what controller should be invoked for which URL, but interactions

between components have to be implemented individually. So, again, reusing an architectural

unit component requires programming, and more than just a few lines of code, especially if

different components' data has to reference each other.

3.4.2.4.Django framework

Django is a Python Web development framework that aims to provide great component reuse

capabilities [21]. In theory, each component developed using Django is an application that can

be easily reused alongside other applications – thus forming a greater whole application.

Django provides a very flexible and powerful ORM. When a developer creates a model –

Python class, the framework is capable of creating the database schema, and even provide the

administrator's user interface to manipulate data that the model represents.

But reusability of all the Django applications strongly depends on their implementation. The

developer has to balance between creating applications that are big and monolithic or too

small to provide a unique functionality. Only those well balanced can be easily reused.

For example, a reusable application should provide signals for other applications' models and

injection points in its views. This introduces complexity because there exists no convention in

which the reusable applications communicate inside the framework, and this communication

depends on implementation of each of the components and relies almost completely on the

experience and effort of the developer. Even then, models often have to be extended with

35

properties that include references to models of the reusable applications [22], which decreases

reuse inefficiency.

3.4.2.5.PHP Symfony framework

In Symfony [23] components that provide some reusable application functionality are called

bundles. Each bundle is actually a separate application that can be executed by the Symfony

framework. Symfony also uses a MVC pattern as its architectural pattern for bundles, so each

bundle consists of models which are called entities, controllers and static files.

Other artifacts that can be packaged into a bundle are static files like view templates,

configuration files, CSS and JavaScript files. So, reuse of a bundle consists of installing its

files, and writing a few lines of configuration that tell the framework to use it. Interaction

between various bundles or their MVC components can be achieved only if the components

themselves provide communication interfaces, In many cases, the entities (models) also have

to be modified to reference each other across bundles, which again introduces a level of

inefficiency in component (bundle) reuse.

3.4.3. Common component reuse failings

Consider a web application that provides article publishing through one of its components.

Such a component would define a database model to store articles, a few classes to handle the

data, user interfaces and a controller to handle user actions. If commenting functionalities

were added, to be able to attach the photo gallery from section 3.4.2, to each of the articles,

there are few options available. This applies to all the component models of the previously

mentioned frameworks.

The first option is to create a commenting component that integrates tightly with the news

component – at the database level, comments reference a specific news article, and at the

presentation level – the news component simply invokes rendering of the comments

component for each article. The same would be done for the gallery component. But only if

the articles application was built using Laravel. This solution is relatively simple, but works

only if all the components are built using Laravel. This solution also causes tight coupling of

articles, gallery and comments components, since their models would directly reference each

other to be able to perform the required functionalities.

36

The second option is to create a generic comments component that has a mechanism to

provide comments for more than just the news component. The commenting component can

thus provide a set of required interfaces and handle the data abstraction itself. This is

inefficient because it involves implementing generalization and functionalities for reuse inside

the component itself. Further component reuse or nesting would be questionable. The same

would have to be done with the galleries component. That should be a part of the framework’s

job. Additionally, reusability is further hindered by the fact that the component will only

function inside a specific framework or an application that it was built for.

3.5. Web application frameworks

Web application frameworks are both a part of the definition of the component model, as well

as implementations of a certain model using a specific technology.

Web application frameworks that are built for three-tier web application development, or

rather development of components of three-tiered web applications, consist of base

components and utilities for every of the three tiers [23], [25], [21], [18], etc..

Storage providers are components that enable programmatic use of server-side disk storage,

access to remote or cloud file and data storage services etc. is supported by all frameworks,

while Laravel has the most elaborate storage provider system of all, supporting both local,

network and cloud providers. Other frameworks simply provide components with a path to

which to save files.

Database access is the most common requirement of applications and components. Having a

database access layer is mandatory for every framework. Using a database abstraction layer

for database access is preferred because it removes the requirement of using a specific

database management system.

Object-relational mapping is usually a layer on top of the database access, or database

abstraction, that makes it convenient for components and component builders to use objects to

manipulate data in a relational database. This is done through model objects, whose class is

mapped to a certain table in the database, and properties are mapped to columns of that table.

Changes and actions on these objects may be written to the database – automatically, or

explicitly when a save method of such an object is called.

37

Model definition and organization comes with object-relational mapping. Usually, for each

three-tier component in the system, the framework defines a naming convention and place

where model classes should be saved, how they should be named, which makes it possible for

the framework to find and load them when needed.

Component composition of three-tier components is usually handled through a strictly

designed interface that is used by the framework. This makes it possible to easily load or

unload additional components and execute them when necessary. For example, WordPress

plugins have an interface that makes it possible for WordPress to invoke and render them

when needed. This means that every component is required to have a certain set of methods or

properties that will be recognized and used by the underlying system (framework). This

makes run-time composition possible.

Design-time composition of components means the framework has a way to achieve

component composition without tightly coupling components (specifying sub-components

directly in parent components), but rather through an external file for example. Such design-

time composition is made possible by the same rules that make run-time composition

possible.

Packaging of components is an important aspect of a framework. How easily reusable a

component is, also depends on how portable it is, and that depends on how easy it is to create

a component package. In general, a component will be easier to package if all the sub-

components, or code constructs, are saved in the same place. In that case, an archive can be

created, and the component can be copied and downloaded over the internet etc.

Component packaging includes file types, directory structure and metadata included within a

single component.

Front-end development provided by frameworks usually entails templating and ways in

which front-end sub-components may be reused or built. Templating and organized client-side

component delivery and composition can speed up repetitive tasks. For example, creating

forms that will post data back to the component that generated it.

Localization makes it possible to write applications that are translatable to multiple

languages. When dealing with components, it usually entails providing a way to define string

names or keys, and their translations in various languages.

38

Authentication and authorization features are provided so that parts of application or

content are visible only to users that have logged in, and depending on roles and permissions a

certain logged-in user has.

Authentication utilities might also provide support for various back-ends, such as third-party

login services such as Google or Facebook, various two-factor authentication services etc.

Session handling is supported by the underlying platform, the programming language, but it

may also be supported in a more elaborate way by the framework, pre-filled with certain

application and framework-specific data.

3.6. Building web application components

Web applications are built using web application development frameworks that implement a

certain component model, using specific technologies. Consequently, web applications are

built by reuse of frameworks, their base components, and reuse of custom-built components.

The custom-built components are built by using framework’s base components and

framework utilities. All the software engineering disciplines introduced in section 2.1 are

applied throughout the development lifecycle of each of the custom components, which

satisfies a set of requirements.

To demonstrate example component structure, HelloWorld components are described in the

following sub-sections. These are simple components that are used throughout the industry to

introduce a component model and the framework. From a HelloWorld component, an

engineer will understand the basic component structure and lifecycle.

A HelloWorld component functionality is simple, it writes a “hello world” string to the screen,

for which reason it is called a “Hello world” component.

WordPress and Laravel are chosen as for being de-facto industry standards for three-tier web

applications. Laravel is the most popular PHP-based web application framework and

WordPress is the most popular web content management system with many available

components, both free and commercial.

39

Popularity of WordPress and Laravel is observable through Google trends8, shown in

illustration 7. The Y-axis of the graph represents relative popularity of a search term (in our

case a framework), while the X-axis represents time. A huge gap in popularity between

WordPress and other frameworks is visible, and a huge gap between Laravel and competing

frameworks such as Symfony, CakePHP and CodeIgniter.

FAC is also compared to Quilt CMS because it is a custom content management system, built

using a custom framework, thus both “standard” and custom web applications are compared.

3.6.1. Building a HelloWorld component using Laravel

Laravel applications are built by specifying which controllers and their methods are invoked

for certain application routes. User actions are performed through a UI, built through Blade

templates9. In Laravel, controllers are built using controller classes, whose methods receive

user input from configured routes. Controllers usually use models – which are classes that also

provide object-relational mapping, which means they can be used to persist data into the

database.

Model classes’ namespaces and folder organization. Their placement inside the Laravel’s app

folder is completely outside the component model of Laravel, left to software engineer. They

8 Google trends provides keyword-related data including search volume index and geographical information

about search engine users.

9 Blade templating engine for Laravel, https://laravel.com/docs/master/blade

40

may be placed directly, or inside sub-folders, should the engineer decide to organize models

into namespaces.

Laravel component model requires the software engineer to put all the enumerated code

constructs inside scattered folders inside the Laravel application structure.

This is also true for resources such as string translations, CSS and JavaScript files. Translation

resources should be placed inside Laravel’s resources/lang folder, JavaScript and CSS files

should be placed into Laravel’s resources/js and resources/css folders, while the component

model makes no enforcement of their naming, further organization etc.

To create a component, a controller class is created in the path:

app/Http/Controllers/HelloController.php.

In contains only one method that invokes rendering of a view called “hello”:

public function index(Request $request){
return view('hello');

}

The method is invoked when the user visits the application’s route /hello. This is achieved

through route definition in the routes/web.php file:

Route::get('hello', 'HelloController@index');

To make the string that is printed out reachable through the localization mechanism of

Laravel, a file resources/lang/en/hello.php is created, containing only the hello message

string:

<?php return [‘hello’=>’Hello world!’];

Finally, the view named “hello” is created with a Hello world message, in the

resources/views/hello.blade.php file, containing only:

{{ trans(‘hello’) }}

3.6.2. Building a HelloWorld component using Quilt CMS

To build a Quilt CMS component (portlet), a folder for a component is first created, then all

the related subcomponents and code constructs are put inside it. Each portlet is represented by

a single class that extends a base component class, called BaseModule. This class serves as a

controller for the component, and will handle inputs that users submit through views.

41

In Quilt CMS, software engineers do not have to take care of routing, because the framework

does that automatically during run-time.

Views are built using Smarty templating, similar to FAC, and resources like language

translations, CSS and JavaScript files should be placed inside the portlet folder in sub-folders:

lang, css and js.

Model classes, that can also be object-relational mappers, just like in Laravel, should be

placed inside the portlet folder, inside the classes.cms sub-folder, and should be named inside

the portlet’s namespace. For example, a HelloWorld portlet with a model class Hello will have

a namespace Portlets\HelloWorld, and the model class absolute name will be Portlets\

HelloWorld\Hello.

To create a Hello world component in Quilt, a portlet was created. Inside Quilt’s portlets

folder, another folder called hello_world is made, containing the file hello_world_portlet.php,

along with folders templates and lang.

Implementation is very simple, the hello_world_portlet.php contains only a class extended

from the vase portlet class called V1BaseModule:

<?php
class portlet_hello_world extends V1BaseModule { public function
defaultaction($params) {

return v1result([], “hello.tpl”);
}}

When a user visits a page that has the built Hello world portlet, Quilt will execute

defaultaction method, which tells it to render the templates/hello.tpl template, which only

contains the call to Quilt to print out the translation string “hello”:

{$_lc.hello}

that is retrieved from the lang/en_US.UTF-8.php translations file:

<?php return [‘hello’=>’Hello world!’];

The only thing a user has to do to activate the control is put it on the web page, through Quilt

user interface.

42

3.6.3. Building a HelloWorld component using WordPress

WordPress components are called plugins. Each of the plugins resides inside its own folder,

inside the WordPress’ wp-content/plugins folder as a PHP file with functions that are called at

certain events. WordPress defines events called hooks. The developer of the plugin should

choose which events are important to the plugin and specify the plugin function that will be

called when the event occurs.

In addition, a plugin may define one or more shortcodes. Each shortcode is a call to a plugin

function that can be made through user-created content in WordPress. For example, a

shortcode named “hello” will be invoked when the user publishes a page or post in WordPress

and adds the following line to the content:

[hello]

A Hello world component in WordPress is built as a plugin with a shortcode, that renders the

message “Hello world!” when invoked. This architecture is chosen because it’s the simplest

way to create a component that can render the message.

To create a plugin, a folder is first created inside wordpress/wp-content/plugins, called hello.

Inside it, a file that holds the plugin code: hello.php is made, consisting of a custom function

and a call to WordPress api function add_shortcode to register the plugin’s custom function as

a shortcode:

function hello_world($params) { return “Hello world!”; }
register_shortcode(‘hello’, ‘hello_world’);

This makes the plugin usable by creating a page through WordPress back-end and entering

[hello] as it’s content, which will execute the plugin and write the “Hello world!” message

when the user opens the page.

To make it complete, a localization file is created, using the gettext library, or sometimes

called a po10 file: wp-content/languages/plugins/hello-en_US.mo with a localization string

“hello” which is used from the shortcode function:

function hello_world($params) { return __(‘hello’); }

10.po files are a product of the gettext standard for creating localization files in Unix systems,

https://en.wikipedia.org/wiki/Gettext

43

4. MEASURING SOFTWARE COMPONENTS’ REUSABILITY

Reusability is a basic concept in component-based software, and broader in software

engineering. There exists white/glass box reuse and black box reuse [64]. Black box

components can be observed only by their interfaces, while the internal structure and working

of the component is unknown. White/glass box components’ can also be observed from the

outside, by looking at their interfaces, but also their internal structure and functioning is

observable - Illustration 8. Internal components can sometimes, depending on the component

model, be replaced, and in some cases if a software component program code is available, that

could also be modified.

There are various approaches to measuring component reusability. Reusability metrics are

often evaluated together with component complexity and component coupling complexity.

Usually, when component complexity metrics show that components exhibit less complex

interactions, or when metrics like coupling are smaller, and cohesion higher, components’

reusability is greater and easier to achieve because component functionality is well designed

and separated [52].

Research on the topics of component complexity and, derived from that, reusability, design

and development practices that produce reusable components, yielded common approaches

and results through which researchers tried to define ways in which it is possible to compute

complexity or predict reusability from the internal structure of components, structure of

composite components or structure and functioning of component systems. This in turn

45

yielded methods and tools that can be used to describe components using metadata – both

metadata programmatically extracted from analysis of program code and user-entered

metadata, such as descriptions and annotations of components, composites or systems. Such

metadata can be used to design component discovery and delivery systems, and as a

consequence, component discovery and delivery can be automated. Based on all that research

and produced knowledge, reusability frameworks have been developed [53] that made great

advances in how software is reused in enterprise environments.

While reuse has been performed successfully and in a predictable systematic way, the industry

is still striving with reusing components in simple scenarios. Rather than dealing with all the

complexity of reuse, in many cases the same functionalities are repeatedly implemented

whether because of heterogeneous component models or other reasons like uncertainty over

component reliability, extra-functional properties etc. [54]. Component based software

engineering for the web area of knowledge shows that many web application frameworks

employ similar component models and component development approaches [11] but

components that are produced are incompatible [14], [55]. This is improved by the FAC

model. Software metrics provide the answer on whether reusability is augmented, and provide

a reference on how much.

Most methods measure static complexity of the code. Static complexity entails non-functional

properties of the code. Analysis of static code complexity can give answers to questions like

how maintainable code is, how well does it comply with coding standards, how many classes

and methods there are, and try to compute a numerical representation of reusability from those

factors.

Another step of static analysis entails complexity of integration, which involves search for

interfaces that are involved in integration of components. Number of components coupled and

number of methods are counted because it is expected that it can show how hard it is to

achieve said integration. On the most basic level, experiments have shown that the more lines

of code a component consists of, the more complex the component is since it probably

manipulates more complex data and does more with that date, and so the greater effort will be

to integrate it into an application or another component [52].

Counting the lines isn’t enough, more static code properties need to be considered.

Components provide different levels of functionality; components can be composite and any

46

part of the component or the whole is affected by a change made to any of the parts of the

composite; components exhibit transitivity of dependencies; components can have different

levels of cohesion and coupling and all these factors impact reusability and its cost. For

example, a higher count of functionalities of a certain component might justify the cost of its

integration into a system.

Many component models define components that are represented by a single class, or a class

that ties all the sub-components and code constructs together into what is considered a

component. The class itself is not the component, but there usually exists a central entity that

connects all the parts of the component and exposes it towards the rest of the system. This is

the reason why it is always important to evaluate components at a higher level, but also at the

object-oriented level because the differences can be very abstract to notice or may change

with perspective of evaluation. This property of a single class component is shared by many

of the popular component models of web application frameworks that are direct competition

to FAC, like Laravel, Symfony, .NET MVC [18], [19], [20], [21], [23], [25] etc.

We will therefore consider components as entities that result from evolution of code entities in

object-oriented software development. Such components comprise of a single class or

multiple composed classes. Accordingly, researchers have found that there are two kinds of

software metrics that can be applied to components [56]:

• object-oriented software metrics,

• and as an extension to the previous, component-based software metrics.

As is previously noted, component reuse starts with extending or using a certain class that

defines the component and serves as the main representation of a component, and as a

continuation of that paradigm, component-based software metrics are a sort of extension of

object-oriented software metrics. In fact, both can be used in parallel to further our

understanding of properties of various types of software components.

4.1. Object-oriented software metrics

Object-oriented software metrics are used to expose extra-functional properties of

programming code, such as internal structure of classes, their complexity, functional

completeness, dependencies and their interactions – in a numerical way. Background of such

metrics lies in measures of software complexity, which has never been easy because of a high

47

level of abstraction that software inherently represents. Some of the most commonly used

software complexity metrics are McCabe’s cyclomatic complexity metric [59] which is used

to compute a number of independent paths through a source code can be visualized as a

control flow graph. Nodes on the graph are forks of control flow like if or switch statements,

while edges connecting the nodes are other functional code statements. For example, if a

program had not if or similar conditions.

There also exists Halstead’s complexity measures [58] which are a method to compute a

quantitative measure of complexity from operators and operands in the source code of the

program.

Finally, one of the best know metrics, both in impact since it was invented and in terms of

applicability to our needs to measure component reusability, that is also basis for many future

work and analysis of object-oriented and component-based software is a metric introduced in

the paper “Metric suite for object-oriented design” by Chidamber and Kemerer [57].

Based on mentioned initial work on software metrics, additional methods and approaches to

measure object-oriented and component-based metrics, combined with software complexity

metrics have been researched. Before applying these metrics, it is also important to decide

what is the end goal of metrics analysis. For instance, maintainability of a certain class is of

interest, its complexity and sheer size in terms of lines of code will be of value. While it may

be very easily reusable as a black box component, the cost of making a large and complex

component itself work, in the long-term, might be too high. But, this is a separate concern,

that applies to all software in general.

To be able to formally define classes, objects or their relationships, a notation is needed.

Chidamber and Kemerer then define an object X using the following:

X=< x , p(x)> (1)

Where x is the name of the class from which the object is instantiated, and p(x) are properties

of the object – its methods and instance variables. This will be useful to define what metrics

actually mean in object-oriented complexity ontology.

We will briefly introduce some metrics, including some of Chidamber and Kemerer’s

metrics that can be used to measure complexity of object-oriented software, interactions

between classes and class (and transitively component) reusability.

48

Weighted method per class (WMC): is a metric used to measure the sum of all the class’

methods’ cyclomatic complexity, which can be used to measure how hard it is to develop and

maintain the class. This will intuitively make sense since it basically shows what the number

of statements, conditions etc has to be written and maintained inside the class, and the more

methods there are, more will be translated to child classes that extend it, and more complexity

will ensue. In general, classes with a greater number of methods are usually more likely to be

application specific, and are less likely to be reused.

To formally define WMC, a class C with methods M1, … Mn, with complexities c1, … cn

respectively is considered. Then weighted method per class is defined as:

WMC=∑
i=1

n

ci 2

WMC may definitely be useful for code analysis, but there are indications that cyclomatic

complexity doesn’t work well in practice [60].

Depth in tree (DIT): measures how for down in the tree of inheritance a class is. A class that

doesn’t have a parent has a depth of 1. Influence of depth in tree should be considered because

if there is a property P of a class, then each of the classes extending that class will also have it.

Since classes with more properties tend to be more complex, the deeper the class is in the

inheritance tree, the more complex it will be.

Response for class (RFC): number of methods that may be invoked when a class method

receives an outside message (public method invocation). This will make sense for a larger set

of public methods. A tester would have to perform more tests on the class, and understand the

class in more detail. For example, a method is invoked, but after that, itself it invokes a

number of private methods. This also includes other classes’ and parent classes’ methods.

RFC is defined as:

RFC=M∪R (3)

where M is a number of all methods of a class and R is the number of remote methods any of

the methods {Mi} may call.

Coupling between objects (CBO): measures how many different other classes a class

invokes, either by invoking their methods or by using a property or a local variable as an

instance of another class type. Objects are coupled if one acts upon the other in any possible

49

way – by containing another object, referencing it, invoking methods of another object or

producing instances of another object.

For two objects, say X=<x, p(x)> and Y=<y, p(y)>, coupling exists if one acted upon the other

in the past. Acting upon the other includes both any action performed by {Mx} upon {My} or

{Iy}, and vice versa – any action performed by {My} upon {Mx} or {Ix}.

Lack of cohesion (LCOM): measures how much methods of a class are similar, or rather

different when lack of cohesion is considered. Methods that perform completely different

tasks or have no common properties that they work on, and thus lack cohesion. Methods that

access the their instance object’s variables are cohesive. The bigger the cross section of a set

of variables used by two methods is, the more cohesive those methods are. So, if methods are

defined as M1, M2… Mn, and I1, I2… as class properties, or instance variables.

The degree of cohesion is then defined as:

σ (M 1 ,M 2 ...Mn)=(I 1)∩(I 2)...(In) (4)

Where σ() is a function of the degree of cohesion of methods Mi, dependent on the cross

section of used object variables (properties). The greater the cross section is, the more

cohesion an object exhibits.

4.1.1. Cohesion and coupling

In the subsequent sections, metrics and literature is introduced. It is clear that cohesion and

coupling are metrics that are used when reusability of object-oriented code, classes or

components is analyzed [74], [66], [62]… Decoupling, or loosely coupling components

makes them independent of one another, and cohesion makes component functionally

complete and replaceable. For decoupling, one might look to analogies in other engineering

areas. For example, a car tire can easily be replaced without any impact on wheel or engine,

while its intended function is very clear inside the system.

4.1.1.1.Component coupling

By making components (or modules, classes, code constructs) loosely coupled, is is ensured

that they can more easily be used in different software systems, sometimes that also means

different platforms, operating systems… Decoupled systems can also be decoupled in time.

That might mean that messages are not synchronized – that once a component sends out a

50

message, it may take time before it is processed by the receiving end. Architectural patterns to

decouple components are many, and only the ones that were used to ensure FAC isn’t a tightly

coupled component are introduced.

Connections via mediator will lower coupling between objects in the system where objects

have to communicate with each other. Instead of each object being aware that there are quite a

few types of them, and knowing how to communicate, they all rely upon the mediator object,

know how to communicate with it, and communicate over it, thus lowering coupling.

Asynchronous communication is a pattern that is sometimes included within the event-

driven architecture pattern. Instead of passing messages directly between objects, a message

queue component is used (events can be transferred in this way). It usually conveys messages

made up of basic data types, and in contrast to event-driven architecture, replies may be sent.

Event-driven architecture is a pattern in which components don’t notify all interested parties

(objects, classes, services) directly, but rather “fire” an event which gets delivered to all

subscribers by the event system, usually the broker. The component that is the source of the

event doesn’t need to know about components listening to its events, thus, lowering coupling.

Dynamic bindings of service and consumer components means a user of the software can

at any time bind two components together. This means that components are sufficiently

decoupled in their implementation and design that they can be coupled during runtime in a

simple generic way, which means their reusability is well designed, thus, coupling is low.

There are also other methods to lower coupling, that can be applied to any software, if the

approach is accepted into the architecture. For example, coupling can be lowered if the data is

transmitted in a standard format and using standard protocols, for example JSON or

XML over HTTP, instead of using custom or proprietary formats or protocols.

Class methods should be designed to accept standard data types (like integer, string ..).

Passing custom data types, like instances of certain classes or complex structures of arrays

will cause more coupling because the receiving class and method will have to know of the

foreign data structure, or another class.

Passing only key data to a method or service will also reduce coupling. For example, a

method that should send an email to the user is most reusable when only the key, an id of the

user from the database is required, and the method itself finds the address to which to send the

51

message. This approach can lower coupling because methods won’t have to be invoked in a

specified order, for example first retrieve the address of the user, then invoke send an email to

the address of the user.

Loose coupling of application integration in business process automation contexts can be

increased by following a presentation layer integration model in which automation

applications interact with underlying automated applications through the presentation layer or

graphical user interface. This means that every part of the automation is prepared to be

connected to a subscriber, or rather publish-subscribe pattern. Each publisher is completely

unaware of subscribers, that it send the messages to.

4.1.1.2.Component cohesion

Cohesion is a measure of the degree to which elements inside a software component, module,

or class, belong together. Cohesion is an ordinal scale. It is possible to deduce that a

component exhibits low, medium or high cohesion, but it isn’t possible to distinguish between

two components with high cohesion [66]. Components with high cohesion are preferred, or

better, to the ones with low cohesion because high cohesion correlates with desirable traits of

software components, such as robustness, reliability, reusability and understandability.

A cohesive class, for example, contains instance variables that together make up a cohesive

whole if they together build a description of an abstraction just in the right amount – not too

much and enough to describe it. In addition to data, a class is cohesive if methods of that class

also serve some unifying purpose of the class, and perform actions and calculations on

cohesive instance variables.

High cohesion will be achieved when functionalities of the class can be accessed through its

methods, that perform similar activities and avoid handling coarsely grained data, or

accessing unrelated data.

There are a number of types of cohesion, that can give us an answer how good cohesion is.

The following list enumerates these types, from worst to best:

• Coincidental cohesion will be detected when parts of the module are grouped

arbitrarily, the only relationship between the parts is the fact that they are grouped

together. This is not to be mixed with a facade or mediator patterns, which help reduce

52

complexity when connecting to certain components in case of facade, and avoid direct

coupling between certain classes in case of the mediator.

• Logical cohesion may be grouping components that handle all input signals, although

they might not be the same in nature. For example, grouping together code that

handles mouse and keyboard input.

• Temporal cohesion means grouping together components that are run in a certain

point in the lifecycle of software. For example, application is loading, an error

occurred and the log is being written.

• Procedural cohesion is grouping certain modules together in a certain way, because

they (for some reason) should be run in a specified way. For example, when changing

user’s picture, check if it already exists, delete the old one, resize new one if needed

and then save it.

• Communicational / informational cohesion means grouping components or parts of

a component by data type that they are meant to process – e.g. date functions.

• Sequential cohesion is grouping components because output of one is the input of

another, like an assembly line.

• Functional cohesion is the best type of cohesion, and one engineers intuitively try to

achieve when creating classes for software. This cohesion type is achieved when

components are grouped, or a part of a composed component, based on whether they

contribute to a single well defined task. For example, mathematical function

visualization.

• Perfect cohesion is atomic – when a module is reduced to a minimum. For example

implementation of function r(x) = 2x + 1 + 3x + 2 is said to have perfect cohesion

when it cannot be reduced any more than that: r(x) = 5x + 3.

In real life scenarios it is often only possible to achieve communication / information

cohesion [66]. The reason for this lies in software itself – cohesion depends on ensuring the

class interface presents a consistent and well modeled abstraction and modeling good

abstractions is hard.

53

4.2. Component-based software metrics and reusability

Component-based software metrics, or component metrics, are metrics that evaluate code of

components, but should measure properties of components at a higher level than object-

oriented metrics. Components are considered a higher level of abstraction than objects or

classes, although in some cases they may be considered as classes, when all component

interfaces are exposed through a single class, usually a facade class.

In many component models, a component may be evaluated through such a single class,

because (like in FAC component model), there exists a class that is the central abstraction,

that represents a component to the rest of the system. In fact, separate extensions are visible

through a single class, the implementation of the abstract Extension class, to the rest of FAC,

but to other components through the universal adapter. In cases when that is impossible, when

a component that is observed, evaluated or reused is made up of multiple classes, whole

applications or libraries, measuring component metrics approaches consider components as

black boxes, and measure properties based on observable interfaces or properties [61].

Measuring quantitative component reusability is hard, because of the abstract nature of

components and software in general, so many approaches are qualitative, as Bhattacharya and

Perry have found [72], reusability is in practice evaluated mostly through costs, quality and

usefulness. It doesn’t help either that there are multiple, similar but different definitions of a

component [11], [62], [6]. This makes it inherent to define component metrics in different

ways, to assess different properties of aspects of components, and then try to apply them in

different ways to assess component reusability. One categorization of components, that seems

to include most important types applicable for our case is done by Narishiman and

Hendradjaya [62]:

• An operation-component consists only of traditional procedures or operations,

• A class-component is a component made up from a class, or that consists of multiple

classes,

• A module-component is a component consisting only of modules,

• A super-component is a combination of all the above.

54

All the above can then additionally be categorized as white or black box components, and my

be assessed for component reusability.

Mijač and Stapić [71] have assembled and analyzed a comprehensive list of component

reusability metrics, and categorized them by component type (white or black box

components). All approaches rely on well-know metrics. Some approaches provide ways to

quantize reusability, while other hint that results from well known metrics should be

interpreted for reusability. Coupling and cohesion are the most popular metrics most of the

approaches use for assessing reusability, followed by complexity, reuse frequency or volume

etc. There are very few methods that also use metrics like regularity, customizability,

maintainability etc., which seem to be of value when pondering whether to reuse a certain

component from a practical, for example, should I install this WordPress plugin perspective,

not from a technical difficulty of integration point of view.

4.2.1. Measuring component reusability

Kumar and others [56], measure coupling of components to compute their reusability. There

are approaches to measuring reusability by measuring coupling and cohesion, by including

strength and transitivity of inter-component dependencies [52]. Transitivity is a concept that

includes classes and their methods that are used indirectly by a class. It might, in some cases,

show a better answer to how reusable a component is. The greater transitive coupling, lower

the reusability.

Sook Cho E. and Sun Kim, M. [70] propose that reusability of components can be computed

from the number of interfaces providing functions in a domain, divided by total interface

methods of the component. From that, they also define component reuse level to be a measure

of how much of component functionality is needed by the application that is using it.

Component reusability is then defined as:

CR=
∑
i=1

n

(Count (CCMi))

∑
j=1

m

(Count (CIMj))
(5)

where Count(CCMi) is the count of each interface method for providing common functions

for application domain, and Count(CIM) is the total count of methods provided by the

interface of the component.

55

4.2.2. Measuring reusability from complexity

Narasimhan and Hendradjaya [62], and Kumar et al. have defined a set of metrics that can

quantize complexity of integrated components, that implies higher coupling and lower

reusability. It also implies higher complexity and harder testing and maintenance of built

software [56]. Complexities that can be measures stem from the interaction density of a

component and from packaging density of components. Additionally, when multiple

components are coupled, their interaction density can be computed, and also quantized, which

gives another metrics for complexity of those interactions, which also translates into

implications for reusability.

Interaction density of a component (IDC) is the ratio between connected interfaces of a

component, and the maximum interfaces a component offers to other components of the

system.

IDC=# I
Imax

 (6)

Respectively, incoming and outgoing interaction densities can be defined in a similar way.

Instead of considering all interfaces, for incoming interaction density, the number of used

incoming (required) interfaces is used. For outgoing interaction density, only the number of

used provided interfaces over the maximum provided interfaces of the component are used.

The average interaction density (AID), or in some literature CAID [56], is the sum of all

interaction densities of all components in the system divided by the number of components.

AID = ∑
i=1

i=n IDCi
n

 (7)

Component packaging density (CPD) is the ratio of constituents in components, where

constituents can be lines of code, number of objects or classes, number of modules,

operations, etc., and the total number of components in the system.

CPDconstituenttype=
constituents
components

(8)

For black box components only component interfaces and their interactions are analyzed. This

means that it is either possible to analyze components separately or analyze them as part of

the system. Coupling complexity of a black box component can then be defined as

56

CC = IIc + OIc [56], where IIc is the number of incoming or required and OIc number of

outgoing or provided interfaces.

Average coupling complexity is then defined in the same way as AID:

ACC=∑
i=1

n

(
CCi
n

) (9)

Using these metrics, it is possible to quantize the complexity of a software system built by

integration of the host application and FAC and its extensions.

When measuring AID and CPD for a component system, there are four cases that indicate its

nature:

• Low CPD and low AID represents a very simple or small software system;

• Low CPD and high AID often indicates it is a real-time system, that has low data

processing and high computation – fewer optimized components doing lot of

processing;

• High CPD and low AID indicates a system that processes high volumes of data, using

many components. Systems like these are usually enterprise or business applications,

having many functionalities and modules that handle those functionalities completely;

• When both CPD and AID are high, the evaluated system will be big and complex

because a lot of components do big volumes of data processing, and communicate in

the process.

4.2.3. Criticality metrics and implications for reusability

It is possible to analyze components by considering how critical any of the components in a

system is. The most intuitive way to do this is to visualize components’ interactions as nodes

on a graph Illustration 9. The two systems are integrated or connected using a bridge

component B, while each of them has components that are connected more to the rest of the

components in the system. For System 1, that is component C1, and in System 2, component

C2.

57

Properties that are visible in the graph can also be formally defined. Literature [56], [62], lists

a number of different critical properties a component can exhibit in a system.

Link criticality is a measure of links a component has to other components. If a component

has many links to other components, that is if many components use the provided interfaces

of a single component, than that component’s link criticality will be high.

Bridge criticality is a state of a component in which it serves as a bridge between two

applications or components, or two sets of components. If the bridge fails, there will

potentially be more problems.

Inheritance criticality means that a component is used as a blueprint or a base for other

components, such as a base class from which all other components are built.

Size criticality is a case when a component is very large in size, which can be determined by

other metrics, like lines of code. CPD for such components is very high and it might be hard

to do maintenance, since larger size might also mean more bugs and it might be harder to find

the source of the problem.

It is directly deductible that components with link, bridge and inheritance criticality are highly

reusable, since many other components interface them for a common functionality (link), to

establish a commonly reused functionality (inheritance) or connect to other components

through them (bridge).

4.2.4. Reusability through properties of black-box components

When building software by reuse of black-box components, activities to choose and evaluate

each component are performed:

58

• researching the functionality of the component;

• adapting the component to specific requirements;

• and porting the component to a new environment.

These are enabled by existence of meta information (description of behavior, customizability,

non-functional properties and interfaces) and observability of the component (interfaces,

inputs and outputs). The less external dependencies a component has, the greater portability

(and reusability) will it have in other environments.

Washizaki et al. [73] introduced reusability metrics for Java Beans components, to evaluate

those criteria. Their analysis is oriented towards Java Beans, but can be easily applied to

black-box components in general.

Rate of component observability is the percent of properties that can be read in the

component:

RCO(c)=
Pr(c)
A(c)

, for A (c)>0 (10)

Where Pr(c) is the number of readable properties in component c, and A(c) is the number of

fields in the facade class of the component. If A(c) is = 0, then RCO(c) will also be 0.

Rate of component customizability is the percent of all the properties that are writable in the

facade of class c.

RCC (c)=
Pw (c)
A (c)

, for A(c)>0 (11)

Where Pw(c) is the number of writable properties of class c. If A(c) is = 0, then Pw(c) will also

be 0.

Self-completeness of component’s return value is the percentage of all business methods of

a class c, that have no return value. If there is no return value, it is expected that a component

or class is more self-sustained, thus more easily portable or reusable.

Self-completeness of component’s parameter is similar to the previous metric, the

difference being that methods of the facade of class c without parameters contribute to

reusability of the component or class. Percent of methods with self-complete parameters is:

59

SCCp(c)=
Bp(c)
B(c)

, for B(c)>0 (12)

where Bp(c) is the number of methods without parameters in c, and B(c) is the total number of

methods.

From SCCr and SCCp the authors defined the overall reusability metric (COR), which has

been adapted for Java beans components, to discriminate for what they concluded were valid

results, but which might be applied to other component models too:

COR(C)=1,76
V EMI(C)+V RCC (C)+V SCCr (C)

3
−1,13 (13)

where EMI(C) is 1 if metadata describing component C exists, 0 otherwise; while COR

should be greater than 0 for reusable components.

60

5. FRAMEWORK AS A COMPONENT (FAC) COMPONENT MODEL

Component models have in more detail been introduced in section 3.1. A component model

defines what a software component is, how it can be constructed, composed or assembled and

finally deployed [9], [11], [14], [28].

Frameworks are traditionally abstract software constructs that provide facilities, rules and

base building blocks to construct software by writing code. Formally, these rules, facilities

and base building blocks implement and enforce the component model that defines how

components are built and composed into composite components. A framework can thus be

viewed as an implementation of a specific component model, or rather, the environment for

building and running components that adhere to that specific component model. The user-

written code then extends, reuses and builds upon generic framework functionalities. The

resulting application and its components then adhere to the specified component model. This

is elaborated in more detail in chapter 3.1.

The Framework as a Component component model (FAC) is in many ways the same set of

rules and building blocks, though there are some notable differences opposed to other

component models, that were the focus of this research. FAC requires that the framework is

itself also a component that, at the same time, acts as a universal adapter between all

components built using it, and all the third party components that will be integrated with it.

The logic here is that by integrating a single component it is possible to implicitly integrate

any number of components that were built adhering to the FAC component model. So, the

FAC model defines a nested, recursive component architecture [12] and through that enforces

that all the components have homogeneous, universal interfaces. This is just partly true for all

component models where components must have uniform interfaces to connect to the

underlying framework, and utility components a framework provides, to satisfy base classes’

required interfaces for example. FAC, on the other hand, enforces that even provided

interfaces of all components are uniform and are available through the framework itself, thus

making them easier and straightforward to reuse.

In the following subsections, it is shown how properties of the component model have been

achieved and how the model is defined:

61

• What components are and how they are built is described in section 5.2.5., which

goes into detail what the architecture of each extension looks like, how parts of it

communicate, what architectural patterns should be employed, how are multiple tiers

of components described, what sub-components are and how can they be used.

It also describes how components are packaged and how they can be deployed.

• Sections 5.2.2 and 5.2.3 go into detail how components can be assembled and

deployed during implementation.

• In addition, FAC component model also defines how FAC itself, and subsequently

all FAC components, can be assembled with heterogeneous applications or

components, outside of FAC – through sections 5.2.2, 5.2.4 and 5.2.5. This is another

important property of the FAC component model, one that makes it unique.

5.1. Domain and premise

The domain in which FAC is applicable is web applications. Other domains have not been

included into consideration.

Web and mobile applications are currently most popular types of applications. Therefore, this

research is targeting a large share of currently active applications, component models and

frameworks. This popularity can be observed from the trend of the last few years in

programming language popularity, from statistics that are published online, like the RedMonk

Programming Language Rankings that use GitHub (the biggest online open source software

repository) and Stack Overflow (a huge online community of developers helping each other

with software or IT – related problems) to measure programming language traction [51].

GitHub is queried for languages by pull requests – the number of pull requests per repository

for a certain language, with forked repositories excluded, and Stack Overflow is queried using

their own Data Explorer Tool11.

11Stack Overflow’s Data Explorer Tool, can be used to retrieve statistics about questions on their site,

https://data.stackexchange.com/stackoverflow/query/new

62

5.2. Architecture

Web applications are generally structured like a tree. Each of the nodes in the tree is a

component. And each of those can be reduced to leaves of the tree until the view layer of each

component, that in the end also makes up a tree of HTML elements. Each of the nodes

(components) attaches itself to a parent that provides context. The root of the tree can thus be

defined as the URL of the web application – from that, the application can deduce what other

nodes (components) should be spawned, for the provided URL. Of course, context for those

components will most often be more than just the URL, and parent components will in that

case provide more context to child components. A tree-like structure shown by Illustration 10

should be considered.

A web application gets executed for a certain URL by the web server. This gives the

application some context – the domain name, URL path and parameters. The next component

that is executed is “Application”. Application in turn activates many components directly or

indirectly. In our example, Application uses a component called “Page” directly, which then in

turn activates a number of components. In general, the Application component would usually

be the application development framework – the one component that makes sure everything

else runs, that provides all the necessary services and execution context for other components,

and defines the component model for components that can be run in the first place. But for the

sake of our example, all components are considered as simple as possible, without framework

dependencies, only as a simple tree-like structure.

Thus, a Page component might need additional context for execution and the Application is

supposed to provide it. Additional context might for example be the current user. It might also

63

need to translate the URL path to an id of the Page, so that the Page component can be

initialized correctly, before the Page component takes over the main execution thread.

The Page component now initializes its child components in the same way the Application

component did. Each of those components might need some additional context data and the

Page is supposed to know how to provide that. Let’s suppose that, for the sake of our

example, the Page component should know which areas of the application should be rendered.

Let’s also suppose that each area is also a component called “Area”. In our example, those

areas are called “Content” and “Right”. By pushing the execution context down the tree and

initializing Area components for areas called Content and Right, both those Area components

will now also know which child components they should initialize and execute.

Components Banner and News aggregation will be executed by Area “left” and a Menu

component will be executed by Area “right”.

For the sake of example, let’s also define that each component is a three-tier architecture

component, or a MVC architecture component. That means, each of those components

renders a view for the user and manipulates data in some way.

This is a fairly simplified example of how a web application works, but it applies to many

application architectures, component models [18], [19], [20], [21], [23], and how web

application components in general receive their execution context: the common parts are

provided by the application (development framework) and parts are provided by parent

components. Just a side-note, this is completely natural to the way HTML is assembled.

This tree-like functioning of web applications and web application components is essential to

understanding the architecture of the FAC component model.

In the following subsections, components of the FAC architecture and their properties are

introduced and explained in more detail.

5.2.1. Architecture overview

In the following sections each element of architecture is explained in detail, but a high-level

overview should be considered before details and specifics are explained. The high-level

overview of FAC architecture is shown on Illustration 11.

64

The host application is visualized at the bottom, and connected to FAC through integration

layer made up of mappers that translate host application execution context state and signals

to FAC. Mappers are components that have to be implemented for every single host

application integration, each being responsible for a part of context translation.

Facade is the main interface of the framework through which it gets bootstrapped, and

through which the host application, or any components that wants to reuse a FAC component

initiates that execution, or through which outside applications or mediators notify FAC of

events that occurred. Actual handling of those events is then handed over to the Event broker.

Execution of components (extensions) through facade is handled by Extension manager. It

instantiates actual extension objects (subclasses of Fw\Extension). The Extension base class

computes input from the parent component, through Extension manager, from all the mappers

and then the actual extensions are executed (to the right).

Each of those extensions, if it wants to use another extension, or another instance of the same

extension, has to use the same Facade component, and use the FAC as an adapter to execute

an actual extension. This has been called the universal adapter, and is the main concept that

drives design of FAC architecture.

65

5.2.2. Universal adapter

The tree-like structure of web applications and the way they are assembled using components,

makes it possible to generalize the way in which components are interfaced, without loosing

component functionality and purpose.

There are two sets of data that each component needs which will make sure it doesn’t loose

context and that it can execute, fulfill it’s functionality. The first set of data is common data

that all applications have and need; and the second is data that the parent component

provides.

Consequently, FAC as a component model defines the development framework as a universal

adapter and doesn’t directly deal with creating common data. In fact, FAC is meant to be

attached to other existing applications that have already solved all the common facilities like

user authentication, URL handling, permissions and authorizations, etc., and deals with

creating reusable components. The focus can then be pointed at extending existing

applications, extending functionalities of existing components of other frameworks.

Common data is transmitted from the original application, component or framework, and

translated into a form that FAC components understand. For this reason, components built

using FAC are called extensions.

This implies that the first step to use FAC and any component built using the FAC component

model is to integrate it with an arbitrary application/framework. Since the application which

will host FAC is mandatory, it is called the host application. Only after this integration is

achieved can extensions receive common context data, and be used to build or extend the host

application or its components’ functionality. How that happens and what it takes to create the

context for extensions is described later, in section 5.2.4.

The two sets of data (common data and parent component data) have non-intersecting points

that aren’t common and are provided by parent components and points that are common (they

do intersect) and are provided by the host application/framework. So, each FAC component

receives context data from the host application and the parent component.

If required interfaces of the FAC are grouped (Illustration 12), that need to be connected to the

parent component, or application, for an extension to run, a UML representation of FAC is

simple.

66

Assembling components

Just as HTML tags are nested and used to build up the page using different tags, reusing

components is possible in the same way, on the view layer. Each component that has a view

layer displays a set of HTML tags, which actually is a natural way of composing web

applications. To a simple way of running a component is required. A function or another

similar construct is required the templating engine that is used to build the view layer of a web

application component. This would fulfill all the previously stated data requirements of

extensions.

The function and the data that is sent to the extension it activates is called a “hook”. The

function provides required data for the child component (extension) to hook onto the parent

component – and render into a desired location in the view layer. The parent provides a simple

way for the extension to hook onto it, while the FAC framework does the rest of execution

context translation in the background.

The whole FAC framework is exposed towards reusing extensions and other components by

using the facade pattern. The ExtFw\Facade\Fw implements all the public interfaces to the

framework. These interfaces are later explained in more detail: framework initialization

interfaces, extension execution interface, interfaces for extensions to retrieve context mappers

instances, handling incoming events.

5.2.3. Hooks

A hook is a shorter name that was given to the universal adapter – the explicit part of it that is

used by components to reuse other components.

67

Illustration 13: Activating an extension through a hook

It is an interface through which FAC as a universal adapter is invoked and executes

extensions, as shown in Illustration 13 [12].

Hooks are software constructs or functions, depending on the host application component

model which defines how creation of view layer parts of components is supposed to be done.

Hooks have to be prepared for each host application framework/component model. They are

considered to be a part of FAC, not the host application. For example, Laravel applications

utilize Blade templating engine, WordPress uses pure PHP. They both provide ways in which

it is possible to activate FAC as a universal adapter through a hook, and execute extensions.

So, a hook for Laravel is a Laravel component that works when the rest of FAC integration of

Laravel is achieved.

The component that “provides” a hook doesn’t do much work. The hook is invoked just as

any other function or HTML tag would be invoked, on the view layer. There are only four

arguments passed to the hook: name of the data, a unique representation of the data

(preferably string), an id for the extension (just an id of a HTML element), and a Boolean

argument whether the hook is being used inside of an HTML form. Optionally, a hook can

invoke an extension directly by specifying its name, but if that information is omitted from

the code, FAC provides ways for the user to attach extensions to “empty” hooks. FAC can

also provide ways to add additional extensions to non-empty hooks. Elements of hook data

described have already been hinted in the example at the beginning of this chapter, and the

visualization of a component tree, as shown in Illustration 10.

68

Parent component

Hook data

Unique id (hook)

Extension

Execution context

Computed execution context

CICI IIII

Integration layer

Extensions
framework

An application written in Laravel is considered, with a NewsAggregation as an extension, not

a native Laravel component. The invocation of the hook to execute NewsAggregation inside a

Laravel view would be a Blade method call:

{{ \ExtFw\Fw::hook(‘Page’, 423, ‘NewsAggregation’, 423.‘aggregation-1’) }}

This would simply invoke a FAC’s facade class that resides in the ExtFw (extensions

framework) namespace, and executes a hook method. The first argument is the name of the

data type that the extension will hook onto, second argument is a unique identifier of that

data, third argument is the name of the extension – NewsAggregation and the last argument is

the id. The last parameter is concatenated from the actual id of the page and the string

“aggregation-1” - so that it will always be unique. Giving extensions unique ids from parents

is important as shown later in section 5.2.6, so that FAC can effectively parse and process

submitted data.

A generic hook can also be defined, which doesn’t require the name of the extension that

should be used to be provided. Instead, it makes it possible to dynamically bind an extension,

or multiple extensions to the provided generic hook. A generic hook should specify all the

other arguments for the hook – the content name, id of the content and the unique hook

identifier.

Unique ID objects

Behind the scenes, FAC calculates common context data and calculates a Unique ID object.

Unique ID objects are actual data that each extension is provided, that it can hook on to. It

contains information about what the name / type of data is, what is the unique identifier and

the actual computed unique numerical representation of that object – the unique id.

FAC creates a database table to store these unique identifiers. Since extensions must never

have direct database references to each other’s db schema, and especially not to the host

application’s components’ schema, this is a kind of a proxy that they can reference.

Extensions can reference the unique id database table directly, but this shouldn’t be done since

it causes tight coupling. Instead, FAC’s event subsystem should be notified on data changes,

addition and deletion.

Using FAC event subsystem isn’t ideal and in real-life scenarios because it entails firing

events in the host application by directly invoking one of FAC components through the FAC

69

facade. A much better solution would be to use one of many available standard message

queue components, like for example Beanstalk 12.

For larger applications, it is generally a good idea to fire events when models or data perform

any CRUD operation. Most component models and frameworks already are event-driven, so

forwarding events to a standard message queue handler shouldn’t be a problem as it creates

only one additional integration point with the FAC (described in more detail in chapter 5.2.4).

So, when an extension gets hooked to a parent, FAC creates an UniqueID object and then

starts monitoring for relevant data events from the host application or parent extension, for

data and type that that UniqueID object represents. Extensions that have used that particular

unique id object as part of the hook are expected to remember it, so that they are able to

consume and act upon events that FAC tells them happened, to that particular unique id

object.

Enforcing loose coupling

To avoid specifying components that a hook should execute, FAC makes it possible to define

which components should be executed by which hook id, for which content type. This

enforces loose coupling between components, both extensions and the host application

components and extensions.

5.2.4. Context mappers and integration components

Context mappers are main integration components that provide common data integration

points. Technically, context mappers are abstract classes with abstract methods that have to be

extended and implemented to achieve integration with a certain host application or

framework. Each host framework or host application integration entails implementation of

another set of mappers inside of FAC. Once mappers for a specific framework or application

are implemented, FAC can easily be integrated with any instance of it. Only thing that has to

be done to achieve that is provide basic configuration options.

5.2.4.1.Database access and persistent storage

Although not really a mapper but rather an abstraction, database access or persistent storage

access is one of the most important functionalities for any application or framework. Thus,

12 Benstalk work queue, https://beanstalkd.github.io

70

FAC provides database abstraction to its extensions. FAC can be configured to create database

tables it needs inside an existing database, and prefix all the table names it uses, or use a

separate schema. In terms of functionality it makes no difference, but is an important

possibility since FAC is meant to be used as provider of components, extensions, rather than a

complete application provider. The difference is in fact slight, but distinctive.

FAC or its components will never directly access host application’s data, and an extension

should never directly reference or access another extension’s data. References should be done

only through unique id objects (hooks) and integrations should be achieved through event and

messaging systems. If that is true, than database access, in terms of mapper components,

should be configured so that it never conflicts with host application’s schema.

From the FAC perspective, the database access layer, when configured provides database

access for extensions and other FAC components. It also provides object-relation mapping

that extensions can use, if they want to use it.

Persistent file storage is also one of common functionalities in web applications. Users upload

their files, or create files through the application, and those files have to be saved on the

server. FAC also provides utilities necessary to save files and abstracts their real path on the

disk for extensions. To be able to function, it needs to be configured so that it doesn’t conflict

with the host application.

5.2.4.2.Context mapper

Context mapper takes care of translating all the context information that isn’t translated by

one of the specialized mappers.

One such information is the current language of the resource being loaded/rendered to the

user. Web applications can support multiple languages in parallel. Resources that are available

to users can be in any of the different languages. Sometimes the URL of the resource will

make it possible to explicitly determine the language, and sometimes that is done in a

different way, so this mapper takes care of providing the information to FAC – what language

should be applied for the current request.

Permission mapper and user data mappers provide information to FAC on what the current

user permission level is and a reference to which to register data the user creates. They don’t

71

provide information whether the current user is a logged-in user, or an anonymous user. So,

this information is translated through the context mapper.

Sessions can be named and it is important for FAC to be aware of the name of the session, so

that it can write to it without overwriting any of the host application data. Additionally, to be

able to integrate logic that takes sessions in account within extensions, information on how

long sessions last and when will they expire has to be available.

Many host applications are able to run and render for multiple DNS names, or domains.

Providing this information to FAC is also the task of context mapper.

If the host application component is reusing an extension, or an extension is reusing another

extension, and while doing so is rendering a form through which the user is editing data, and

is in parallel requesting rendering of the extension it is using, FAC will make sure the reused

extension also renders in “edit” mode – whether it is adding a new resource or editing an

existing one.

One other final part of the context data that is given to an extension, that was found to be of

use is whether the extension is being used recursively. For example, a comments extension is

simpler to implement if it doesn’t explicitly take care of comment threads and replies. This

would make are comments on comments are possible and further recursively in the same way.

It is much simpler to implement an extension that makes it possible to write a stream of

comments, and then reuse that same extension within itself to achieve threads and replies

(comment on comments). FAC will detect this and provide information to the reused

extension that it is being used from itself.

In conclusion, the context mapper is an integration component that translates and aggregates

various variables that contribute to the way the application executes and what it shows to the

user. Usually, most common data like that resides in the session so context mapper mostly

translates data from the host application session, but it also has a wider reach. In the future,

when more experimental features and extensions are developed the context mapper might

grow or even be split-up into smaller specialized mappers.

5.2.4.3.User data mapper

Different applications will have an infinite number of user properties, but there are some that

can be assumed. The task of user data mapper is to provide those properties to the FAC and its

72

extensions. This will make it possible for extensions to keep track of authors of content they

themselves allow the user to edit, provide additional features to authors, but it also makes it

possible to label the author of, for example, a blog post or a published photo, etc.

Common user data properties from various frameworks and applications that are provided by

mapper methods have been found:

• User’s first name and last name;

• Username – the username that the user uses to log into the host application;

• Password – since passwords should always be hashed, user data mapper doesn’t

provide a way for extensions to read the password, since that should be impossible. It

rather provides a way for extensions to check whether a given password is valid –

mapping the checkPassword method to host application’s login/check password

mechanism;

• Email address of the user – so FAC and extensions can send emails to the user;

• Photo URL, that provides an absolute path to the url of the user avatar, so that

extensions can use that in their views;

• User display name is often the username, or user’s first and last name, but this is a

convenience mapper, so that extensions can provide the same feel as the rest of the

host application.

• Title prefix provides a way to map if there’s a title that should or in some cases, could

be printed in front of the user’s name, for example prof. Mario;

• Title suffix has the same purpose like the previous property, but that’s the part of the

title that goes behind the user’s name;

• User’s public url is mapped so that the extensions can link to a public url of the user, if

such is provided by the host application;

• User’s private (edit) url is mapped so that extensions can link to a route of the host

application where the user can edit his or her user account settings and data.

73

5.2.4.4.Permission mapper

Web applications allow or restrict users to certain actions or content through roles or

permissions assigned to them. Applications might only distinguish registered or logged-in

users versus anonymous users. Additionally, they might provide additional configuration or

management features to administrators or super users. Depending on application complexity,

permissions may be more roughly or finely defined and distributed to users.

FAC should be able to easily interface with different host applications, similar permission

levels have to be translated into FAC permissions. Through analysis of some of the most

popular frameworks, web applications and a proprietary content management system, Quilt

CMS13, FAC permission levels have been defined: read, write, author, editor, admin and

godlike – from least permissions to the highest (godlike) level [12], [18], [19], [20], [21], [25].

Permission levels are defined as:

• Read – users are allowed to see a certain resource, for example a page with blog posts,

photo galleries or some other content module. Users are not allowed to contribute,

comment or otherwise influence the content.

• Write – users can write a limited amount of data, that cannot directly modify the

original content on the website, for example, users can star or “like” a blog post, write

comments to a published blog post or at most might be able to suggest some content

for publishing, similar to contributors in WordPress.

• Author – users can independently publish new content on a specific web page, but

cannot choose what that content is. For example, if an administrator configured a

certain page to serve as a blog roll, then the user can just add blog posts using that

active module.

• Editor – users can perform the same set of actions as with Author level, but also edit

other users’ content.

• Admin – users can independently change the structure of a site, add pages, add

modules to pages and publish content through those modules. Admin users can also

13 Quilt CMS, a proprietary content management system for the web, developed at the Faculty of electrical

engineering and computing, University of zagreb, https://www.fer.unizg.hr/quilt-cms/

74

specify which permission level is required to view a certain page and assign additional

permissions to users or user groups for those pages.

• Godlike – administrator users that can access every setting for that instance of the

application.

5.2.4.5.Configuration mapper

Configuration of the host application is not a concern to FAC. That is also true vice versa,

since the two are meant to be as decoupled and independent. In spite of that, there are a

couple of properties that were identified that extensions might need from the host application

configuration: whether the application can be accessed publicly or from a certain IP range or

list of addresses, whether debug and development modes are enabled, and what error function

should be used. Applications are often optimized for production, with various debugging or

other development options and logging levels disabled to improve performance. FAC is the

same, and provides a way for the developer to switch to development and/or debug mode –

through

Configuration mapper’s purpose is to more tightly integrate FAC with the host application,

but ensuring the components themselves are as loosely coupled as possible. By making it

possible to use host application’s configuration to restrict access to all FAC endpoints,

including API, makes it safer and also easier to maintain and control.

By making FAC use the same error handler as the host application it makes it more intuitive

and easier to develop both extensions and the host app using the given setup.

Configuration mapper makes it possible for extensions to access even more host application

configuration properties by providing generic getters. This may be useful if a configuration

naming scheme should be defined in the future, for common properties. As it is now, generic

getters are implemented, but no extensions should actually try to use them, since in essence it

means hardcoding reliance to a specific host application.

Applications are sometimes configured to be inaccessible for various reasons. Static

resources, especially public ones, and AJAX or RPC endpoints of the FAC or extensions also

need to be deactivated. Mapping such configuration preferences is also possible.

75

Host applications can often serve multiple DNS names, provide the same functionality,

customized or completely different functionality depending on that. Often, there is one main

DNS name and that might make all the difference. By providing this configuration

information to extensions, it makes customizations depending on DNS possible.

5.2.4.6.Event broker

Most web applications and web application frameworks have a mechanism to process events

that occur in the system. Depending on technology, they are processed right away on a

different thread, or sequentially at a certain point in time of the request lifecycle of the

application. The most important property of events is that they are not expected to process

real-time, and are usually easy to intercept and expand the way in which they are processed

and dispatched. Having a reliable event processing in FAC is crucial to long-term data

integrity and cleanup. Since extensions “hook” their data onto data they are provided by their

parent components, which can be host application’s components, a mechanism to

communicate consequent data changes must exist. An extension might want to reset its own

data, or somehow notify authors of its own data, that parent component’s data has changed.

For example, it might make no sense to show the same comments to a post if the post has

been changed. It might have a completely different meaning or show different facts, to which

old comments may make no sense. Alternatively, the extension might want to clean up its own

data if parent component’s data has been deleted.

Event broker is a component that translates events such as these from the parent component,

whatever that may be, into a generic data event in the FAC, which extensions understand and

receive once they are hooked onto the data type for the first time. It is similar to a hook in that

it has the same parameters with one additional that indicates which CRUD operation has been

performed. That means it can easily be invoked from the code that manages event dispatch of

the host application, an extension when it manages its own data, or from a third party massage

or event dispatch component. Third party component being the preferred way, as described in

section 5.2.4.

5.2.5. Extensions

Most important manifestation of the FAC component model are extensions. The purpose of

FAC is to create an execution context for extensions. Extensions are reusable three-tier

76

components built using the model-view-controller architectural pattern. FAC is the execution

environment – the catalyst that creates the execution context for extensions, and it is a

universal adapter for extensions.

Each extension manifests when the base class, provided by FAC - \ExtFw\Extension, is

extended and then implemented. The class, once implemented, becomes a controller of the

reusable component. All this implies that the controller is not the only part of the said

component. Extensions usually have a database schema, models representing the schema,

persistent storage, and views. Extensions are built by writing code for each of the three tiers,

that is packed inside a single folder. The architecture of an extension is described using an

example folder tree of an example implementation of a Photo gallery extension. In literature,

this property of the component model is often called packaging [11] – a way to store and

distribute components.

• Folders in extension root:

◦ css – Contains any additional styling for extensions views. Might contain a single

or multiple css files and additional resources like pictures or fonts, optionally in

subfolders.

◦ js – JavaScript files, usually written as separated code that provides additional

dynamic functionality for extension’s views.

◦ lang – Folder contains PHP files that are named after a certain locale, for example

hr_HR.UTF-8.php. The file contains only a single PHP associative array – keys

with values, that are automatically registered as variables in extension’s views, this

makes it possible to localize extensions.

◦ sql – If the extension requires database tables into which it will write data, SQL

schema definitions should be written in SQL files here. Files named init-n-

xxxx.sql will be invoked on extension registration, where n is a number greater or

equal to zero, and xxxx is a custom nave given by the developer – usually a

description what the SQL file contains.

◦ templates – user interface templates that define views that the extension will

render and show to the user. Templates might also include JavaScript code or

include use any of the files from css or js folders.

77

◦ classes – Folder contains other classes or code constructs that implement the

business logic of the extension. These are often classes that represent models and

code libraries that implement the business logic the extension implements.

• Files in extension root:

◦ Pgallery.php – the main extension class file, containing the class that extends

Extension base class. In the MVC architectural pattern, this class represents the

controller part of the architecture.

◦ The root folder of the extension might contain additional class files, the same as

classes sub-folder. This is supported, FAC will find those classes if they are a part

of the extension namespace, but usage of classes sub-folder is a better option

because it ensures better code organization and the main extension class is clearly

the only file in the root.

Aside from the architecture observable through code, each extension object contains sub-

components that contribute to execution of the composed whole, shown in Illustration 14.

5.2.5.1.The presentation tier

Each extension presentation tier, or sometimes called the client tier, is built through at least

one templating object. It is instantiated and runs on the server, but once the template, or

templates, specified to the object are rendered, the output will be sent to the client – the user’s

web browser, which will actually visually render it. Thus, the template object is the base

component that builds up the view in the presentation tier, of the MVC architecture. Each

template object, before being compiled and rendered server-side, gets pre-loaded by FAC with

various contextual data by filling predefined variables, smarty plugins are executed and their

78

output is replaced in place of their invocation in the templates. This makes reuse of that data

inside other components (as arguments), or showing that data to the user easy and uniform

across extensions. It can also be the base upon which to build the extensions’ JavaScript code,

for example as an argument to initialize some JavaScript components that are part of the view

layer.

Templating objects that are contained within extension objects are customized to work as a

part of FAC. FAC instantiates those template objects and before the user-written code of the

extension runs, pre-fills the template with common variables and data. FAC might also

registers helper plugins, should the templating support that. Those will usually make it easier

for extension developers to provide common extension components’ functions, for example

buttons that execute AJAX requests, automatically generate forms with CSRF (cross-site

request forgery) tokens etc.

Code that is executed on the client can be found in the css, js and templates folders of the

extension. Of those, CSS code and JavaScript are interpreted and executed on the client-side,

while the templates are compiled and rendered on the server-side. In this case, rendering

entails converting variables and plugins into final HTML, CSS and JavaScript, not actual

visual rendering that will be done on the client-side by the user’s web browser.

JavaScript that finally executes on the client’s web browser can have in-built tokens or data,

that make it possible to communicate with the application (server) tier. Integration of host

application’s JavaScript and extensions’ JavaScript components is out of scope of FAC

component model for now.

5.2.5.2.Application logic tier and data tier

The application logic, or business logic tier resides on the server-side. It connects the clients

to the application server and data, compiles and prepares the views before they are sent to the

client, runs all the other parts of the application and manipulates data that it stores or retrieves

from the final, 3rd tier – the data tier.

Host application and FAC integration completely happens on this tier, so it is logical that the

most important part of execution of extensions happens on this tier. Data that has been input

from users through the client tier is processed, actions are performed to manipulate it and then

it is finally stored on the data tier. The main extension class, \ExtFw\Extension, or rather the

79

Pgallery class that extends it in our gallery example, acts as the main controller for the

component in the MVC pattern. It is also the main part of the component on the application

tier. It invokes all the other components and libraries, and instantiates any models that might

exist to abstract the input data. In our example, the model class for our example gallery

extension could have a Gallery and Photo to abstract a group of photos and photos

themselves.

The data tier is often taken care of by the framework or separate applications or components,

instead of components implemented using a framework. FAC is the same, as it provides disk

storage facilities to extensions, and provides database access. So, for our example, the

component wouldn’t have to directly choose where to write the photographs, but rather ask

FAC for the path where to write them. This will also take care of restricting web access to

those files. Saving information about files that have been saved and about the name or

description of that particular gallery will be done in the database, that is the data tier. The

database itself is often on a separate server reachable through the network, or is a separate

service running on the same machine as the application.

Illustration 15: Request processing flow

5.2.5.3.Extension lifecycle

Every extension lifecycle begins with a client request to the host application, which executes

its components, of which some invoke the framework facade to execute one or more

extensions. The sequence of a complete request processing of the host application, along with

execution of extensions by host application components, is shown in Illustration 15.

80

This invocation of components to FAC facade to execute an extension transfers data to the

framework which tells it what extension should be instantiated, what hook it is attached to,

and then extension execution begins.

1. If the extension being executed is first one for that particular web request, FAC will

compute the context through integration interfaces – mappers. This will prepare all the

context data extensions might request and all the parameters that are required to

instantiate and execute extensions.

2. FAC will search for an existing serialized object of the extension being executed in the

session, because FAC saves extension server-side objects and their state between

requests. If the session contains the extension object, it will be loaded.

3. FAC will determine if the extension is being run from within a form. For example,

another extension or the host application component is in edit mode and it invoked the

extension to also provide editing. For example, the programmer of a blog application

wanted to provide gallery editing while editing a blog post in the host application, then

the defaultedit method of the extension will be invoked.

FAC will automatically detect that an extension is invoked from inside another

extension’s form, but host applications have to explicitly tell FAC that it is being

invoked from a form.

4. If there was GET or POST data submitted for that extension, it is decrypted and used

to invoke the right method of the extension object. It has to be decrypted because one

has to use templating plugins (part of the presentation tier) to invoke actions on

extensions, which is achieved through encrypting data being sent by the key specified

in FAC configuration, usually through POST. If there is no data, then the defaultaction

method is called without any parameters and the extension will render its default view.

For our gallery example, that would be render photos in the gallery, or if there were

multiple galleries created for that particular hook, show a list of all available galleries.

It should be noted that there is almost always no GET or POST data for the extension

if in step 3. FAC detected that the extension is running inside a form.

5. After step 4., control is given to the actual extension code that can then process input

data, if there is need, persist the data in the data tier, prepare the view by specifying

81

which template should be rendered by the user interface templates objects, and

providing it with data for template variables.

6. FAC compiles the extension’s user interface and templates objects with both data

provided by the extension and base variables and data that has been provided by FAC,

renders the output and returns the output to the parent extension or the host

application, which usually adds it to the output buffer and then when all processing is

complete, sends the buffer to the client.

7. FAC saves the state of the extension object to the session.

This lifecycle is repeated for each extension, except for the first step which is performed only

for the first extension invoked during a single request. So, the first step only runs once per

request, other steps run for each extension instance, every request.

Once the request is processed and the host application sends the output buffer to the client,

context mappers’ data is discarded and rebuilt on the next request. Only the extensions objects

are persisted through requests.

As far as session storage is concerned, it hasn’t been optimized for the purposes of this

dissertation. In the future, for any eventual production use, standardized components, such as

Redis14, could be used. This would ensure separation of host application and FAC session

data, as well as ensure performance and scalability.

5.2.6. Extension manager

Another important part of FAC is the extension manager, or EM for short. EM is in charge of

instantiating extension objects, persisting extension objects to session, retrieving them from

session and executing required methods when clients send HTTP requests.

When facade receives the signal to execute an extension, the extension manager is invoked to

actually create the execution context, instantiate an extension, parse parameters and execute it.

Depending on the hook data a unique id, or instance id of the extension is computed and the

extension object is instantiated. It is given the computed unique id, and it then gets registered

by EM and saved to session. This makes it possible to persist objects and their state between

14Redis – in-memory data structure store, https://redis.io/

82

requests, and it makes it possible to identify which object corresponds to which hook between

requests.

After the extension instance is created, the request is parsed by the EM that detects what data,

if any, has been sent to the extension – by user input, by the host application component (or

parent extension), or FAC. That data usually contains information which method (action) the

extension should perform, and an array of arguments for that method.

There are a number of cases that can occur, which are of importance when executing an

extension, and EM’s job is to make sure each case is identified correctly. Correct functioning

of extensions depends on this:

1. An extension is just invoked to render – display what it would by default, and no

special arguments have been detected – no user input, no special settings, and the

extension isn’t being run inside a web form. In our example from section 5.2.5.3, this

would be the case when a page with a gallery extension is rendered – and just a list of

galleries or a single default gallery is shown.

2. An extension has submitted data from the client, whether as a single action, like a

request to show a single gallery photo, or a complete form has been submitted, such

as a gallery has been created and photos uploaded, or edited.

In this case, the submitted data is encrypted inside a single POST, or sometimes GET

request parameter. It is also possible that multiple extensions have submitted data at

the same time, and that will be done in an associative array, or sometimes called

arraylist. Each extension will have its data submitted inside a separate array, reachable

through a key that will be set to the extension’s identifier.

EM will decrypt the submitted data, parse the array and detect which extensions have

been sent some data by that sent identifier of the extension instance. Inside it, there

will be a key “_name” which defines which action of the extension has to be

executed, and the rest of the array will be handed to that particular extension method

as arguments.

3. An extension has been invoked to render in defaultedit action for an existing hook.

This would be a case when a blog component wants to show its form to edit an

existing blog post and also show the extension’s edit controls for the hooked gallery

or galleries.

83

4. An extension has been invoked to render in “defaultedit” action for a non-existing

hook. This is a case when a user is shown a form to create a new blog post. By that

time there is no blog unique identifier to which to hook the gallery to, it is only

known that the extension will be hooked to a blog post that will probably exist in the

future. FAC handles this by recording request sequences and EM helps execute

extensions by providing temporary (stub) hook data that doesn’t exist yet (Illustration

16):

1. Each request that is executed gets a sequential id. It is recorded in each extension

object that is persisted in the session and it will also be rendered inside the

extension web form that is shown to the user, as a hidden field.

2. EM creates a unique hook by providing the request id and the extension id as the

unique identifier for the data that the parent component specified.

3. When a form from step 4.1. is submitted, the host app (or parent extension) will

have to first take care of its own submitted data. In this case, the id of the

extension that has been set by the parent will be of great importance. If the parent

saves that data successfully, it will have to tell the extensions that it invoked that

84

“save” event has been fired. That event will automatically be tied to the previous

request that resulted in form rendering and FAC will be able to tie it to the

extension that was expecting its own data to be submitted as a part of the host

application or parent extension form. This will be the job of EM. It will notify the

extension that it will find by the id given by the parent, provide submitted data,

tell it to perform the “save” action and then it will update the hook so that it

references the actual parent’s data. It will do this by concluding that the request

was a save event, that the parent id for the extension is the same, that hook data

changed – and that previously saved hook data was labeled as a stub.

4. If the form is submitted but the event is “discarded”, the hook created by the

previous request that created the form will be deleted. If the form is never

submitted, FAC will clean up all orphaned stubs. It will find them because it

records a stub hook with additional metadata: the session id in which it was

created and the expire timestamp for that session. If the stub wasn’t submitted and

either saved or discarded by the end of session, it should probably be discarded.

When an extension is hooked to the parent, FAC automatically subscribes it to events for the

hooked data. If the extension has never before been hooked onto the data type that the hook

includes, Extension manager will create that subscription.

Extension manager is also in charge of registering and unregistering extensions. Once an

extension package is installed – a folder created in the extensions subfolder of the framework,

it needs to be registered with the framework before it can be used. This means saving the

extension metadata into the database and subscribing the extension to “saved” and

“discarded” events.

5.3. Limitations

Components can be monolithic or big and can have a significant number of

functionalities. Components might not necessarily be big and monolithic in terms of lines of

code, non-existent sub-modules, or because they are spanning multiple tiers of application

architecture, but in terms of providing more functionality inside a single component

(extension). Since every extension is potentially as big as a self-sustained application,

building applications from application-sized components can be hard, and the size and a well-

85

rounded functionality of a single extension depends on the skill or prudence of the component

designer and developer.

Visually, components built using FAC have a different look and feel than components of

the host application. Conventions would be needed to ensure UI-level uniformity of design

and integration. This has not yet been included in the component model, but another simpler

approach might also be acceptable. Since user interface styling frameworks for the web are

mainly dominated by Bootstrap15 and Material design16, a convention might be put in place,

that requires developers to build main templates using both those two frameworks.

Retrieving aggregated data or reports can be slow without tight integration of

components. Since every component defines its own data structure, database schema, it

communicates data in a generic way through generic interfaces of the FAC.

FAC itself becomes a critical bridge component because it, as a universal adapter, connects

every two components in the system.

Component nesting might be slower than actually handling a tree data structure directly from

a component. Having the ability to nest and recursively use components might leave space for

extension developers to overdo it and hinder performance.

Creating links to parent or child component views, dynamically and statically, is a challenge.

Any form of actual coupling would involve more data traffic between components, than

generic data hooks. This might be of interest if an extension functionality would require that it

notifies the user of some event, and then provide the direct link to the web – the url where it

could render the data. For example, a Comments extension might send an email to the user

when her comment receives new replies. This would both mean child communicating with the

parent and generating a URL that would be host application aware and signal all host

application and FAC extensions correctly to show everything needed to load the right page,

activate the right components in the right way, to activate the right Comments extension, so

that it can show the comment in question. This is a research topic in itself, and is an area that

should be addressed with future research.

15 Bootstrap – world’s most popular front-end component library and responsive design framework

16 Material design – Google’s front-end component library and responsive design framework

86

FAC component model is technology-dependent, if the framework was to be implemented

in Java, it would be possible to develop Java applications and interface with Java host

applications; the same is true for PHP, C#, … This shortcoming could be overcome by

modifying FAC so that it can communicate with extensions and host application over web

services. A single implementation could then work with any other host application, that

doesn’t even have to be on the physical or logical server. This is also a research topic for

future work.

87

6. BUILDING SOFTWARE USING FAC FRAMEWORK

In this chapter a FAC framework prototype is introduced, and a method to build web

application using it is explained. The process follows best practices identified for software

engineering, introduced in chapter 2.1: software requirements definition, software design,

software construction and software testing.

First the requirements are made. For requirements of FAC, component model defined in

section 5 is used. After constructing and evaluating parts of the prototype, and identifying

required shortcomings, changes were made both in the definition of the model and

subsequently the implementation. This correlates to best practices identified in literature. For

example, [3] states that fundamentals of software construction include, among other things,

constructing for verification and expecting change. Even already in 1970, the Royce Waterfall

Model acknowledged that each of the stages of software lifecycles had possible next steps in

both directions – up and down the waterfall. Current agile methods all profess the same

iterative repetitive processes of design, implementation and evaluation and testing [54], [69].

In the first stage of design, the choice of technology which will be used to build the prototype

framework is done. PHP is chosen because it is a solid mature platform, and is the fifth most

popular programming language according to GitHub’s PYPL17.

The choice of PHP also made it possible to integrate FAC with WordPress and Quilt CMS –

WordPress being the most popular web application content management system currently in

the world, while Quilt CMS is a custom made content management system, built at Faculty of

Electrical Engineering and Computing at the University of Zagreb. If the most popular open

source CMS and a custom web application can be integrated with FAC and software can be

built, then FAC model works and it is possible to apply reusability metrics.

In the second stage, folder structure for FAC implementation was made. By creating the

structure, packaging of FAC framework was also solved. The complete folder structure

makes up the package to deploy.

17 The PYPL PopularitY of Programming Language Index is created by analizing how often language tutorials

are searched on Google, http://pypl.github.io/PYPL.html

89

In parallel to packaging, during the same design phase, deployment steps were specified.

Provided integration mappers exist for the host application, deployment steps are:

• Copy the FAC framework to a folder on the web server;

• Create the database for FAC;

• Fill out the configuration Config.php file;

• Set-up the web server to serve the FAC public folder and give it access to the rest of

FAC folders with PHP code;

• Install the host application component that provides FAC integration and reuse.

It is possible to use FAC through a WordPress shortcode, and this is the last and most

important step. Shortcodes are parts of main WordPress components called plugins, defined

by the WordPress component model. WordPress in itself was built as a blogging application,

but through community-contributed plugins became the most popular content management

system in the world, with a list of features (obtainable through plugins) that can hardly be

matched. Integrating and building WordPress is described in more detail later, in section 6.3.1.

6.1. Method for building software using framework as component model

Software built in the previous two sections, using WordPress and Quilt CMS, have gone

through the same standard design and construction phases. Design has been performed on all

the participating software parties – the final required integrated applications, host

applications, FAC implementation and extensions.

90

The high-level overview of the complete process is given on Illustration 17. The process

begins with requirements gathering and definition for the final software product (step 1).

Step 2: Through both functional and non-functional requirements, the design of software can

be made. Components, functionality and data can be designed. During that phase, a host

application should be chosen to provide part of the final software functionality, while the rest

will be done through FAC components.

Step 3: The process goes on with the installation of FAC framework and the host application,

which can be done in parallel.

Step 4: Next, both the native component for the host application, that is built using the host

application component model, and the mappers for the host application in FAC framework

have to be implemented. This step has to be done only once per host application, for example,

once for building software with WordPress and FAC. Every consecutive implementation of

91

software with WordPress and FAC can skip this step. This step is described in more detail in

section 6.1.2.

Step 5: When a working integration of the host application and FAC has been achieved,

extensions that implement the required functionality have to be designed and built. It has to be

noted that implementation of each extension is a project in itself, because it has to be built for

reuse, described in more detail in section 6.1.3.

Step 6: Composition of components is the final step, and the main step in component – based

software engineering is building software by reuse. Components may be composed statically

through FAC configuration, or dynamically, by the end-user through the native host

application integration component.

Step 7: The final step is not really related to building software, but it will usually follow

software construction activities: deployment of the composed application into production.

6.1.1. Design principles application

Design principles should be applied when building software using FAC framework, but the

method introduced in the previous section clearly shows that there are only a few steps when

software design activities occur.

First, design activities will occur when the final software requirements are being collected and

transformed into a specification, a plan how to achieve them – what host application should

be used, what component should be made and how they should be composed.

Additionally, design activities will occur additionally as many times as there are specific

extensions that have to be implemented to achieve the functionality that was planned during

the first, high-level design of the software. For each extension, all the design principles will

also be employed.

Abstraction is the first design activity. Each requirement was divided into components and a

high-level overview was made of components that will be assembled to deliver the required

functionalities. Data that each of those components will manipulate was also abstracted, like

components, photos, galleries etc.

Abstraction, when performed for each of the extensions, will go into detail of how to build the

extension from which sub-components, how to abstract the data etc.

92

Coupling and cohesion of components was considered next. To minimize coupling and keep

the cohesion level as high as possible, FAC component model was chosen for non-native host

application functionality. Cohesion of built extensions can be predicted to be very high since

every extension is feature-complete in its domain.

Coupling and cohesion is evaluated for the internal structure of each of the extensions. How

subcomponent interfaces are used, how subcomponents are cohesive etc.

Decomposition and modularization was done in parallel to coupling and cohesion planning

– the whole of application was divided into submodules, and components, so that parts are

replaceable and reusable as much as possible.

Each extension can surely reuse certain smaller components, for specific domains of use, for

example, file manipulation, graph drawing etc.

Interface and implementation were clearly separated, for non host application

components, simply as a result of the FAC component model. All the extensions have a

uniform interface, through the universal adapter that a FAC framework is, which is a set of

separate components (mappers), from the actual universal adapter that is being used.

This is the only design principle that doesn’t have to be considered for each extension, since

FAC enforces that extensions are used through uniform extension interfaces.

Sufficiency, completeness and primitiveness are enforced through the use of FAC

framework. Components provide only basic data types for each other’s interfaces, such as

strings and integers.

Concerns were clearly separated in the final software implementation. The host application

takes care of session handling, users, and basic web application functionality, with the

addition of handling pages and articles, while separate components (extensions) in FAC

provide all the other functionality, that can be reused even recursively – of which the

components themselves are unaware.

Extension designers do have to take care of separation of concerns, for more complex

extensions, that provide a higher number of functionality, additional subcomponents or

external dedicated components should be used to lower and manage complexity.

93

6.1.2. Integration of FAC and host application

After performing design on the higher level, prerequisites have to be taken so that FAC

extensions work, and so that it is possible to compose the final application. This means that

FAC needs to be integrated with the host application. The only design activities that have to

be performed are related to building the host application component.

To build this component, one has to consider the functional design of the host application, and

the lifecycle of a request in the host application. Those are important because the integration

component needs to receive host application’s events and transfer them to the FAC

framework.

In addition, the integration component needs to be invoked when host application components

are rendering. It is possible to choose the way in which this can be done:

• Directly call exact FAC hooks from host application components for certain

extensions (this will make integration tightly coupled and is the least desirable

solution). This is possible only for white-box host application components;

• Create only named hooks without extension assignments, so that extensions can be

added later statically or dynamically. This doesn’t have to cause tight coupling of

host application components and FAC, because the added hook may be added with a

test if the FAC facade class is known during execution time;

• By the host application core (framework) when host application components have

rendered, and additional processing can be performed upon the host application

component output;

So the first step when integrating FAC with an arbitrary host application is to create a native

host application component that (a) will interface with the FAC framework, the universal

adapter, and invoke hook execution and add the output of extensions where appropriate inside

the host application; and (b) react to host application events and forward them to the FAC

framework.

In the second step, or rather even if there are two developers working on integration of FAC

with a host application, in parallel to the first step, all the mapper components for the host

application have to be built.

94

Since mappers are just classes/components that reside inside FAC framework, this is done by

naming them in the required way and implementing them in the previously specified location

(more on this in section 6.2.2). The classes need to implement interfaces prepared inside FAC

framework, so the work is straightforward. Each of the methods in those interfaces retrieves a

chunk of host application data. What each of the methods should retrieve from the host

application is described in the code documentation in the interfaces’ files and in section 6.2.2,

which makes it a highly repeatable process for different host applications. Although

repeatable, to be able to implement the mappers for a host application, one should be

acquainted with its architecture and functional design.

Finally, the native host application component should be able to initiate the session, if the host

application doesn’t use it.

6.1.3. Building extensions

Building a single extension entails all the steps taken on the higher level of the application,

while designing and afterwards, when building the software. A single extension can be just a

small step in the implementation of the whole software, but from the point of view of the

extension builder, it is a project in itself. In fact, as is mentioned in the introduction of this

thesis, an extension can be considered a whole application in itself. Additionally, an extension

is an application that provides an atomic and functionally complete functionality, unburdened

by the rest of functionality provided by other components inside the application.

A software engineer, the builder of an extension, should keep in mind that each extension is

being built for reuse. Since the component model enforces this, the engineer should just

follow the component model to not tightly couple it with any other extension or host

application functionality. It should be as self-sufficient as possible, with a clearly defined

purpose. Concerns about the problem domain that the extension is solving should completely

be encapsulated inside it, and the data it manipulates should be completely processed within

the extension or one of its sub-components.

The lifecycle of an extension resembles a typical component lifecycle, described in section

3.2 and in Illustration 4 from that section.

95

During the modeling phase, a specification for the extension is built – description of how it

should work, models can be made, and plans and decisions to reuse other extensions as sub-

components can be made.

During implementation / construction phase, a software engineer has to keep in mind that

an extension should be built for reuse. That means, all the usual methods introduced in section

2.1.3, for example most importantly:

• construct for variability through parametrization, but encapsulate that variability;

• write code comments and documentation;

• describe an extension in detail, provide enough metadata and extra-functional

properties description;

Specific to extensions, FAC framework, extension developer should prepare empty named

hooks in logical places in the presentation layer of the extension, so that it is easier to

statically or dynamically configure child extensions in the future and use the extension to

build by reuse in the future. These hooks will then be populated statically by

getStaticComponentBinding configuration property of FAC, or visually by the user.

Once the extension is implemented, it is installed if basic extension metadata is written

(registered) in the FAC database table extensions. Installation to another instance of FAC

framework is possible by copying the folder and adding the metadata to the FAC database.

Error handling of extensions should be well thought-up. An extension should never stop the

host application from running. FAC will try to make sure that this doesn’t happen, but the

extension developer should carefully consider possible error states, and apply most common

fault-tolerance strategies like backing up and retrying, using auxiliary code, replacing an

erroneous value with a phony value that will have a benign effect etc. [3].

Currently, package of an extension is the folder in which it has been developed. The package

consists of all the possible subfolders and code files described in section 5.2.5. To install it

into another instance of FAC framework, one would simply copy the folder into

framework/user folder and write the extension metadata into the FAC database.

96

6.2. FAC framework implementation

To build FAC, standard software engineering process was followed. Requirements of the

software were defined for the model. Then as a part of design process, component definition

was made (chapter 5), alternating with software construction activities. In that way, some

specifics of the model were also found and defined – by implementing and immediately

testing it. By immediately constructing and testing validity of the model, wrong presumptions

were detected early and changes to design could be made immediately, fixing the model and

then immediately fixing the test implementation. This has proven to be the best approach, and

only further confirms findings from previous research, that a framework that is used to build

components is one of crucial parts of component model definition [6], [11].

During the design phase, design patterns and existing components that could be reused were

identified and chosen for implementation. The framework main class, the one which is the

actual universal adapter for any reusing component, is made using a singleton pattern.

Access to it, and every other functionality of the framework, like the events interface, or log is

accessible through the Facade class, which implies the facade pattern was also used. Events

interface also hints at event-based architecture. A factory pattern was chosen for retrieving

instances of mappers and the mediator pattern was employed to design interactions with

actual extensions, through the ExtensionManager class, which is actually a mediator

component for extensions. It was named differently because “managing extensions” sounds

more intuitive.

Extensions must be implemented using the model-view-controller pattern, when the 3-tier

architecture component is built, which doesn’t limit the extension developer from

implementing various architectural patterns and making different design choices for each of

the layers in each of the tiers.

Components that were reused include Smarty templating library, while the main Smarty class

was extended to provide functionality and data specific to FAC. The whoops18 error handler

was used to provide visual debugging aid. Doctrine database abstraction layer and Doctrine

object-relational mapper are also included and can be used if extension developers are more

18 Whoops – a popular error handler for PHP, that formats notices, warnings and errors in a developer-friendly

way, http://filp.github.io/whoops/

97

fluent in a standard database abstraction library like that, then FAC’s own SQLQuery class

doesn’t need to be used.

Composer package manager, a standard modern PHP package manager, is used to install

those third-party components.

Depending on the configuration and requirements of extensions, FAC also requires some

standard PHP libraries that usually need to be installed separately: php-mcrypt to handle

encryption algorithms, required for cross-site forgery protection through request parameters

encryption; standard MySQL, PostgreSQL and sqlite libraries, to connect to those

database systems.

6.2.1. FAC framework root folder and components

The folder structure (defined in section 5.2) of the framework is designed so that only the

public folder is served by the web server, as not to expose any data or code. Other parts of the

framework implementation are separated into other folders and sub-folders. The separate

public folder also makes it possible to easily serve static files, like CSS and JavaScript, while

protecting other assets in inaccessible directories.

The root folder of the framework, contains both files and folders:

• framework – all the core framework code;

• opt folder – components that provide integration with host application, like WordPress

plugins, that are built according to that host application component model, and should

be integrated into it to provide FAC functionality;

• templates_c folder – Smarty’s cache folder for compiled templates;

• user folder – folder intended for extensions and possibly, in the future, other FAC

instance – related components;

• vendor folder – used by composer package manager, to install third-party components;

• readme.md – this file is a common practice, containing all the base important project

metadata, like the author, repository url, description etc.

• index.html – an empty file, created to prevent folder listing by a poorly configured

web server. Files like these are added inside almost all directories, for the same reason.

98

6.2.2. FAC framework folder and components

The framework folder contains all the FAC code, from extension base classes, and FAC

components that execute them, to integration components like mappers, spread out in the

following directories and files:

• lib folder – all the core code, organized into namespaces and classes, that implement

FAC functionality, such as database abstraction, extension base class and extension

handling, mappers for various host applications …

• public folder – folder that is served by the web server, e.g. Apache;

• Config.php class – framework configuration, such as specified special folders,

database access configuration etc.;

• framework.php – FAC bootstrap file that has to be loaded by the host application;

Config.php is a configuration file of FAC. Currently, it is possible to configure the database

access, to which FAC will provide read and write access to extensions. Sqlite, MySQL and

PostgreSQL are supported, and the usual properties required to connect are configurable: the

database, host, database name, tables’ prefix and database password.

It is also possible to configure the encryption key, which is used to protect against cross-site

request forgery (CSRF) – method of embedding encrypted data with every request which can

be decrypted by the server using the secret key, when the form is submitted, thus making sure

that the form that submitted the data was actually one generated by the server in the first

place.

Setting a flag whether FAC should be working in development mode which triggers detailed

errors and stack traces to be rendered in the browser, if an error occurs. It is also possible to

specify 3 log levels – off, production and debug.

It is possible to specify where important folders are located. For example, the user folder

doesn’t need to be in the pre-defined location. Neither does the public storage folder, which

contains files created by extensions, that should be publicly available, or the private storage

folder, which contains files created by extensions, but need authorization checks by

extensions before they are downloaded.

99

All of FAC and extensions’ session data is saved inside a single session variable, which is

named in the Config.php file.

Config.php also makes it possible to define default extension composition and default host

application content type composition. For example, when building software with a host

application and FAC, one might want to assemble everything in advance, so that certain

extensions are always run for certain host application content types (usually that translates to

host application components), and also that hooks inside extensions invoke other extensions

by default.

Enforcing loose coupling for hooks, through generic hooks, as defined by the component

model in section 5.2.3, is possible through configuration. In the future, FAC hooks might

provide functionality for the user to choose which extensions a generic hook should run, but

currently this can be done by the programmer while integrating FAC with the host application.

The getStaticComponentBinding property defines an associative array that defines which

extensions should always run for hooks that expose a certain data type. For example, for every

hook that receives the data type Post, a Comments extension should run. Additionally, since

hooks can have ids set, that make it possible for a single parent component to have multiple

extensions of the same type that is hooked to different data, and shows different data

(introduced in section 5.2.3), it is possible to specify those ‘named’ hooks in the

configuration. This makes it easier to create a more detailed, and more finely controlled

integration with the host application. The process of which is described later, along with

examples of defined getStaticComponentBinding properties, in chapter 6.

Finally, the name of the host application can be set in configuration, and depending on the

name, FAC will search for corresponding mappers to use when executing.

The index.html file inside the root folder is empty, added to prevent folder listing by a poorly

configured web server.

Public folder is meant for public web server access. It may, for example, contain a subfolder

named storage – which extensions are allowed to write to, if they need to store files that are

publicly available. There is just one file of note inside it, called ext.php. This is a FAC XHR19

19XmlHTTPRequest – used to asynchronously transfer data between the web server and web browser, without

reloading the whole page, https://en.wikipedia.org/wiki/XMLHttpRequest

100

endpoint, that responds to requests sent by extensions. All XHR requests also need to contain

valid CSRF tokens, that is, ext.php is an API endpoint of FAC.

All the core functionality of the framework is in the lib folder, which in the future might get

more children folder, but for now everything resides in the subfolder named core. It contains

namespace folders which in turn contain classes or namespace folder hierarchies respectively.

6.2.2.1.The framework/lib/core folder

FAC’s classloader, or sometimes in PHP world called autoloader resides inside the

autoload.function.php of the core folder. It will know how to find a class and load it when

some module tries to use it, in any of the FAC framework’s namespaces, or if it is a part of

any of the components that were installed through Composer. FAC classloader first tries to

find the class inside FAC, and if that fails, searches for it using a composer-generated

classloader. If that fails, an error will occur.

Classes subfolder

Main framework classes reside in the classes subfolder of core, and their namespace is

implied to be Fw. Every other subfolder of core implies a sub-namespace of Fw. For example,

folder ..core/Mappers will contain classes in the Fw\Mappers namespace.

Classes subfolder contains the singleton Framework class – the universal adapter that gets

instantiated once per request. It is through that class that each extension execution is executed.

Previously introduced framework.php file’s mission is to actually load up everything and

create the singleton instance of Framework. Once that is done, the framework is bootstrapped.

Both Extension and ExtensionManager classes, introduced in section 5.2.5., are

implemented and stored in this folder. The custom ExtException exception class is also

implemented and stored here, all easily reachable as main parts of FAC framework.

Log is a simple class, implementing FAC framework logging functionalities, depending on

configured log level, outputs log or debug messages into configured output.

Facade classes also reside here in the Facade subfolder, for now only the Fw class, that has

multiple functionalities: initializing the main Framework singleton instance, executing

extensions, retrieving correct mappers instances for the current host application, and receiving

events emitted from host application or parent component / extension.

101

Db subfolder

This folder is intended to contain all the database abstraction classes for FAC framework. It

currently provides a base abstract class called DBConnection. It serves as a template for each

of the classes that implement support for each of the databases: Sqlite, MySQL and

PostgreSQL, through SqliteConnection, MySQLConnection and PgSQLConnection

classes. This is also the folder where one would, in the future, implement any additional

integration with a database abstraction or provider libraries, and expose it to the rest of FAC

and extensions, to use. Currently, only additional integration with Doctrine. Although simple

and with limited support, it is there as a template, inside the DoctrineDBALConnection

class.

Finally, this folder also contains the SQLQuery class, the simple class to execute queries and

fetch results through any of the connection classes. SQLQuery will use a corresponding

connection class, depending on which database is configured in Config.php file.

Events subfolder

Support for events in FAC is implemented through classes in this folder. Both extensions and

host applications use these classes, through the Facade.

Base Event class resides in this folder. As is convention in event-based architectures, events

should have names and are usually named through class names. This is also the case for FAC,

and default events that happen on hooks are called through class names ContentCreated,

ContendDeleted and ContentChanged, located in the content subfolder.

The event class is also a representation of the entity that FAC will write to the database before

it starts dispatching it to all the listeners. Depending on the class name that extends the base

Event class, name will be written.

Every extension should implement the IEventListener interface. FAC will expect that it

exists so that it can uniformly notify extensions of events.

EventManager, is the FAC’s event broker. It is the class that takes care of noting new event

subscriptions to the database, handling fired events (writing them to the database, then

marking them as processed when all listeners have consumed events), and also subscribing

listeners to events. ExtensionManager helps in one part, when an extension gets connected to

102

a hook, it tells the EventManager to make sure that the extension will receive any future

events that happen upon data of type specified in the hook.

Future work might include creating a new type of events that can be processed

asynchronously.

Mappers subfolder

In this folder interfaces that a mapper for any host application must support are defined:

IConfigurationMapper, IContextMapper, IPermissionMapper and IUserDataMapper.

Each of those interfaces is accompanied by a factory class inside the Factory folder:

ConfigurationMapperFactory, ContextMapperFactory, PermissionMapperFactory and

UserDataMapperFactory, each of them responsible to instantiate the correct mapper for the

configured host application. This way, none of the components using the mapper don’t need to

know which is the actual type of the mapper they are using.

And finally, other subfolders in mappers should be named after each of the host applications

that are supported, matching the mapper namespace name. That means that it is expected that

in case of future use of FAC, the number of folders might grow. Currently, there are mappers

implemented for WordPress and Quilt2.

Smarty subfolder

Custom FAC Smarty class is implemented here. It extends the default Smarty class, and by

default, on instantiation, sets-up the object so that it looks for Smarty plugins in the

fw_plugins folder, looks for templates in the extension’s templates folder for which it was

created, and sets-up some of the variables each extension template must have when it is

processed. Examples of these variables are language resources, the title and data that the

controller (extension object) assigned to the template.

Smarty plugins which make FAC tick, inside fw_plugins folder are:

• block.ext_form – renders form open and close tags, it expects arguments through

which it tells FAC which controller action to call with submitted data. It also adds a

CSRF token to be submitted with the form;

• function.ext_action – renders a link that, when clicked, runs a specific controller

action of the controller;

103

• function.ext_actionpost – renders a link that does the same thing as the former, only

through a hidden form, using POST method;

• function.ext_async_action – renders a link that submits a XHR on click, and invokes

specified controller action, invokes a specified javascript function on XHR response;

• function.ext_form_async_submit – like the former, but it submits the whole form in

which it is placed;

• function.ext – provides extensions with a simple way of invoking the plugin, in the

background it creates a hook using provided arguments.

UniqueID subfolder

For each hook a UniqueID object is created and saved to the database. Those objects are

represented by the UniqueID class, that makes sure that for each hook data a new object is

created, or an existing one is retrieved from the database.

Each content type that a hook gets will also be enumerated into the database. This is the task

of the ContentManager class. It also serves as a mediator between UniqueID objects and

extension objects. Enumerated content types are also of use to the event manager, that

UniqueIDException and ContentTypeUnqnownException classes are also present in the

folder, each representing an error state that may happen in the application.

Util subfolder

Purpose of the util subfolder is to provide common utilities and services to extensions, for

example file uploads or image manipulation. Accordingly, currently only Image and

FileUploadHelper classes exit.

6.3. Building software using FAC framework

Building software always starts with a need that is turned into a software requirements

definition. In real-world scenarios requirements definition is done in detail, through definition

of user stories and business analysis. A simple outline has been defined for the sake of this

example:

1. Users need to be able to log-into the application;

2. Users need to be able to create web pages and publish text and multimedia content;

104

3. Users need to be able to publish news articles;

4. It should be possible, for every news article:

4.1. To attach a photo gallery to it;

4.1.1. It should be possible to comment to a gallery and / or photo;

4.1.2. It should be possible to comment on comments;

4.1.3. It should be possible to like a gallery or photo;

4.2. It should be possible to like a news article;

5. Multiple permission levels for users should be available;

5.1. Some users should be able to publish, edit and delete their own content;

5.2. Some users should be able to publish, edit and delete their content and other

users’ content;

5.3. Some users should be able to only suggest content for publishing, and wait

until a user with greater permission publishes it.

As part of requirements definition and analysis, software that can be reused must be

identified. From analysis of requirements 1 through 3, it is possible to conclude that

WordPress is a good choice to base the solution on.

6.3.1. Building software using FAC framework and WordPress

WordPress may also solve 4.1, but not the rest of 4.1.x sub-items. Both 4.2 and 4.3 aren’t

possible with WordPress, but all the items under requirement 5. are. There are at least two

options to solve perceived deficiencies, in terms of satisfying stated requirements.

The first possible solution might be to modify WordPress core, and add missing

functionalities from 4.1.x, 4.2, although some part of it probably could be solved through

plugins, so plugins could be developed or installed. By developing plugins, components that

can only be used by WordPress are created. In addition, there is repeating functionality that

should be applied to articles, comments, galleries and photos in galleries – commenting,

assigning licenses and liking.

105

If similar requirements emerge in another system, components built will not be readily

reusable, especially if it’s not a WordPress based system. Or, if at some point a sort of product

catalog is needed, that users should be able to comment and like products, it would have to

couple comments and like components with the new cart and catalog. Comments and likes

would be modified to interface with products, or a separate WordPress component would be

built to mediate between plugins.

The second solution, is to use WordPress functionality and use FAC framework to create

extensions to achieve the rest of stated requirements. After extensions are implemented, a

generic add-on functionality will be available that can be used in other instances of

WordPress, with other components, or with other host applications.

The like button extension should be attachable to the parent component, and it should enable

the user to like the parent component’s content. It should also count the number of users that

have clicked the like button for that content, and show the counter. To do that, it should

remember every single user that clicked it, because a user can only like content once, whether

it is an article, a photo or a gallery. The user should always see if she clicked the like button,

and the overall count of likes.

The comments extension should allow users to write comments to content the extension is

hooked to. It should be possible to write an infinite number of comments and for each one of

them, it should be possible to like it, and to write comments to the comment. This way

comments would work in a hierarchical way, as threads with sub-threads. For each published

comment, the author of the comment should be shown, at least using their name and a link to

author URL.

The gallery extension should allow users to create a photo gallery with a title, an infinite

number of photos, each with its own title. The gallery should be attachable to the parent

component. It should be possible to like it and to comment it, as well as any of its photos.

6.3.1.1.FAC extension HelloWorld component structure

To show how extensions are built using FAC framework, a HelloWorld extension

implementation is analyzed. The implementation of HelloWorld extension resembles to how

the Quilt CMS HelloWorld portlet component is built, introduced in section 3.6.2.

106

As previously explained in section 5.2.5, a folder for the extension must be made, with the

name of the extension namespace, inside a folder where it will be found by the framework. It

consists of code files for the same purpose, and is similarly structured. The main difference is

that FAC translation files are JSON, while Quilt uses PHP files to define arrays with

translation strings.

The extension folder may contain model classes inside a src folder, user interface definitions

inside a templates folder, language translations inside lang folder as well as JavaScript and

CSS inside js and css folders.

Software engineer that is building an extension shouldn’t have to care about routing, because

it will be taken care of by the framework itself.

Routing is taken care of by FAC, thus a component builder isn’t required to write route

definitions.

In the extensions folder “HelloWorld”, a HelloWorld.php file containing the main extension

file with HelloWorld class that extends the base extension class Extension was made:

<?php namespace HelloWorld;
class HelloWorld extends Extension
{
 public function defaultAction($input) { $this→setTemplate("hello.tpl");
}}

When the extension is executed, FAC will invoke the defautlAction method, which will set-up

the template templates/hello.tpl for rendering, containing only the invocation to render a

Smarty variable hello:

{ $lc.hello }

This will in turn cause loading of a language string from the language JSON file en_US.UTF-

8.json:

{ "hello": "Hello world!" }

Since FAC requires a host application, upon successful integration, for example with

WordPress, to activate the Hello world extension, an engineer could write the static

component composition as explained in section 6.3.1, or use the shortcode in a post content,

or content of a page in WordPress:

107

[extension name="HelloWorld\\HelloWorld"]

6.3.1.2.WordPress theme

Many functionalities, when building custom software using WordPress, are implemented

through the theme, and the functions.php file that is a part of it. A theme is not just the design

theme, but rather an integration component of sorts. One could observe a WordPress theme as

a mediator component. It defines how WordPress components will render, and basic additions

to the definition of how they behave can be done too. This makes it possible to, for each

WordPress component that renders, add some more processing, attach some custom

components, or modify WordPress component’s output before rendering it. For example, a

theme will define how a WordPress Page renders, where the metadata about the page,

comments and other default sub-components will render. For those reasons, custom

WordPress applications almost exclusively entail custom themes. Or rather, most WordPress

implementations start with theme implementation.

This is also our first possible choice to start implementation of FAC – WordPress application

implementation. This would make it possible to specify exactly where hooks would be placed

for WordPress pages and posts. In addition, hooks could be named through hook ids.

Each hook id will get prepended by the framework, by adding the name of the content that is

given to the hook during run-time and the id of that content. In the end, if the component

calling the hook specified content type as post, the id of the post 12 and the hook id

comments, the hook’s id will be computed and internally look like: post12comments.

This would make sure that for each post all the three hooks are unique, and it would be

possible to attach a different gallery extension to each of those. This would also allow control

where in the structure of a rendered post the extension appears, through placement in the

theme templates. Having hook ids makes it easy to write the getStaticComponentBinding

property for the FAC framework instance integrated with WordPress. For example, if array

keys are defined as named hook ids:

‘comments’ => ‘Phd\Comments’,
‘like’ => ‘Phd\Like’,
‘gallery’ => ‘Phd\Gallery’

This means, for each hook with given id of comments, hook up and execute the Phd\

Comments extension, for hook with given id of like, hook up and execute Phd\Like etc.

108

Static component binding can be done in even more detailed way. We can specify the parent

content type name, along with the extension, or extensions, which to hook up onto such a

hook. For example:

‘post?comments’ => ‘Phd\Comments’

would define that for each hook with given id of comments, that gets the content type of post,

FAC should execute the Phd\Comments extension. The ‘?’ character will be replaced by the id

of the content given to the hook.

6.3.1.3.WordPress plugin

To extend WordPress functionality the ideal solution would be to allow the developer, or user,

to invoke the FAC anywhere in the WordPress code, in theme template or by the end-user

while writing content in the user interface. To achieve this, a WordPress modularity default

entity, a plugin, has to be built. The plugin will then interface with FAC. A plugin can add

functionality to both WordPress frontend and backend. Plugins are capable of extending

functionality without any custom code being added to the WordPress theme, which makes

coupling lower.

So, an ideal solution to build software with FAC and WordPress in terms of customizability

where exactly extensions appear in the view, would be building both the theme and enabling

the plugin. But a more generic and decoupled way can be achieved by using only the plugin,

so this is the approach taken.

For production purposes, a comprehensive WordPress plugin that would allow the user to

dynamically manage, in a visual way, what extensions are hooked onto content may be built.

This functionality might extend the default article editor view in the WordPress backend.

Since this isn’t important to the definition of the method for building software using FAC, it

will be left for future work.

The implementation of the FAC WordPress plugin is simple, and it invokes FAC

automatically for each page or article (post), when the plugin is activated in WordPress. The

plugin will deduce if a page or a blog post is being rendered, and assign appropriate hook data

to a facade call. This is just an implicit version of writing the real facade function ourselves,

somewhere in the theme template, for example for a HelloWorld extension, the plugin would

execute:

109

ExtFw\Facade\Fw::executeExtension(
"HelloWorld\HelloWorld",
get_post_type(),
get_the_ID(),
array("param1"=>"This is an additional extension parameter!!")
);

The implemented plugin makes it possible for the user to add additional extensions to content,

by invoking FAC when writing content in WordPress backend. For example when writing a

blog post. This functionality is provided by plugin functionality called shortcode.

Shortcodes are functions that can be invoked from within the content by end-users. For the

FAC plugin, the extension shortcode was named extension. It will be executed if the user

writes “[extension name="HelloWorld\\HelloWorld" type="post" content_id=”1” id="?

_custom_1"]” anywhere in the body of a WordPress page or article. In the background, when

processing the request, FAC WordPress plugin will invoke the facade method ExtFw\

Facade::executeExtension ($extensionName, $contentName, $contentUniqueIdentifier,

$hookId), where for our example $extensionName is the class of the extension to use –

HelloWorld\\HelloWorld; $contentName is post (invoking the extension from the post

content); and $contentUniqueIdentifier is a number – 1. The id of the hook that will be

computed is, as previously defined, computed from the given id: “?_custom_1”; and the

content unique id, also provided: 1. So, the id of the hook would then be “1_custom_1”.

The user can actually write whatever she wants. If arguments type and id are omitted, then

FAC plugin will detect post or page, and assign the id, but this would equalize the hook

created in the content with the one automatically run by the plugin when the post is rendered,

but that is up to the user to decide. The hook id has to be specified, as our component model

defines it, the hook id is the unique identifier of the component that will be executed.

All extensions can be reused in the exact same, uniform way – automatically for pages and

articles, or they can be added through the content.

It is important to note that, when the user employs a shortcode to run an extension, it actually

exposes and uses one of the most important FAC component models properties – runtime

assembly. The two components will be assembled during runtime, into a composite

component, while the system is rendering an article or page.

110

The plugin also knows how to interpret data from the FAC configuration, and depending on

the value of the getStaticComponentBinding property, assemble default extensions for content

types.

Event reactivity of FAC WordPress plugin

The most important FAC plugin functionality is reacting to events that happen in WordPress.

Some of them will trigger execution of extensions, and some have to be transmitted to FAC

for further processing. Every WordPress plugin can define which actions (WordPress

equivalent events) are of interest, and specify which plugin function should be called when

the event occurs.

To ensure correct event reactivity of FAC and extensions, FAC WordPress plugin will receive

to the following actions:

• admin_notices – a plugin function will be called extFwActivated will greet the user

when she visits WordPress back-end, at the top of the screen, where notices are

expected to render;

• init – plugin function extFwHookToPostOrPage will be called, is used to process

GET or POST parameters sent by extensions. This function will call the FAC Facade

to process the request;

• wp_loaded – plugin function extFwInit will be called, to bootstrap FAC, after

WordPress has been bootstrapped, and all data is ready for mappers to transmit to the

framework, when needed;

• the_post – plugin function extFwHookToPost will be called when a post or page has

been loaded. This makes it possible to execute extensions when a single post or a page

is rendered;

• delete_post – plugin function extDeleteEvents will be called, when a post or page is

deleted, so that deleted event can be transmitted to FAC and extensions;

• save_post – plugin function extSaveAndUpdateEvents will be called when a post or

page form in backend has been submitted and saved, so that the event can be

transmitted to FAC and extensions.

111

Actions either directly invoke processing of extensions, or transmit the events that occurred to

the FAC framework Event broker, that forwards it down the component tree to interested

extensions.

6.3.1.4.Implementing WordPress mappers

Extensions won’t run before WordPress’ execution context is integrated with FAC. All the

FAC context mappers need to be built before extensions can work. Functionality introduced in

section 5.2.4 on mappers and integration components define two additional integration

components – database access and the event broker. Both concerns have been already

mitigated, because database access is provided when FAC is configured correctly, and event

mediation or brokerage has been implemented through the WordPress plugin.

PermissionMapper

WordPress distinguishes between the following permission levels [25]:

• registered / logged-in users called “subscribers”;

• contributors, users that can write and manage their own posts or content, but cannot

publish it, they need approval from authors;

• authors, that have all the permissions that contributors do, but can also independently

publish blog posts or content;

• editors, have all permissions that authors do, but can additionally publish and edit

posts of other users;

• administrators, who can access all the administrative features within a single site, like

managing other users, apply site-wide settings etc.,

• and super administrators, that are able to manage the whole WordPress installation in

a “site network” - a specially configured WordPress instance that can run multiple

sites with individual users, domain, plugins etc.

A permission mapper for WordPress is created in the FAC folder structure where it searches

for mappers: framework/lib/core/Mappers/WordPress folder. The file is called

PermissionMapper and it implements the IPermissionMapper interface. Both FAC

permission levels and the PermissionMapper have been introduced in section 5.2.4.4.

112

WordPress – FAC permission mapping that has been implemented is explained through data

in table 1.

Table 1: WordPress to FAC permission mapping

WordPress

permission level

Mapped to

FAC permission

level

Explanation of mapping

Subscriber Read Subscribers can only manage their profiles

and view application pages, which

corresponds to read permissions.

Contributor Write Contributors can write content in

WordPress, but cannot publish it themselves,

which corresponds to write permission level

in FAC.

Author Author Authors in WordPress are allowed

publishing their own content, the same is

true for FAC.

Editor Editor Editors in WordPress are exactly what

editors are in FAC, so this is an obvious

mapping.

Admin Admin Administrators can change site-wide

settings.

Super admin Godlike Super admins have all the privileges for the

whole WordPress instance.

Implementation of WordPress ContextMapper is a relatively simple one. All the methods of

the IContextMapper interface have been connected directly to WordPress helper function that

provide the exact same data.

WordPress doesn’t handle the session in a specific way, so ContextMapper’s sessionGet and

sessionSet methods perform data operations directly on PHP’s $_SESSION object.

113

UserDataMapper

User data mapper has been implemented so that it takes advantage of the WP_user class.

When an instance of UserDataMapper is created, it retrieves the instance of the current

WordPress user by calling the wp_get_current_user WordPress function. That object is

assigned an instance variable of the mapper, called currentWordPressUser, so that it can

mediate all the calls made to the mapper, to the actual embedded instance of WP_user object.

For example, mapper’s getUserPhotoEmail returns the value of the email property of the

WordPress user’s object.

There are a few other mapper methods that forward the calls to other WordPress functions,

such as getProfileUrl, or getUserPhotoUrl. A complete list of mapper methods and returned

values from WordPress is listed in table 2.

Table 2: WordPress to FAC UserDataMapper – mapping list

Mapper method Retrieves WordPress data through

getUserLoginName $this→currentWordPressUser→login_name

getUserDisplayName $this→currentWordPressUser→display_name

getUserFirstName $this→currentWordPressUser→first_name

getUserLastName $this→currentWordPressUser→last_name

getUserEmail $this→currentWordPressUser→user_email

getUserPhotoUrl get_avatar_url($this->currentWordPressUser→user_email)

getTitlePrefix “”

getTitleSuffix “”

getProfileUrl get_author_posts_url($this->currentWordPressUser->ID);

getProfileEditUrl get_edit_user_link()

Since WordPress by default doesn’t include titles for users, empty strings are returned. Title

fields could easily be added through plugins or a theme functions file, but that is not for FAC

to handle, and is out of scope of this mapper.

114

ConfigurationMapper

Mapping configuration is relatively short work, since ConfigurationMapper doesn’t have all

that much work. Configuration keys shouldn’t be referenced by name directly, as explained

earlier in section 5.2.4.5, since that would cause tight coupling. Access to configuration keys

by key name is made possible, saving those too, but it only reads and saves them to/from

session, so those are temporary values.

Debug value is read from WordPress constant WP_DEBUG, and blog and site network home

addresses are mapped through mapper’s getHomeAddress and getInstanceHomeAddress

methods.

6.3.1.5.Composing software

After the WordPress (the host application) plugin and mappers have been built, FAC and

WordPress are integrated, extensions can be used to implement functionality that will be

delivered to the user by WordPress.

Once the above steps are completed, it isn’t necessary to repeat for any subsequent WordPress

– FAC implementation. Instead, only the evaluation of existing extensions should be

performed, whether extensions that provide required functionality exist. If not, design and

construction activities should be performed to produce them.

In the case of example implementation described in previous sections, component

composition and hierarchy should be specified before software is ready to run. For each post,

the gallery, content liking and comments extensions must run. For each comment, content

liking and comments should run, and for the gallery both comments and liking should run.

Compose are composed through FAC Config.php file. This will keep them loosely coupled,

while providing required component composition. Since a custom theme wasn’t built, and or

custom hook ids defined, default extensions to specific WordPress data types will be assigned,

and extensions will hook onto default hooks in used extensions.

Lastly, to make sure there aren’t two different components providing commenting, built-in

comments in WordPress should be disabled. This way it is possible to reuse the FAC

comments extension and have all commenting in the resulting application appear uniform and

115

using the just one component. Composition of components, and in fact composing the

application functionality then comes to writing a simple few lines of code:

'content' => [
 'post' => ['Phd\Like', 'Phd\Gallery', 'Phd\Comments'],
 'page' => ['Phd\Like', 'Phd\Gallery', 'Phd\Comments']
],
'extensions' => [
 'Phd\Comments' => ['Phd\Like', 'Phd\Comments'],
 'Phd\Gallery.gallery'=> ['Phd\Like', 'Phd\Comments'],
 'Phd\Gallery.photo' => ['Phd\Like', 'Phd\Comments']
],

On the left side the name of content type is specified, to which extensions in the array on the

right side will be executed. This will attach extensions after the output of the post or page

components, ant to the default generic hook inside the extensions.

The same works for extension class names on the left, then by specifying extensions on the

right.

Another convention defined by FAC can be seen from the code – names of content are

equalized to full extension namespace and class name, and for host applications, names of

content are concatenated from a short abbreviation of the name of the host application and the

content name, for example Wp.post represents a WordPress post content type.

An example of what the end result of execution of the WordPress as host application and FAC

framework integration with extensions Comments and Content like is visible on illustration

18.

116

A sample HelloWorld post that gets installed with every WordPress instance is shown, with

two extensions attached to it: Content like and Comments. Some other user liked the post, so

the current user has a “Like” button available.

117

Below that, a Comments extension is showing its title “Comments extension!”. There are two

comments entered for the post, by the user Svebor, and there is a text area visible that is a part

of the extension.

6.3.2. Building with Quilt CMS

Software is built to satisfy requirements defined at the beginning of section 6.3, but using

Quilt CMS as the host application. The same extensions used in the previous section, to built

software with WordPress are used.

Quilt is capable of publishing news articles and pages with static content through its News and

Content portlets. Only integration of the FAC framework and Quilt should be done. After that,

host application and extensions are composed in a similar way as with WordPress.

Portlets are main components that provide user-oriented functionality inside Quilt CMS.

Portlets’ structure strongly resembles extensions’ structure. A class that is the center of a

portlet, extends a base class and serves as a controller. The view is built using Smarty

templates, and models and data access is provided by the separate layers in Quilt.

6.3.2.1.Implementing hooks

Quilt’s framework uses Smarty plugins to provide common functionalities for views just like

FAC framework does.

One possible implementation of hooks towards FAC would be a Smarty plugin that any Quilt

component can invoke anywhere in the view, that would automatically provide the name of

the parent component (News or Content), but would require the developer to modify

templates of those components to actually include the call to the hook Smarty plugin. This

would work, but would require the actual reusing component’s view to be changed, which

would tightly couple that component to FAC.

Quilt themes also make it possible, similar as WordPress themes do, to provide the system

with a template that would be used to render certain portlets in place of default templates

packaged with them. This would decouple FAC and components that are reusing extensions,

but would require copying all the templates of the each of portlets’ views that should show

extensions.

118

A more generic approach, similar to WordPress’, based on events would be more suitable and

would provide for a more decoupled integration. This has to be done because the current

architecture of Quilt is lacking. Quilt core should be upgraded so that it fires events when a

certain portlet has rendered, so that other components may act upon the rendered view, but

that would also have to be analyzed in more detail, since there are no conventions for generic

view names (defaultEdit, defaultAction...), such as FAC has, and it wouldn’t be possible to

decide if the view being shown is an editing view or a data display view. Since this isn’t the

focus of our implementation, and our exercise is to implement applications as-is, the former

approach has been chosen, but foundations to mitigating this architectural flaw have been set,

in the following section 6.3.2.2.

So, the end result is a Smarty plugin that has to be invoked with an id of the content that the

portlet is showing, and the information whether the extension is to be rendered inside a form.

An example call to the plugin, from the News portlet would then be:

{extfw name=”Comments” id=$news.id content_name=”news_article” form=false};

and from the Content portlet:

{extfw name=”Comments” id=$content.id content_name=”content” form=false}

For our Quilt implementation, configuration of statically binding components through

configuration would look like:

'content' => [
 'news_article' => ['Phd\Like', 'Phd\Gallery', 'Phd\Comments'],
 'content' => ['Phd\Like', 'Phd\Gallery', 'Phd\Comments']
],
'extensions' => [
 'Phd\Comments' => ['Phd\Like', 'Phd\Comments'],
 'Phd\Gallery.gallery'=> ['Phd\Like', 'Phd\Comments'],
 'Phd\Gallery.photo' => ['Phd\Like', 'Phd\Comments']
],

6.3.2.2.Data change events

Data change events are another issue with Quilt integration, because just like for application

events described in the previous section, there is no systemic event management for data

events either. Since this is an issue that has to be solved, because the alternative is leaving

119

data that FAC saves to pile up, or loose integrity, required changes need to be built into

portlets that participate in this integration.

The simplest solution is to modify each Quilt component, so that it notifies FAC directly

when any CRUD operation is performed, but this would tightly couple components to FAC.

A separate component that periodically checks whether portlets’ data has been changed in any

way is thus built. This is done by attaching triggers in the database, directly to the tables of

Content and News portlets. The trigger then writes the events that have occurred to a database

table that is periodically checked. This component was called EventBroker, and it is an add-

on utility class for Quilt.

Quilt’s event broker uses Quilt scheduled jobs functionality called QuiltCron, that executes

certain tasks in intervals, defined by cron20-like syntax. EventBroker only has one static

method that checks the database table event_broker_events for events that the database

triggers have written. It then checks the database table event_broker_listeners, that the

architect of the system should fill, that contains a list of listeners that should be invoked for

any type of event. Example entries in the event_broker_events are shown in table 3, while

example listeners are shown in table 4.

Table 3: Events

Event Time of event Event data Dispatched

News.edited 2019-11-07 18:54:50.246066+01 [the row data] false

News.deleted 2019-11-07 18:54:50.246066+01 [the row data] true

The trigger will fill the table with the name of the table in which the event occurred followed

by a dot and the name of the event (deleted, updated, insert …). It will record the time, the

actual row that was deleted, changed or inserted, set dispatched to false.

Table 4: Event listeners

Event Listener class Listener method

20 Cron, software utility cron is a time-based job scheduler in Unix-like computer operating systems,

https://en.wikipedia.org/wiki/Cron

120

ExtFwNotifier onEvent

News.deleted Portlet_News

In table 4, there are entries in the first column with the event name. If left empty, any event

will be delivered to the listener. If the listener method is left empty, the event will be delivered

to the default onEvent method. When an event is delivered to all the listeners, the row of the

event in the event_broker_events table is set to true.

The ExtFwNotifier listener listed in table 4 is a class, built as a part of FAC integration layer

inside Quilt. It’s an add-on utility class. It’s purpose is to transfer events that occur inside

Quilt, to FAC’s event manager. It is listening to all events. It translates the types of events to

those FAC will understand, and transfers everything to FAC event manager. FAC will then

make sense of what should be delivered, and if, to which components.

Two Quilt components were built to enable communication from the host application towards

FAC: the hook Smarty plugin, and the event listener that will transfer events to FAC. This is

very similar to the WordPress implementation, where the same concerns were mitigated by

implementing multiple functions through a plugin. The difference here being, the Smarty

plugin and the event listener being in two separate code files, or rather utility components.

6.3.2.3.Implementing Quilt mappers

Quilt execution environment and contextual execution data has to be translated to FAC, same

as with context mappers for WordPress.

Permission mapper

There is one less permission level for users in Quilt, compared to FAC or WordPress:

• Read – users are allowed to see a certain resource, for example a page with blog posts,

photo galleries or some other content module. Users are not allowed to contribute,

comment or otherwise influence the content.

• Write – users can write a limited amount of data, that cannot directly modify the

original content on the website, for example, users can star or “like” a blog post, write

121

comments to a published blog post or at most might be able to suggest some content

for publishing, similar to contributors in WordPress.

• Author – users can independently publish new content on a specific web page, but

cannot choose what that content is. For example, if an administrator configured a

certain page to serve as a blog roll, then the user can just add blog posts using that

active module.

• Admin – users can independently change the structure of a site, add pages, add

modules to pages and publish content through those modules. Admin users can also

specify which permission level is required to view a certain page and assign additional

permissions to users or user groups for those pages.

• Godlike – administrator users that can access every setting for that instance of the

application.

This means that one additional permission level from FAC be defined to a corresponding

permission level in Quilt. It has been pragmatically assigned to the lower permission level,

rather that the higher one. Mapping from Quilt to FAC, with description of Quilt permission

levels is given in table 5:

Table 5: Quilt to FAC permission mapping

Host application

permission level

Mapped to

FAC permission

level

Explanation of mapping

Read Read Read permissions in Quilt are corresponding

directly to Read permissions in FAC – users

are allowed to see content.

Write Write Write permissions in Quilt provide users

with the ability to create content, but cannot

publish it themselves.

Or, users can contribute to published content

indirectly – such as comment on it, like it

122

etc.

This corresponds to the Write permissions

level in FAC.

Authors Author Authors in both FAC and Quilt are allowed

to publish their own content.

Admin Editor Editors in FAC are what Admins are in Quilt

– being able to edit other users’ content.

Admin Admin Administrators in Quilt can change site-wide

settings, and change structure of the site or

page.

This will also map to Admin permissions in

FAC – which means a user can change

settings or assign sub-components.

Super admin Godlike Super admins have all the privileges in both

Quilt and FAC.

ContextMapper

All the methods of the IContextMaper interface redirect to directly calls of Quilt’s functions

or access Quilt’s global data variables, containing the data in question.

There is no specific way to handle the session in Quilt, so ContextMapper’s sessionGet and

sessionSet methods perform data operations directly on PHP’s $_SESSION object.

UserDataMapper

User data mapper has been implemented so that it retrieves the current user using the Quilt’s

UserFactory class. This will retrieve the object that will be of type of the current user, saved

in a protected instance variable, called currentQuiltUser, and will provide all the required data

that IUserDataMapper interface defines.

123

Each of the mapper methods forwards the call to a getter of the Quilt’s user object, for

example, getUserFirstName mapper method is forwarded to getFirstName getter of the

object.

There are a mapper methods that may forward calls to other Quilt objects or ones that will

perform more data processing before actually being able to retrieve the data, such as

getProfileUrl. This method first tests that the Quilt’s user object contains the method

getUserProfileUrl. If it does, then the argument has to be provided – the id of the Quilt’s

language for which to retrieve the URL. This will first be done through the ContextMapper,

and then handed off to getUserProfileUrl. If a corresponding language isn’t found, then the

default will be used (no arguments will be supplied). If the Quilt’s method doesn’t return any

value, mapper will return null.

Lastly, getTitlePrefix and getTitleSuffix perform object retrieval by using Quilt’s

Portlet_Portfolio class, through its static method getPerson. Method will retrieve raw data

about the user, and within it, title prefix and title suffix can be found as keys within an

associative array.

ConfigurationMapper

Mapping configuration was easy for WordPress, and is also easy for Quilt. Configuration keys

shouldn’t be referenced by name directly, as explained earlier in section 5.2.4.5, since that

would cause tight coupling. Access to configuration keys by key name is made possible, and

saving by name is possible too, but the ConfigurationMapper will only read and save them to

or from session – as temporary values.

The debug key, a boolean value, is read from the Quilt’s global configuration variable -

$_conf, which is an array. If the key “developemnt” is present and the value of if is true, then

FAC will also run in debug mode.

The URL of Quilts’s installation, or rather the URL of the main site, and the URL of the site

that is rendering for the current request, are mapped through mapper’s calls to Quilt’s Site

objects. The main site instance will be retrieved by invoking the

The getHomeAddress will thus retrieve the URL of the Quilt’s site with the query to Quilt

configuration key domain_base, while getInstanceHomeAddress will instantiate the current

124

site, for the request, also using Quilt’s SiteFactory. If the site doesn’t have a separate domain,

then the domain_base will be used, along with the url_prefix given by the Quilt’s site object.

125

7. EVALUATION OF APPLICABILITY

FAC applicability is evaluated through inspection of the component model and prototype

implementation of FAC framework in the following ways:

1. Component structure and framework utilities: Component structure is compared,

how components are built, composed and assembled using FAC framework and what

framework utilities are available versus competing popular web application

frameworks?

2. Reusability: Does the implemented FAC prototype enable reuse of extensions outside

of their component model is investigated, and what is the measure of reusability of

such components, is reusability predictable?

3. Performance: FAC performance is measured using standard benchmarking program,

and whether performance is acceptable.

The first evaluation point analyses the structure of components built using FAC, and how

similar they are to what competing component models provide. Software engineers must not

be presented with a radically different approach. Components from both the host application

and the FAC framework have to be composed, developed and maintained side by side. Thus,

the approach of both frameworks should be familiar and intuitive. Common framework

utilities that popular frameworks provide must also be available in FAC framework.

Second evaluation point shows how a real-life application composed of heterogeneous

components is expected to perform. FAC or its extensions must not hinder performance of

host applications it is integrated with.

Mappers have been implemented for WordPress and Quilt CMS, so performance and

reusability are measured for those specific implementations, while component structure and

framework utilities are additionally compared to the Laravel framework.

Acceptable levels of measurable reusability of extensions must be achieved, and the same

must be achieved by the FAC framework model itself, since it is a component that must be

integrated. If these are not achieved, use of extensions out of their component model is of

little value.

127

7.1. Component structure and framework utilities

An analysis of how components are built using FAC is done, expecting that they should be

structurally similar to what competing component models provide. Extensions should be

structured in a similar way to how popular frameworks define component structure. Sub-

components should also be used and composed in a similar. All these similarities are

necessary so that FAC is usable and more easily maintainable alongside host applications.

7.1.1. HelloWorld component structure comparison

HelloWorld components built for WordPress, Laravel, Quilt CMS and FAC are compared,

which have been introduced in that order in sections: 3.6.3, 3.6.1, 3.6.2 and 6.3.1.1.

A Hello world extension consists of the same number of constituents, just as a Quilt CMS

component does. It resides inside its own folder, just as WordPress plugins and Quilt portlets

do, and those constituents logically separate parts of the component in the same way as all the

other frameworks do. Localization strings are saved inside JSON files in a separate folder and

Smarty templates define views that are rendered to the user, also organized in a separate

folder. The HelloWorld extension contains only one additional file, containing the main

extension class, thus bringing the number of constituents to 3.

All evaluated frameworks make it possible to separate the view layer from the actual

localization and the logic that decides what should be shown, except for WordPress, which

lowers the number of constituents (code files). With WordPress, there is no explicit view layer

and components are functions that render the HTML and are potentially both business logic

and part of the view themselves. It is left up to the engineer to separate them, but no particular

way is given or required.

Moreover, if any other available WordPress mechanism was used to render the plugin output,

instead of the shortcode, the plugin developer decides at what times she wants the framework

to call the plugin, by hooking onto “action”, instead of leaving it up to the framework to call

the component at the right time. This is different to what Laravel, Quilt and FAC do, the

standard way frameworks operate, called The Hollywood principle – “don’t call us, we’ll call

you” [65]. WordPress plugin instead monitors the framework and decides itself when to

render.

128

A controller is a mandatory part of a component in all the frameworks, except WordPress

where plugin functions cover that functionality.

Routes for actions of components have to be defined explicitly only for Laravel, which causes

Laravel to have the most constituents – the one additional code file.

The overview of component structure comparison of HelloWorld components is given in table

6.

Table 6: HelloWorld component structure comparison

WordPress Laravel Quilt FAC

Localization gettext .po files PHP array files PHP array files JSON files

View layer - Blade templates Smarty templates Smarty templates

Controller
No Yes

Extended base

class

Extended base

class

Constituents 2 4 3 3

Route

definition
No Yes No No

7.2. Framework utilities

Web development frameworks, and frameworks in general, provide common utilities to make

development of components and applications more simple and faster, as introduced in section

3.5.

Comparison between FAC, Laravel, WordPress and Quilt is given in an easy to review form,

in table 7.

Storage providers are supported by all the frameworks, while Laravel has the most elaborate

storage provider system of all, supporting both local, network and cloud providers. Other

frameworks simply provide components with a path to which to save files.

129

Database accesses is the most common requirement of applications and components, and

having a database access layer is mandatory for every framework. All the compared

frameworks include this.

Table 7: Framework utilities comparison

WordPress Laravel Quilt FAC

Storage

providers

Yes, simple

(wp-content)
Yes Yes, simple Yes, simple

Database access Yes Eloquent Yes Doctrine

ORM No Eloquent Yes, simple Doctrine

Model

definition and

organization

No Eloquent Yes, simple Doctrine

Composition Runtime Design-time Runtime
Runtime and

design-time

Packaging Yes No Yes Yes

Front-end

development
Yes, simple Yes Yes Yes

Localization Yes Yes Yes Yes

Authentication

and

authorization

Yes Yes
Authorization,

through mappers
Yes, inherited

Session

handling
Yes Yes Yes Yes, inherited

Object-relational mapping is a layer on top of the database access, that makes it convenient

for components, or rather component builders, to not have to write SQL queries directly, but

rather instantiate and use model objects, whose changes and actions are directly written to the

130

database. WordPress doesn’t have an ORM layer, Laravel and FAC use standard libraries and

Quilt provides a simple custom ORM.

Model definition and organization is provided by all component models, except WordPress.

This is probably, at least partly, tied to the fact that there is no object-relational mapping in

WordPress. To create models or any other business layer, one has complete freedom on how

to organize or define it inside the plugin folder. Other component models point the user in the

right direction, which is usually a better solution in the long-term.

Component Composition is possible using all the compared component models, FAC being

the most flexible one. Quilt provides run-time composition options, but only in a limited way

– the user can add a portlet to a certain web page, it isn’t possible to nest or reuse portlets

inside of portlets without tightly coupling them. The same is true for WordPress plugins.

Laravel has no run-time composition support, and reusing components within components is

also not supported by the component model. Components would have to be tightly coupled if

they were to be integrated. In fact, design-time composition is also not possible in a way that

wouldn’t tightly couple components. Laravel tutorials and how-tos will always point

engineers towards coupling components, even at the database level.

FAC, because of its hooks mechanism, and because it is possible to define component

composition at design-time using FAC configuration, and because it is possible to easily

create run-time composition like in the case of a WordPress plugin, comes out as the most

flexible framework between those compared.

Packaging of components is a fairly important aspect of a component model. How easily

reusable a component is also depends on how portable it is, and that depends on how easy it is

to create a component package. In general, a component will be easier to package if all the

sub-components, or code constructs, are saved in the same place. In that case, an archive can

be created and the component can be sent, downloaded over the internet etc.

All the compared frameworks group component’s code constructs together, except for

Laravel.

Similarly, all frameworks do provide conventions on how to separate different types of code

files (localization files, templates, JavaScript, CSS...), except for WordPress, which leaves

most of the flexibility to the user.

131

Front-end development provided by frameworks usually entails templating and ways in

which templating can speed up repetitive tasks. For example, creating forms that will post

data back to the component that generated it. All the frameworks provide this, except for

WordPress. But, it does provide way to hook into actions that WordPress performs, and

according to those actions perform plugin actions, so front-end development is supported by

WordPress, just in a less comprehensive way.

Localization is supported in a very similar way throughout all the compared frameworks.

Authentication and authorization is provided by all the frameworks except authentication in

FAC. FAC does support authorization, through mappers and integration with the host

application.

Session handling is supported in all frameworks but WordPress, which expects components

to write and read the session directly using standard PHP libraries.

7.3. Evaluation of reusability

It is important to note that measurement of reusability of frameworks, such as Laravel, Quilt

or WordPress isn’t possible. Frameworks that aren’t made to be reused such as FAC, are never

reused as components since the complexity of such an attempt would be very high. If only

components built using said frameworks are evaluated and compared, there would be little

direct comparative value to FAC components.

HelloWorld components compared in the previous sections for WordPress, Laravel and Quilt

CMS are reusable inside other instances of their native frameworks. HelloWorld components

are simple, but the same principles would apply for more complex components.

If a Hello world component built for Quilt was to be used inside Laravel, one would have to

completely rewrite all the parts – the localization file, translate the template from Smarty to

Blade template engine. Additionally, a route would have to be added for the component, and a

part of the Quilt’s portlet class, parts of methods could be copy-pasted into the Laravel

controller.

The same is true for transferring any combination of source framework component to any

target framework. The more complex the component is, the harder it gets to reuse any part of

it to build the same component inside a different framework.

132

There are two main contributions of the FAC model: 1) FAC makes reusing components

outside of their component model systemic, and repeatable for various host applications

through mappers. 2) FAC enforces extensions reuse in a completely decoupled way – always

reused through the universal adapter, without any tight coupling with the host application or

other extensions, thus making reusability predictable.

To evaluate how reusable FAC component are, how FAC impacts component reuse in

comparison to other component models and frameworks, reusability metrics are applied,

introduced in chapter 4.

Reusability is measured through analysis of the example applications built in section 6.

These applications use prototype FAC framework integrated with WordPress and Quilt CMS

host applications.

7.3.1. FAC component reusability

The software system that has been modeled in section 6, in terms of components and

visualization of component reuse, is shown in illustration 19.

It is visible that a component named Host application is using three different components.

Components are assembled using a separate composition definition, the FAC configuration

file. The only component the host application is really using is FAC framework component,

through its native component (WordPress plugin or a Smarty plugin in Quilt) that connects to

the FAC facade class.

Extensions (components on the right) also reuse other extensions. Gallery uses Comments and

Like, while Comments use Like and recursively, Comments.

Since extensions are reusable only when FAC is reused, and FAC is reused so that extensions

may be used, reusability of FAC and single extensions is inseparable.

133

Another coupling that is not shown in illustration 19 is between the host application and the

FAC framework itself through context mappers. This coupling is done in reverse, since

mappers are actually a way for FAC and extensions to retrieve contextual data from the host

application.

If FAC is illustrated as a white box component, containing all the extensions from our

example, and include the native hook component in the host application, and the facade as the

only exposed interface of FAC towards the host application hook, then only two interfaces

that are used to compose the two components are left. The is because the interfaces between

different extensions are actually interfaces through the facade – illustration 20.

For FAC prototype, all the mappers in total, invoke 10 host application methods in case of

WordPress and 15 in case of Quilt. The difference being in the nature of applications, where a

part of WordPress contextual data can be retrieved without using WordPress functions or

components. For the sake of quantifying and measuring examples, an approximate number of

interfaces that were used for both integrations is set to the value 15.

There are two additional methods that are called from the hook to FAC, through the Façade –

1) the invocation of the actual hook execution, and 2) sending the data events to FAC.

This makes 17 the total number of active interfaces between the host application and FAC.

134

The number of interfaces between any two extensions is always two – the hook, and the event

manager. Although extensions are effectively loosely coupled, since a mediator is used, and

the composition is defined externally, not within components themselves.

7.3.2. FAC and extensions’ component reusability

To use the definition of component reusability that was introduced in section 4.2.1,

components that are measured have to be chosen. Reusability of FAC, and of each extension

separately has been chosen.

In case of reusability of FAC, the total number of interface methods was found for FAC

example implementations with WordPress and Quilt CMS. The value is, as shown in the

previous section, 17. Two interface methods are added that provide common functions from

the application (extension) domain (the hook and the events). Thus, equation 5 may be

applied to compute component reusability:

CR=
∑
i=1

n

(Count (CCMi))

∑
j=1

m

(Count (CIMj))
= 2

17
=0.11647 (14)

This is a low score, since CR is expected in the interval [0, 1]. But this indicates only the FAC

integration itself, without any extension reuse. Reusability of FAC may only be considered

135

transitively, and it depends on the number of extensions that are reused in the system. Each of

those extensions rises the number of interface methods that provide functionality from the

application domain. The equation must then be extended for FAC, so that it includes the

number of extensions that can be reused:

CR=
N∗∑

i=1

n

(Count (CCMi))

2∗(N−1)+∑
j=1

m

(Count(CIMj))

2∗N
17+2∗(N−1)

(15)

N is the number of extensions in the system. If this equation is applied to compute reusability

for 1, 2, 5, 15, 50, 150, 500, 2500 extensions, reusability will rise steeply to 0,869 for up to 50

extensions, and then asymptotically towards 1 (table 8).

Table 8: Component reusability of FAC, dependent on number of extensions

N CR

1 0.117647058823529

2 0.210526315789474

5 0.4

15 0.666666666666667

50 0.869565217391304

150 0.952380952380952

500 0.985221674876847

2500 0.997008973080758

Visually, component reusability of FAC, dependent on the number of extensions in the system

is shown on illustration 21.

136

Reusability of each extension, computed using equation 15, and when extensions’ interface

methods are considered to be only the ones exposed through FAC, towards the components

that reuse them (other extensions, or host applications), is CR = 1.

The reason for this is that both the hook and events interfaces are domain specific to that

particular extension.

This shows that FAC component model enforces creation of components that are perfectly

reusable within the FAC component model, while reusability of each extension, towards other

component models (host applications), or other extensions, depends on the number of

extensions in the system and is defined by equation 15.

7.3.3. Measuring reusability from complexity

Metrics that measure component complexity and interaction density were introduced in

section 4.2.2. The more complex the interactions of the component, or the component itself,

the less reusable a component is.

Interaction density of FAC framework and extensions is computed for the FAC prototype

implementation (section 6.3), using equation 6. Computed interaction densities for

components in the system are given in table 9. Each extension has two interfaces – hook and

137

events interfaces, that will always be connected, so the interaction density of each extension is

1. The same stands for FAC framework – all of the 17 methods (mapper interfaces) will

always be connected for FAC to work, so interaction density of FAC is also 1.

Table 9: Interaction densities for host application, extensions and FAC

IDC Component

1 Like extension

1 Comments extension

1 Gallery extension

1 FAC framework

Average interaction density is then computed from these values, which is also 1. This is the

highest interaction density a component-based system may have.

But extensions will never be used directly, they are accessed through the FAC framework,

thus making the correct value of average interaction density of the system:

AID=
IDFAC

n
= 2

4
=0.5 (16)

The host application should also be included into the formula, under the assumption that its

only interfaces that can qualify for this component-based system are the ones that should

always be connected to FAC. In that case its IDC is also 1. If they were to be included at some

point, AID would be lower, thus making only lowering the final AID, making the system

properties ever so slightly more positive. Thus, the final AID computation can be done using:

AID=
IDhost application+ IDFAC

n
=3

5
=0.6 (17)

This value will fall with the number of extensions in the system, as shown in illustration 22.

138

1 5 10 15 30 100
0

0,5

1

1,5

2

2,5

AID

Illustration 22: Average component interaction density

The average interaction density value (y axis) quickly falls when as much as five extensions

are in the system (x axis).

Component packaging density complements the meaning of component interaction density.

CPD is measured to complement the value of AID = 1 of the system.

CPD is measured for extensions in the system, because host application numbers are variable

and not important for reusability of FAC and extensions, and the integration with the host

application (table 10).

Table 10: Components and constituents count

Component LOC Modules

Comments 260 4

Like 105 3

Gallery 262 6

CPDlinesof code=
(260+105+262)

3
=209

139

CPDmodules=
13
3

=4.33

If host application was included in computation of CPD, for example WordPress with more

than 400.000 lines of code, values would rapidly rise. The same is true if there were more

complex extensions used.

FAC, with its less than 4.000 lines of code in 54 files (modules) does raise packaging density

slightly, but is a small and simple component in itself.

Based only on numbers of AID and CPD, it is possible to conclude that the composed

component-based system is potentially complex – made up of many constituents and a small

number of interactions. According to literature, it could be classified as a transaction

processing system – with a high data volume being processed, with many components that

exchange small amounts of said data.

This seems to be in line with expectations for FAC system – a composition of loosely coupled

components that exchange only basic integration signals, each processing and completely

encapsulating its own data.

In practice, complexity of the composed system will depend on the complexity of the host

application, and complexity of extensions reused, but component reusability will always stay

high because of the low value of AID.

AID doesn’t correlate with a numeric reusability scale, but the low value of AID means higher

reusability on an ordinal scale.

7.3.4. Coupling complexity

It is possible to compute the average coupling complexity of the resulting composed system

using formula 9, and again discard coupling complexities of each of the extensions because

they are coupled loosely and through interfaces that are achieved through integration of the

host application and FAC, not their own interfaces. Coupling complexities computed for each

of the components is given in table 11.

140

Table 11: Coupling complexities of components

Component IIc + OIc

Host application 0 + 17

FAC 17 + 0

Gallery 0

Like 0

Comments 0

Using formula 9 it is possible to compute average coupling complexity for our example

system:

ACC=17+17+0+0+0
5

=6.8 (18)

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

N
ACC

Illustration 23: Average coupling complexity, dependent on number of extensions in the

system

Coupling complexity for FAC and host application is thus 17, and for our example system

ACC = 6.8. Value of 17 is is not much if the achievement of integration between to

component models is considered [56]. It is also very important to note how quickly it falls as

more extensions are added to the system (illustration 23). ACC will fall to 3,4 for 10

141

extensions in the system, and to ACC of 1,7 for 20 extensions – an indication that coupling

complexity of the FAC is very low, making it a low-coupled system.

7.3.5. Black-box reusability metrics

Black-box reusability metrics introduced in section 4.2.4 like rate of component observability

(RCO) and rate of component customizability (RCC) are found to not be applicable to FAC

framework, since extensions have no readable or writable properties, thus making formula 10

and 11 values equal 0.

These results are not valid for the rate of customizability, since customizability of every

extension is left to the developer of that particular extension. Additionally, customizability

should be possible through the user interface, or separate from the component interface

(facade class), as RCC is defined. Customizability is a valuable property of each extension,

but it doesn’t seem to be quantifiable in such a way. It may be defined as a number of

configuration options a single extension might have, but this cannot be systematically

evaluated since it depends on the design and implementation of each extension.

Self-completeness of component’s return value (SCCr)

There are only two methods that can be invoked by components that reuse extensions – the

hook and notify of events. Both methods are business methods of the extension, and only one

of those could be considered self-complete, according to definition from section 4.2.3, thus

making SCCr = 0,5.

Self-completeness of component’s parameter (SCCp)

Both hook and the interface to notify of events receive parameters, so SCCp will always be 1

for components of the FAC component model.

From SCCp and SCCr, the authors defined the overall reusability metric (COR), which

isn’t applicable because their method discriminates components such as the ones FAC

component model enforces as anomalies, and indeed the measurements come up negative.

7.3.6. Object-oriented software metrics

Object-oriented software metrics are evaluated on our prototype integration with WordPress.

These metrics show how complex the integration link between WordPress and FAC is.

Experiments have shown that one of the most reliable metrics for integration complexity are

142

lines of code written to integrate components [52]. In addition to lines of code (LOC), two

metrics introduced in chapter 4.1 also may be used: RFC and CBO.

Mapper classes that provide integration of host application and FAC framework are analyzed.

Native host application components that make it possible to reuse extensions are also

analyzed. Through this analysis, it is possible to predict the complexity of components that

have to be built so that a family of host applications, or a certain framework, is integrated with

the FAC framework.

Response For Class for mapper classes will always be high. Mapper classes are supposed to

access interfaces of the host application and translate host application data into data that FAC

components (extensions) understand. This means that each invocation of a method of a

mapper class will be forwarded to at least a couple host application classes and methods.

Our WordPress integration through mappers uses WordPress API functions to retrieve data,

which is a large set of functions. Quilt integration uses global Quilt objects, Quilt factory

classes and then object instances of various classes that will provide required data. For some

other host applications, in addition to classes and methods, mappers might even need to

invoke Web services.

RFC can be computed by applying the formula 3 from section 4.1 and values of WordPress

mappers are: ContextMapper: 16; ConfigurationMapper: 5; PermissionMapper: 12;

UserDataMapper: 18.

For Quilt, values are: ContextMapper: 9; ConfigurationMapper: 11; PermissionMapper: 15;

UserDataMapper: 18.

CBO value for the prototype WordPress integration is low. User data mapping always

integrates with a dedicated class or in case of WordPress, the WP_user class. The same is true

for PermissionMapper. Each of the mappers interacts with only up to 3 different host

application components.

There are four mappers, through which FAC and the host application are integrated, the value

of CBO from FAC framework adapter point of view is 5 – there are four mappers, and there is

a host application component that is reusing the FAC.

In literature, acceptable CBO values go up to 5, and acceptable RFC values for a class up to

100 [49], [50].

143

The FAC – host application integration provides the possibility of reuse of a significant

number of components and CBO is still kept within acceptable bounds.

The same is true for RFC value, which is both for the Quilt and WordPress mappers much

lower than 100.

Lines of code

In total, WordPress integration makes up around roughly 447 lines of code. For the sake of

our example, this number is rounded to a much higher, but in total only 500. Integration of

Quilt and FAC, also rounded to a higher value, makes up only 600 lines of code. Only a few

hundred lines of code may be completed in only a few hours by an experienced engineer. The

end result will thus depend on the level of knowledge an engineer has with a certain host

application. Supposedly, FAC framework integration will be done by engineers that want to

more easily reuse components (extensions). This means proficient engineers in that particular

host application. For this example, even three days may be assumed. This time to integrate

FAC with a host application is still acceptable, considering the criticality of components that

are thus integrated, the potential number of extensions that will also be integrated through that

work.

7.3.7. Criticality

Criticality is a known and expected side-effect of component reusability. The more

component is reused, the more it becomes critical to the system or ecosystem in which it is

used 4.2.4. FAC exposes two of three types of criticality, through different parts of the

framework: bridge and inheritance criticality. In the previous section, we have shown through

lines of code, that size of FAC isn’t critical.

Bridge criticality of FAC framework is detectable as it acts as the bridge between various

components, extensions, but also between the host application and FAC extensions. FAC

framework is used as a bridge between any two components when an extension is used, even

when an extension uses another extension, or itself recursively. Should any of the signal

mediation capabilities of FAC fail, the probability of all extensions failing, or the whole

system failing in which FAC framework is used, is very high.

From illustration 20, we can see that there are a number of smaller bridge-critical components

in the system, all contributing to FAC achieving its functionality of a universal adapter.

144

The native host application component is the first one, exposing bridge criticality. In case of

WordPress the plugin we wrote – because all communication and reuse that is initiated from

WordPress side towards FAC goes through that component. The plugin then connects to the

facade component, or rather, through the facade, to the Framework component.

Context mappers are also bridge-critical components, that support communication that is

initiated by the FAC, towards the host application.

As a result, each FAC implementation includes 6 bridge-critical components: the native host

application component, Framework component, and the four mappers.

The second form of criticality, inheritance criticality shows through the architecture of

extensions, which all have their origin inside a single class – Extension. Should there exist a

bug with that base class, or any part of design or architecture of the extensions, in terms of

utilities of the FAC, then all extensions will have that same problem.

7.4. Performance impact of FAC

Performance is measured for the prototype FAC framework integration with Quilt CMS and

WordPress.

WordPress and Quilt performance has been tested in two ways: 1) without FAC integrated and

enabled; and 2) to measure the impact FAC makes, performance has been measured with FAC

integrated and enabled, with extensions Like and Comments enabled.

Measurements have been done using ab21, Apache benchmarking tool. It has been set-up to

perform 1000 requests, while constantly performing 20 parallel requests, on a server with

4GB of RAM, two Intel Xeon E5-2620 processors at 2.1 GHz.

To test WordPress without FAC, a clean instance of WordPress has been installed. When

WordPress is installed, it automatically creates a blog post called Hello world, that has a

welcome message in it’s content. We will perform WordPress benchmarking using that

particular page.

To test Quilt without FAC, a copied instance of Quilt, running a copy of www.fer.hr website

has been chosen. Benchmark will make requests to one of the published news articles.

21 ab, Apache HTTP server benchmarking tool, https://httpd.apache.org/docs/2.4/programs/ab.html

145

It is important to note that in the WordPress test, both FAC and WordPress connected to the

same MySQL database server.

For the Quilt test, FAC connected to its own MySQL database server, while Quilt used its

PostgreSQL database. Connecting to two different databases is more overhead. Compared to

the slowdown of smarty, this just shows how expensive performance-wise Smarty is.

Results for Quilt and WordPress, with and without FAC are listed in table 12:

Table 12: Performance comparison

Quilt (no

FAC)

Quilt (FAC) WordPress

(no FAC)

WordPress

(FAC)

Time taken

(seconds)
36.394 38.690 18.106 30.458

Mean time per

request (ms)
727.875 773.793 362.127 609.169

It is observable that performance impact of having FAC enabled and executing two extensions

in WordPress causes 68.22% longer execution time.

Performance impact on Quilt causes only an increase of execution time by 6.3087%.

It is important to note that both Quilt and FAC use Smarty templates for the front-end layer.

Once Smarty is loaded, both Quilt and FAC use it and the rest of the difference in

performance is the actual impact that the rest of FAC overhead and the two extensions

execution causes.

Then, 6% increase in execution time can be attributed for FAC with Quilt. Smarty impact

performance already when initializing with Quilt, which can be seen from the overall longer

execution time.

Wordpress with FAC enabled increase in execution time is 68% compared to without FAC.

Smarty performance impact can be seen more explicitly, since WordPress doesn’t use any

templating itself.

146

To test if Smarty really does induce such a performance impact, additional testing has been

performed. Smarty was used inside a single PHP script with only two lines of code:

$msg = "This is a test!";
echo "This is a test message, with a template
 $msg";

The script just renders a line of text from a variable. When instead Smarty is used:

$s = new Smarty();
$s->setTemplateDir('/tmp');
$s->assign("message", "This is a test!");
echo $s→fetch("test.tpl");

performance drops from 20.953 ms per request to 27.948 ms per request. This is a

considerable 28.6% slowdown, that is visible already without any Smarty plugin use, multiple

templating folders etc. It is a considerable increase especially because there are no contextual

template variables being prepared by the system using Smarty.

Overall, the impact on a light-weight application like WordPress isn’t negligible, but it also

isn’t unacceptable. Every page load under a second is acceptable [67]. It is still faster than

Quilt’s load time for the page without FAC enabled.

Another, less demanding test was performed using the same low-end server configuration,

for a total of 40 requests with only 2 concurrent, performance is much better and impact is

nearly the same.

Quilt with FAC enabled execution time is longer by 11.036% compared to without FAC.

Wordpress execution time with FAC enabled is longer by 101.73% compared to without FAC:

table 13. Again, impact of Smarty is visible with Wordpress, whereas Quilt uses Smarty, and

only 11.036% increase is due to FAC itself.

Both Quilt and WordPress with FAC are far below the one second threshold, meaning that

performance is acceptable.

147

Table 13: Performance comparison for lower server load

Quilt (no

FAC)

Quilt (FAC) WordPress

(no FAC)

WordPress

(FAC)

Time taken

(seconds)
1.396 1.550 0.709 1.431

Mean time per

request (ms)
69.781 77.482 35.473 71.559

148

8. CONCLUSION

Component-based software engineering is as pervasive as software engineering in general.

Because of the very abstract nature of software, different component models exists for

different application domains, different applications in the same domain, differentiated by

different architecture styles, platforms and technologies. Component models are both

implemented and defined by development frameworks. This thesis defines a framework as a

component component model, and its prototype framework implementation to improve

component portability between component models for three-tier web applications.

FAC model, as its name implies, defines the framework itself as a component, that serves as a

universal adapter for all components (extensions) built using said framework. As a result, all

extensions expose the same standardized interfaces through which they can be reused,

improving their reusability, as shown in section 7.3.

The prototype implementation of the FAC framework in this thesis provides all the common

utilities that popular open source frameworks provide. This causes methods and solutions to

repeatable requirements and tasks that components need to satisfy similar to solutions of

existing applications and frameworks. This similarity is important to engineers that would

maintain and integrate the FAC framework and extensions with existing host applications.

Using the most common architectural pattern (MVC) for extensions, makes FAC even more

approachable to engineers maintaining or developing existing applications.

Integration of FAC with a host application is a well defined process through the use of

mappers, that serve as blueprints for interfaces that have to be made.

Once this integration is achieved, FAC provides predictable and measurable benefits to

component reuse and complexity of software being built, as shown in chapter 7. Numeric

reusability of extensions built using FAC, in terms of complexity of integration and coupling,

rises with both the number of extensions and components and host application that FAC is

integrated with.

There are limitations to FAC framework prototype implementation and FAC component

model that may need to be addressed in the future for certain use cases.

149

Loose coupling between components causes overhead and thus slower communication. So for

real-time components or real-time systems, the component model would have to be improved.

Complete decoupling doesn’t solve requirements such as reporting. It is common for software

to show reports using data from multiple components, and with FAC model no effort was

made to support those requirements. Thus, separate custom components would have to be

built.

The FAC framework prototype may be improved in the future through the addition of a web

access layer. By implementing the hooks and mappers as web services, FAC framework

would be independent from the underlying technology and platform. This would also make it

possible to scale horizontally, further improve extension reusability across component models

and platforms.

150

BIBLIOGRAPHY

[1] Software Engineering Body of Knowledge (SWEBOK Version 3), 2014, IEEE

Computer Society, accessed 1. 8. 2017.

[2] Software Engineering Body of Knowledge (SWEBOK Version 3), 2014, IEEE

Computer Society, Chapter Software design, accessed 1. 8. 2017.

[3] Software Engineering Body of Knowledge (SWEBOK Version 3), 2014, IEEE

Computer Society, Chapter Software construction, accessed 1. 8. 2017.

[4] Software Engineering Body of Knowledge (SWEBOK Version 3), 2014, IEEE

Computer Society, Chapter Software engineering models and methods, accessed 1. 8.

2017.

[5] J. Basha, S.A. Moiz, 2012, Component Based Software Development: A State of Art,

Proceedings of the International Conference On Advances In Engineering, Science And

Management, pp. 599-604.

[6] K. Lau, Z. Wang, 2007. Software component models, IEEE Transactions on software

engineering, vol. 33, no. 10

[7] G. T. Heineman and W. T. Councill, Component-Based Software Engineering: Putting

the Pieces Together. Addison-Wesley Longman Publishing Co., 2001.

[8] M. Broy et al, 1998. What characterizes a (software) component?, Software – Concepts

& Tools 19, pp. 49-56, Springer – Verlag

[9] B. Wallace, 2010. There is no such thing as a Component, accessed 15. 9. 2014.,

<http://existentialprogramming.blogspot.com/2010/05/hole-for-every-component-and-

every.html>

[10] Bishop, J., 2007. C# 3.0 Design Patterns, O'Reilly Media

[11] Crnković, I. et al., 2011. A Classification Framework for Software Component Models,

IEEE Transactions on Software Engineering: Volume 37, Issue 5

151

[12] S. Prstačić, I. Voras, M. Žagar, 2011, Nested Componentization for Advanced Web

Platform Solutions, Proceedings of the 33rd International Conference on Information

Technology Interfaces, pp. 609-614.

[13] S. Prstačić, M. Žagar, K. Kroflin, 2012, Interfaces of nested Web application framework

as reusable software component, MIPRO 2012 Jubilee 35th International Convention

Proceedings, pp. 439-443.

[14] S. Prstačić, M. Žagar, 2013, Nested Web Application Components Framework A

Comparison to Competing Software Component Models, ENASE 2013 8th

International Conference on Evaluation of Novel Approaches to Software Engineering,

pp. 141-148.

[15] S. Alpaev, "Applied MVC Patterns", VikingPLoP '2005

[16] MSDN, “Understanding Service-Oriented Architecture”, http://msdn.microsoft.com/en-

us/library/aa480021.aspx, accessed 15. 9. 2014.

[17] T. Erl, 2005, Service-Oriented Architecture (SOA): Concepts, Technology, and Design;

Prentice Hall

[18] Drupal documentation, "API reference", http://api.drupal.org/api/drupal, accessed 15. 9.

2014.

[19] Joomla documentation, "Developing a MVC component",

http://docs.joomla.org/Component accessed 15. 9. 2014.

[20] Grails, 2012. Groovy on Grails documentation, accessed 5 May 2012.,

<http://grails.org/doc/latest/>

[21] Django, Django documentation, accessed 15 September 2019.,

<https://buildmedia.readthedocs.org/media/pdf/django/2.2.x/django.pdf>

[22] Altman, P., 2011. How I write Django Reusable Apps, accessed 5 May 2012.,

http://paltman.com/2011/12/31/how-i-write-django-reusable-apps

[23] Symfony, 2012. The book, accessed 5 May 2012.,

<http://symfony.com/doc/current/book/index.htm>

152

[24] MSDN, "Model – View – Controller",

http://msdn.microsoft.com/en-us/library/ff649643.aspx 15. 9. 2014.

[25] WordPress, WordPress Developer Documentation, accessed 15 September 2019.,

<https://codex.wordpress.org/Developer_Documentation>

[26] CiviCRM, CiviCRM documentation, accessed 23rd October 2019,

https://docs.civicrm.org/

[27] Portlet specification 2.0, http://www.jcp.org/en/jsr/detail?id=286 [4/4/2011]

[28] Alpaev, S., 2005. Applied MVC Patterns, VikingPLoP

[29] Walker, S., DotNetNuke 4.0 Module Developers Guide, accessed 20 April 2012

<http://www.dotnetnuke.com/Resources/BooksandDocumentation/ProjectandTechnical

Documentation/tabid/478/Default.aspx>

[30] A. Bassam et al., 2010, Reusable Software Components Framework,

ECS'10/ECCTD'10/ECCOM'10/ECCS'10 Proceedings of the European conference of

systems, and European conference of circuits technology and devices, and European

conference of communications, and European conference on Computer science, pp.

126-130.

[31] Zhang, L., Zhao, et. al., Design and Realization of Database Accession Middleware

System, 2007, Hongqiang Engineering Institute of Engineering Corps, PLA University

of Sci.& Tech., Nanjing 210007)

[32] T. Erl, 2005, Service-Oriented Architecture: Concepts, Technology, and Design, ISBN:

0-13-185858-0

[33] Crnković, I., Larsson, S., Chaudron, M., 2005, Component-based DevelopmentProcess

and Component Lifecycle, Journal of Computing and Information Technology - CIT 13,

2005, 4, 321-327

[34] M. Bell, 2008, Service-Oriented Modeling (SOA): Service Analysis, Design, and

Architecture, ISBN: 0470255706, 9780470255704

[35] R. E. Caballero and S. A. Demurjian, Towards the Formalization of a Reusability

Framework for Refactoring, ICSR-7, pp. 293-308.

153

[36] J. Guo and Y. Liao. 2003, Integrating Software Components through Wrapper

Technologies, Proceedings of IASTED International Conference, Software Engineering

and Applications, pp. 441-446.

[37] Ching-Seh Wu and I. Khoury, 2013, Web Service Composition: From UML to

Optimization, 2013 Fifth International Conference on Service Science and Innovation

(ICSSI)

[38] J.Lee, J. Kim, and Gyu-Sang Shin, 2003, Facilitating Reuse of Software Components

using Repository Technology, Proceedings of the Tenth Asia-Pacific Software

Engineering Conference

[39] S. M. Filho, H. Mariano, U. Kulesza, T. Batista, 2010, Automating Software Product

Line Development: A Repository-Based Approach, 36th EUROMICRO Conference on

Software Engineering and Advanced Applications (SEAA), pp. 141-144.

[40] Y. Lin, H. Ye, 2010, An Approach for Modelling Software Product Line Architecture,

International Conference on Computational Intelligence and Software Engineering

(CiSE)

[41] L. Tan, Y. Lin and Huilin Ye, 2012, Modeling Quality Attributes in Software Product

Line Architecture, Spring Congress on Engineering and Technology (S-CET)

[42] Michael Mattsson, Jan Bosch, and Mohamed E. Fayad, 1999, FRAMEWORK

INTEGRATION PROBLEMS, CAUSES, SOLUTIONS, Communications of the ACM

Vol. 42, No. 10

[43] S. A. Zamudio, R. Santaolaya and O.G. Fragoso, 2012, Restructuring Object-Oriented

Frameworks to Model-View-Adapter Architecture, IEEE LATIN AMERICA

TRANSACTIONS, VOL. 10, NO. 4,

[44] F. Brooks, 1995, The Mythical Man-Month

[45] F. Brooks, 1986, No Silver Bullet – Essence and Accident in Software Engineering,

University of North Carolina at Chapel Hill

[46] A. Burgess et al, 2004, Guide to the Software Engineering Body of Knowledge, IEEE

Computer Society

154

[47] P. Clemens er al, 2010, Documenting Software Architectures: Views and Beyond, 2nd

ed., Pearson Education

[48] P. Kruchten, 1995, Architectural Blueprints — The “4+1” View Model of Software

Architecture, IEEE Software 12 (6), pp. 42-50.

[49] Gyimothy, T., Ferenc R., Siket I., 2005, ‘Empiricalvalidationofobject- oriented metrics

on open source software for fault prediction’, IEEE Trans. Softw. Eng., 2005, 3, (10),

pp. 897 – 910

[50] Rosenberg, L., Stapko, R., and Gallo, A., 1999, Object-oriented metrics for reliability.

Presented at the IEEE International Symposium on Software Metrics

[51] S. O’Grady, The RedMonk Programming Language Rankings: June 2019, accessed July

2019 https://redmonk.com/sogrady/2019/07/18/language-rankings-6-19/

[52] Gui, G., Scott, P.D., 2009, Measuring Software Component Reusability by Coupling

and Cohesion Metrics, Journal of Computers, vol. 4 no 9

[53] AL-Badareen, A.B., Selamat, M.H., Jabar, M.A., Din, J., Tuarev, S., 2010, Reusable

Software Components Framework, Advances in Communications, Computers, Systems,

Circuits and Devices

[54] Rai, M., Virk, K. S., 2017, History of Software Engineering: Status of Software

Component, Reusability and Quality, CSI Communications

[55] Bose, D., 2011, Component Based Development – application in software engineering,

Indian Statistical Institute

[56] Kumar, S., Tomar, P., Nagar, R., Yadav, S., 2014, Coupling Metric to Measure the

Complexity of Component Based Software through Interfaces, International Journal of

Advances Research in Computer Science and Software Engineering

[57] Chidamber R., Kemerer F., 1992, A metrics suite for object oriented design, Center for

Information Systems Research Sloan School of Management Massachusetts Institute of

Technology

[58] Halstead, Maurice H., 1977, Elements of Software Science. Amsterdam: Elsevier

North-Holland, Inc.

155

[59] McCabe, T., 1976, A complexity measure, IEEE Transactions on Software Engineering,

vol. SE-2, NO.4

[60] Hummle, B., 2014, McCabe's Cyclomatic Complexity and Why We Don't Use It, CQSE

blog, accessed October 2019 https://www.cqse.eu/en/blog/mccabe-cyclomatic-

complexity/

[61] Singh, S., Thapa, M., Singh, S., Singh, G., 2010, Software Engineering – Survey of

Reusability Based on Software Component, International Journal of Computer

Applications, Volume 8, No.12, October 2010

[62] Narasimhan, V. L., Hendradjaya, B., 2004, A new Suite of Metrics for the Integration of

Software Components

[63] Goulão, M., Brito e Abreu, F., 2007, An overview of metrics-based approaches to

support software components reusability assessment, Software Quality Measurement:

Concepts and Approaches, ICFAI Books

[64] Sarbjeet, S., Thapa, M., Singh, S. and Singh, G., 2010, Software Engineering – Survey

of Reusability Based on Software Component, International Journal of Computer

Applications (0975 8887), vol. 8, No 12

[65] Matisson, M., Bosch, J., Fayad, M.E., 1999, “Framework integration problems, causes,

solutions”, Communications of the ACM, Vol. 42, October 1999

[66] McConnell, S., 2004, Code Complete: A Practical Handbook of Software Construction,

Second Edition, Microsoft press, p168-171

[67] Fiona Fui-Hoon Nah (2004) A study on tolerable waiting time: how long are Web users

willing to wait?, Behaviour & Information Technology, 23:3, 153-163, DOI:

10.1080/01449290410001669914

[68] Horowitz, E., et al, 2007, Computer Algorithms, 2nd edition, Silicon press

[69] Highsmith, J., & Cockburn, A., 2001, Agile software development: the business of

innovation. Computer, 34(9), 120–127. doi:10.1109/2.947100

156

[70] E. S. Cho, M. S. Kim, and S. D. Kim, “Component metrics to measure component

quality” in Eighth Asia-Pacific Software Engineering Conference, 2001. APSEC 2001.,

Macau, China, 2001, pp. 419–426.

[71] Mijač, M., Staić, Z., Reusability Metrics of Software Components: Survey, 2015,

Central European Conference on Information and Intelligent Systems, Faculty of

Organization and Informatics University of Zagreb

[72] S. Bhattacharya and D.A. Perry, “Contextual reusability metrics for event-based

architectures”, 2005, International Symposium on Empirical Software Engineering,

Australia, 2005.

[73] H. Washizaki, H. Yamamoto and Y. Fukazawa, A Metrics Suite for Measuring

Reusability of Software Components, 2003, 9th International Software Metrics

Symposium Proceedings, Sydney, Australia, pp. 211-223.

[74] J. Al Dallal, 2009, Software Similarity-based Functional Cohesion Metric, IET Softw.,

vol. 3, no. 1, pp. 46-57

157

BIOGRAPHY

Svebor Prstačić, m. sc. c. sc. graduated in 2007., at the University of Zagreb, Faculty of

Electrical Engineering and Computing with the topic “Building Data-integrated Information

Systems For Education”. His professional interests include free and open source software,

component-based software engineering for the web and integrated platforms.

In 2005 and 2006 he worked on building data integration mechanisms for the Faculty’s web,

and is awarded the dean’s award for “..dedicated work on building FER’s Quilt CMS Content

Management System and FER’s e-Campus”. Today, Quilt CMS is a successful commercial

solution, used by more than 10 institutions in Croatia and abroad.

Since 2012 he is the president of Croatian Association for Open Systems and Internet.

Since 2015., he is the Head of IT department at the University of Zagreb, Faculty of Electrical

Engineering and Computing.

He is the co-founder and managing director of a company Ekorre Digital, which specializes in

advanced web solutions, and offers commercial services to users of Quilt CMS.

List of published articles

Conference articles

1. Prstačić, Svebor; Voras, Ivan; Žagar, Mario

Nested Componentization for Advanced Web Platform Solutions // Proceedings of

the 33rd International Conference on Information Technology Interfaces (ITI) 2011.

Zagreb: SRCE, 2011. str. 609-614 (presentation, international review, in extenso,

scientific)

2. Prstačić, Svebor; Žagar, Mario; Kroflin, Krešimir

Interfaces of nested Web application framework as reusable software

component // MIPRO 2012 Jubilee 35th International Convention Proceedings

Rijeka: Croatian Society for Information and Communication Technology, Electronics

and Microelectronics - MIPRO, 2012. pp. 439-443 (presentation, international review,

in extenso, scientific)

158

3. Kroflin, Krešimir; Prstačić, Svebor; Žagar, Mario

Framework for Implementation of Complex Dynamic Web Forms // MIPRO 2012

Jubilee 35th International Convention Proceedings

Rijeka: Croatian Society for Information and Communication Technology, Electronics

and Microelectronics - MIPRO, 2012. pp. 436-438 (presentation, international review,

in extenso, scientific)

4. Prstačić, Svebor; Žagar, Mario

A model for Web application and Web service peer-to-peer hosting network

architecture // Proceedings of the ITI 2013 35th International Conference on

Information Technology Interfaces - ITI 2013 / Jare, Iva (ur.).

Cavtat, Hrvatska, 2013. pp. 335-340 (presentation, international review, in extenso,

scientific)

5. Prstačić, Svebor; Žagar, Mario

Nested Web Application Components Framework A Comparison to Competing

Software Component Models // ENASE 2013 8th International Conference on

Evaluation of Novel Approaches to Software Engineering / Leszek, Maciaszek ;

Joaquim, Filipe (ur.).

Angers, France, 2013. pp. 141-148 (presentation, international review, in extenso,

scientific)

159

ŽIVOTOPIS

Svebor Prstačić, dipl. ing., diplomirao je 2007. godine na Fakultetu elektrotehnike i

računarstva Sveučilišta u Zagrebu, s temom „Uspostava podatkovno integriranih

informacijsko-obrazovnih sustava“. Njegovi profesionalni interesi uključuju slobodne i

otvorene tehnologije, programsko inženjerstvo orijentirano na komponente i integrirane

platforme za web.

Godine 2005. i 2006. radio je na izradi mehanizama integracije podataka za sustav koji

pokreće javni web i intranet Fakulteta, a za to mu je dodijeljena nagrada dekana za "za

predani rad na izgradnji FER-ovog sustava za upravljanje sadržajima Quilt CMS i FER-ovog

e-Campusa".

Nakon diplomiranja, zaposlio se na FER-u u web timu kao programer. Sustav Quilt CMS je

potom vrlo brzo prodan i nekim drugim fakultetima u Hrvatskoj s kojima je Svebor Prstačić

preuzeo komunikaciju, te koordinirao razvoj sustava Quilt CMS za potrebe drugih fakulteta.

Quilt CMS je tako od 2017. uspješno komercijalno rješenje koje koristi više od 10 institucija

u Hrvatskoj i inozemstvu, a Svebor Prstačić je jedan od dvoje osnivača spin-off tvrtke koja od

2018. godine između ostalog pruža i komercijalne usluge za sustav Quilt CMS.

Od 2012. godine, predsjednik je Hrvatske udruge za otvorene sustave i internet kroz koju je

vodio i podržao mnoge projekte popularizacije otvorenih tehnologija, posebice za primjenu u

javnom sektoru i obrazovanju. 2013. godine je bio član Radne skupine za primjenu otvorenog

koda i otvorenih normi, Povjerenstva Vlade Republike Hrvatske za koordinaciju

informatizacije javnog sektora.

Od 2015. godine voditelj je Centra informacijske potpore (CIP), Sveučilišta u Zagrebu,

Fakulteta elektrotehnike i računarstva. CIP je služba koja broji 10 inženjera koji brinu za

cjelokupnu informacijsku infrastrukturu, podršku korisnicima, informacijsku sigurnost, te

razvoj softvera za podršku nastavnim i poslovnim procesima, njihovu integraciju s vanjskim

uslugama i izvorima podataka, te održavanje razvijenog softvera. Kao voditelj, blisko

surađuje s upravom i pomaže osigurati održiv i nesmetan rad FER-a.

Suosnivač je i izvršni direktor tvrtke Ekorre Digital, koja je specijalizirana za napredna web

rješenja, kao i komercijalne usluge korisnicima FER-ovog sustava Quilt CMS.

160

Kroz tvrtku od samog osnivanja pruža usluge koordinacije, planiranja i vođenja projekata

razvoja softvera za domaće i strane tvrtke, najčešće napredna web portalna rješenja ali i IOT

sustave u biomedicinskoj domeni.

161

