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Marin Šilić rod̄en je 1983. godine u Sarajevu u Bosni i Hercegovini. Osnovnu školu i opću
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računarstva Sveučilišta u Zagrebu. Aktivno je sudjelovao na istraživačkom projektu “End-User
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Here I must mention professor Željko Ilić, with whom I wrote several papers in the area of

wireless networks, and hope to write more. Five years ago he introduced me to my advisor,

which eventually led to my application and work at this Faculty. Thank you, Željko!

Finally, to my colleagues in the lab, Petar Afrić and Lucija Šikić - thank you for wonderful
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Abstract

Cloud computing becomes the prevailing aspect of software engineering. In Service-Oriented

Architecture (SOA), various atomic services respond to various client requests in a cloud. Se-

lecting the actual service instance to process a particular request can be an issue when require-

ments for multiple Quality of Service (QoS) properties need to be satisfied for many users

simultaneously. The problem becomes more complex if we take into account the composite-

ness of users’ applications, which consist of many tasks with non-deterministic execution plan,

where QoS properties are calculated over the whole composition. In this thesis, a fast heuris-

tic model for multi-criteria service selection is proposed, designed for multi-user composite

workflows with the goal of satisfying as many as possible of the given QoS requirements. To

develop such a method, some essential tools were developed, such as probabilistic formulas for

estimating QoS in non-deterministic service compositions. Another contribution is a real-time

adaptive QoS prediction model, which can be used before service selection to provide its input

– the QoS values for atomic services. The extensive experiments have demostrated the accuracy

and efficiency of the proposed models compared to the existing ones.

Keywords: web services, quality of service, QoS, service composition, QoS prediction,

service selection, collaborative filtering, transportation problem.



Prošireni sažetak

Vjerojatnosni model kvalitete usluge za nedeterminističke kompozicije usluga

Računarstvo u oblaku postaje prevladavajući aspekt softverskog inženjerstva. Sve manje

računanja vrši se na lokalnim strojevima, a sve više u oblaku. Mnogi primjenski sustavi temelje

se na web uslugama koje odgovaraju na brojne zahtjeve korisnika. Arhitektura zasnovana na

uslugama arhitektonski je stil koji pretpostavlja velik broj usluga za višekratnu uporabu koje

pružaju odred̄ene funkcionalnosti kroz svoja javno dostupna sučelja.

Primjenski sustav u oblaku može se smatrati kompozicijom usluga, a pojedine usluge koje

sudjeluju u kompoziciji nazivaju se atomarnima. Kompozicija usluga može biti složena i njezin

plan izvod̄enja nije nužno deterministički. Moguće su različite kompozicijske strukture: sekven-

cijalna izvedba, paralelno izvod̄enje, grananje i petlje. Na zadatak (funkcionalnost) potrebnu

kao dio primjenskog sustava (apstraktnu uslugu) obično može odgovoriti mnogo mogućih kan-

didata – odgovarajuće instance usluge na poslužiteljima diljem svijeta, koje smatramo kla-

som usluga. Od mogućih kandidata treba izabrati odgovarajući prema realističnim kriterijima.

Naime, svaka usluga (kao i cijeli primjenski sustav) ima specifična svojstva kvalitete usluge

koja se uzimaju u obzir prilikom oblikovanja postupka odabira. Primjeri uključuju dostupnost,

pouzdanost, vrijeme odziva, propusnost, reputaciju, trošak itd. Ova svojstva ovise o brojnim

čimbenicima od kojih su neki vezani za korisnika, neki za uslugu, a neki za okruženje (mrežu).

U složenom primjenskom sustavu gdje se za korisnika poziva više usluga, svojstva kvalitete

usluge izračunavaju se za čitavu kompoziciju. Korisnik može imati specifične zahtjeve koji

definiraju minimalne/maksimalne zadovoljavajuće vrijednosti za odred̄ena svojstva kvalitete

usluge. U sustavu s mnogo korisnika potreban je robustan model koji će globalno optimirati

odabir usluga za pojedine korisnike i pojedine fukcionalnosti. Zbog nedeterminizma unutar

plana izvod̄enja kompozicije usluga, treba uzeti u obzir vjerojatnosti grananja.

Postojećim pristupima ovom problemu nedostaje učinkovitosti i/ili općenitosti. Stoga je

glavni cilj ove doktorske disertacije predložiti brzi heuristički model za višekriterijski odabir

web usluga, oblikovan za višekorisničke kompozicije usluga s ciljem zadovoljavanja svih (ili

što je više moguće) zadanih zahtjeva na kvalitetu usluge. U svrhu razvijanja takvog algoritma,

razvijeni su neki pomoćni alati, poput vjerojatnosnih formula za procjenu očekivanog broja

poziva svake usluge u nedeterminističkoj kompoziciji, te procjenu očekivanih ukupnih svo-

jstava kvalitete usluge za zadani odabir konkretnih usluga. Vremenska učinkovitost metode

odgovara polinomnoj vremenskoj složenosti, koja se ostvaruje svod̄enjem problema odabira us-

luga na kombinatorne probleme transporta za čije rješenje postoje efikasni algoritmi kao što su

Vogelova aproksimacijska metoda (za početno rješenje) i transportna simpleks metoda za un-

apred̄enje rješenja. Općenitost modela odgovara istodobnom razmatranju većeg broja korisnika

(ili primjenskih sustava) od kojih svaki ima (ne nužno jednak) plan izvod̄enja tj. kompoziciju



s više zahtjeva za pojedine apstraktne usluge (klase usluga), uz individualne zahtjeve na min-

imalne (ili maksimalne) vrijednosti pojedinih stvojstava kvalitete usluge. Planovi izvod̄enja

dopuštaju sve standardne kompozicijske strukture (slijed, paralelno izvod̄enje, uvjetno grananje

i petlje), uzimajući u obzir vjerojatnosti u slučaju grananja i petlji, koje se mogu dobiti npr.

statistički na temelju bilježenja zapisa (logova) uporabe primjenskog sustava od pojedinog ko-

risnika. Model je odgovoran za odabir odgovarajućih instanci usluga koje će se pozivati za

sve zahtjeve, uzimajući u obzir njihova ograničenja propusnosti da se "popularne" usluge ne

bi preopteretile. Model uzima u obzir i individualizirane vrijednosti svojstava kvalitete usluge

koja ovise o parovima korisnik-usluga, što je realna pretpostavka koja nedostaje u mnogim

prethodnim radovima gdje se zanemaruje utjecaj korisničkih čimbenika na kvalitetu usluge, tj.

pretpostavlja se da kvaliteta ovisi samo o usluzi.

Predloženi algoritam odabira usluga ostvaruje se svod̄enjem problema na nekoliko neo-

visnih transportnih problema (engl. transportation problem) koji se iterativno redefiniraju i

ponovno rješavaju dok se ne ispune korisnički zahtjevi za kvalitetu usluge. Unutar transportnog

problema koristi se heuristički definirana cijena (nazvana matching difficulty ili "težina upari-

vanja") koja se temelji na korisničkim zahtjevima i procjenama ukupne (agregirane) kvalite

usluge za pojedini odabir usluga. Za sam algoritam odabira usluga predložene su dvije vari-

jacije: SS-TSM (Service Selection using Transportation Simplex Method) i SS-VAM (Service

Selection using Vogel Approximation Method), koje se razlikuju se u pristupu rješavanju po-

jedinačnih transportnih problema. Ispostavlja se da SS-TSM pristup u većini slučajeva radi

učinkovitije.

Učinkovitost, više nego preciznost, ostaje u središtu pažnje većine aktualnih napora u po-

dručju računarstva u oblaku gdje broj korisnika i instanci usluga konstantno raste. Stoga je

vrijeme izvod̄enja bila najvažnija mjera u našoj evaluaciji predloženih algoritama. Izveli smo

opsežne eksperimente na posebnim i općenitijim slučajevima u kojima su predložene metode

uspored̄ivane s optimalnim pristupom odabiru usluga (temeljenim na cjelobrojnom programi-

ranju) i njegovim heuristički poboljšanjima kada su ona primjenjiva. Naši eksperimenti pokazuju

da je predloženi SS-TSM model dominantan pristup u većini eksperimenata, uglavnom zbog

značajnog smanjenje vremena izvod̄enja. Djelomični izuzetak je scenarij s jednom klasom us-

luga (gdje se aplikacija svodi na jedan poziv usluge), gdje predloženi (nešto manje precizan)

SS-VAM pristup može biti brži u slučajevima velikih ograničenja za propusnosti usluga, dok

alternativni pristup iz literature (zasnovan na svod̄enju problema na problem pridruživanja ili

assignment problem) može biti brži kad su propusnosti niže. Zaključno, osim što je općenitija

od postojećih pristupa, predložena metoda (konkretno, SS-TSM) pokazuje se i učinkovitijom

od alternativnih (do približno 5 puta).

Budući da vrijednosti kvalitete usluge nisu unaprijed poznate za većinu parova korisnik-

usluga, prije odabira usluga potrebno je provesti predvid̄anje nepoznatih vrijednosti kvalitete
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usluge. Ono se za pojedinog korisnika zasniva na temelju poznatih vrijednosti za njemu slične

korisnike i istu uslugu, ili za pojedinu uslugu na temelju poznatih vrijednosti za njoj slične

usluge i istog korisnika. Odgovarajući model predvid̄anja treba biti dovoljno brz (primjenjiv u

realnom vremenu) i prilagodljiv s obzirom na promjene u okruženju (npr. povećanje opterećenja

mreže). Nakon toga, u fazi odabira usluge, koriste se predvid̄ene vrijednosti kvalitete usluge.

Stoga, kao još jedan doprinos u ovoj disertaciji, predstavljen je model predvid̄anja kvalitete

usluge kao podrška u stvarnom vremenu za odabir atomarnih kandidata web usluga na osnovi

njihovih svojstava kvalitete usluge. Predloženi pristup temelji se na suradničkom filtriranju

(engl. collaborative filtering) te zadovoljava sljedeće osnovne zahtjeve: brzo i precizno pred-

vid̄anje vrijednosti kvalitete usluge i prilagodljivost s obzirom na promjene u okolini. Model

unaprijed računa sličnosti izmed̄u korisnika i usluga s pomoću približnog množenja matrica radi

smanjenja vremenske složenosti. Prilikom predvid̄anja kvalitete usluge za pojedini par korisnik-

usluga, model uzima u obzir slične korisnike i usluge, ali povećava točnost predvid̄anja uključi-

vanjem pouzdanosti poznatih zapisa koja ovisi o broju prethodnih poziva. Vremenska složenost

dodatno se smanjuje spremanjem popisa sličnih korisnika i usluga koji se ažuriraju u stvarnom

vremenu. Model se prilagod̄ava promjenjivom okruženju: noviji zapisi dodaju se tako da imaju

veći utjecaj (težinu) na predvid̄anje novih vrijednosti, čime model brzo uči o promjenama u

sustavu. Da bismo procijenili uspješnost našeg pristupa, prikupili smo javno dostupne skupove

podataka za kvalitetu web usluga, te smo oblikovali i proveli niz eksperimenata radi provjere

pretpostavki i različitih aspekata predloženog modela. Opsežni rezultati evaluacije potvrd̄uju

da je predloženi model brži od alternativnog, uz usporedivu točnost predvid̄anja. Osim toga,

točnost/brzina približnog množenja matrica može se podešavati mijenjanjem veličine uzorka

(točniji rezultat dobiva se većim brojem operacija). Ova značajka fleksibilnosti sačuvana je i u

našem modelu: možemo proizvesti točnija predvid̄anja povećanjem veličine slučajnog uzorka,

što zauzvrat rezultira lošijim vremenskim rezultatima modela. S druge strane, vrijeme izračuna

možemo poboljšati smanjivanjem veličine slučajnog uzorka, što će rezultirati manje točnim

predvid̄anjima. Na taj način možemo balansirati izmed̄u dvaju suprotnih zahtjeva, točnosti i

preciznosti, te se predloženi pristup sa svojim fleksibilnim dizajnom može primijeniti u ra-

zličitim okruženjima.

Ova disertacija bavi se, dakle, dvama povezanim problemima: predstavlja i model pred-

vid̄anja kvalitete usluge, kao i vjerojatnosni model odabira usluga za višekorisničke primjenske

sustave s nedeterminističkom kompozicijom usluga. Modeli su pažljivo razvijeni s ciljem

točnosti, primjenjivosti u stvarnom vremenu, a osobito efikasnosti. Napravljeni su opsežni

eksperimenti kako bi se potvrdila valjanost predloženih modela.

Budući da se naš model predvid̄anja temelji na suradničkom filtriranju, kao sporedni dopri-

nos predložili smo mjere globalne koreliranosti (engl. Global Correlation Measure ili GCM) za

skup podataka za suradničko filtriranje. Naime, sustavi za preporučivanje zasnovani na surad-
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ničkom filtriranju oslanjaju se na skupove podataka koji sadrže interese korisnika za različite

stavke, a točnost različitih pristupa predvid̄anja ovisi o količini sličnosti (korelacije) izmed̄u

korisnika i stavki u skupu podataka. Kao heuristička procjena ovog aspekta kvalitete podataka,

koji može poslužiti kao grubi pokazatelj sposobnosti predvid̄anja, definirali smo globalnu mjeru

koreliranosti korisnika (GUCM) i globalnu mjeru koreliranosti stavki (GICM) skupa podataka

koji sadrži poznate interese ili ocjene stavki od strane korisnika. Ove mjere mogu se koristiti za

brzu procjenu je li skup podataka pogodan za suradničko filtriranje i možemo li očekivati visoku

točnost predvid̄anja, tj. isplati li se razvijati prediktivni model. Predložene su mjere u rasponu

od 0 do 1 i opisuju kvalitetu skupa podataka s obzirom na med̄usobne sličnosti korisnika i

stavki: viša mjera ukazuje na veći broj sličnih parova i bolju mogućnost predvid̄anja. Eksper-

imentalno smo provjerili da predložene mjere koreliranosti (GUCM, GICM i njihov prosjek

GCM) udovoljavaju željenim zahtjevima. Naime, one su u korelaciji s količinom sličnosti med̄u

korisnicima ili stavkama te brojem sličnih parova, kao i s točnošću standardnih modela pred-

vid̄anja. Mjere su, očekivano, negativno korelirane s brojem prirodnih skupina sličnih korisnika

ili stavki. Budući da se predložene mjere mogu učinkovito izračunati, u vremenu proporcional-

nom broju poznatih ocjena, one mogu biti korisne pri odlučivanju o primjeni suradničkog fil-

triranja na odred̄enom skupu podataka – rezultati ukazuju da vrijednost GCM-a viša od 0,14

sugerira visoku točnost predvid̄anja.

U nastavku ovog sažetka dajemo pregled poglavlja ove doktorske disertacije.

U prvom poglavlju (1 "Introduction") predstavljen je kratak pregled razmatranog područja i

problema koji se pojavljuju, uz motivaciju za pristupe njihovog rješavanja.

Drugo poglavlje (2 "QoS in Service-Oriented Architecture") opisuje kontekst kvalitete us-

luge u arhitekturi zasnovanoj na uslugama i detaljnije objašnjava njezine probleme: predvid̄anje

kvalitete usluge i odabir usluga. Navode se postojeći često korišteni pristupi njihovog rješa-

vanja, kao i njihove prednosti i mane.

U trećem poglavlju (3 "Real-time Adaptive QoS Prediction Using Approximate Matrix Mul-

tiplication") opisan je predloženi model predvid̄anja kvalitete usluge, kao podrška u stvarnom

vremenu za odabir atomarnih usluga u kompoziciji na temelju njihovih predvid̄enih svojstava.

Predloženi pristup zadovoljava sljedeće zahtjeve: brzo i točno predvid̄anje vrijednosti kvalitete

usluge, te prilagodljivost s obzirom na promjene u okruženju. Model unaprijed računa sličnosti

izmed̄u korisnika i usluga s pomoću približnog množenja matrica radi smanjenja vremenske

složenosti. Pri izračunavanju predvid̄anja za par korisnik-usluga, model razmatra slične ko-

risnike i usluge, ali poboljšava točnost predvid̄anja uključivanjem broja promatranih zapisa.

Vremenska složenost dodatno je smanjena održavanjem popisa sličnih korisnika i usluga koji

se ažuriraju u stvarnom vremenu. Model se prilagod̄ava promjenjivom okruženju: noviji za-

pisi imaju veću težinu, tj. veći utjecaj u formuli predvid̄anja. Budući da je model zasnovan na

paradigmi suradničkog filtriranja, kao sporedni doprinos definira se i mjera kvalitete bilo kojeg
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skupa podataka za suradničko filtriranje.

Četvrto poglavlje (4 "Compositional QoS Model") navodi kompozicijske strukture u složenom

primjenskom sustavu te definira vjerojatnosni model odgovoran za računanje očekivanog broja

poziva usluge za svaku apstraktnu uslugu u nedeterminističkom planu izvod̄enja te procjenu

očekivane vrijednosti pojedinog svojstva kvalitete usluge za odred̄eni odabir atomarnih usluga.

U ovom poglavlju definiramo i nov pristup procjeni korisnosti odabira pojedine atomarne us-

luge za pojedinog korisnika koji uzima u obzir i druge usluge u njegovoj kompoziciji, kao i

njegove zahtjeve na kvalitetu usluge.

Alati opisani u četvrtom poglavlju upotrijebljeni su u općem modelu za odabir usluga,

opisanom u petom poglavlju (5 "Fast Multi-Criteria Service Selection for Multi-User Compos-

ite Applications"). Ovaj je model efikasna heuristička metoda za višekriterijski odabir usluga,

oblikovana za složene kompozicije usluga kod više korisnika, s ciljem zadovoljavanja što većeg

broja njihovih zahtjeva na kvalitetu usluge. Predložena metoda svodi problem na nekoliko neo-

visnih problema transporta, iterativno poboljšavajući rješenje, te su predstavljene dvije njezine

varijante.

Šesto poglavlje (6 Evaluation) opisuje iscrpne eksperimente u kojima se analiziraju različiti

aspekti predloženih modela u usporedbi s postojećim pristupima. Rezultati podupiru tvrdnje

o točnosti, učinkovitosti i skalabilnosti predloženih modela te su razvidne njihove prednosti u

odnosu na druge modele iz literature.

O znanstvenim doprinosima i zaključcima raspravlja se u sedmom poglavlju (7 "Conclu-

sion").

Ključne riječi: web usluge, kvaliteta usluge, kompozicija usluga, predvid̄anje kvalitete

usluge, odabir usluga, suradničko filtriranje, problem transporta.
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Chapter 1

Introduction

Cloud computing becomes the prevailing aspect of software engineering. Less and less pro-

cessing is done on local machines, while more and more processing is done in a cloud. Many

applications are based on cloud services responding to numerous client requests. For exam-

ple, an application such as Gmail uses various services (mail, chat/hangouts, calendar, tasks,

translate). Service-Oriented Architecture (SOA) is an architectural style that assumes a vari-

ety of reusable services which provide certain functionalities through their publicly accessible

interfaces.

As another example of a SOA application, consider a multi-tenant Service-Based System

(SBS) which provides travel booking service for different travel agents (tenants). Such an ap-

plications considers various possibilities for trip scheduling, with access to providers of airline

data, accommodation data, traffic/directions data, etc. Various tasks are performed in such an

application: airline ticket search, car rental, hotel search, insurance quote, train ticket search,

cruise ticket search, weather queries, etc. This application is run in a cloud with multiple ser-

vices with different functionalities responding to the aforementioned queries.

Therefore, a cloud application can in effect be described as a service composition, and

services which participate in the composition are called atomic services. More examples include

intelligent energy systems, networking, financial/trading applications, as well as applications

which rely on various news feeds, social network posts, etc. [1, 2, 3, 4, 5]. As these workflows

can be very complex, the execution of atomic services within the application is not necessarily

deterministic and various compositional structures are possible: sequential execution, parallel

execution, branching, and loops [6].

A functionality needed as a part of an application (or simply task) can usually be served by

many possible candidates – corresponding service instances on cloud servers all over the world

[7]. Equivalent services corresponding to the same functional requirements are referred to as a

service class or an abstract service [8].

When there are many possible candidates, one of them has to be chosen according to realistic
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criteria. Namely, each service (as well as the whole application) has specific properties, which

are considered when designing a selection procedure. The functional properties of a service

correspond to its definition: what the service does. They ensure correct logical operating. The

non-functional properties are often called Quality of Service (QoS) and include availability,

reliability, response time, throughput, reputation, cost, etc. They have a significant impact on

the perceived quality of the composite service [9]. Naturally, both functional and non-functional

properties of a composite service are determined by the functional and non-functional properties

of selected atomic services which participate in the composition. Service properties themselves

depend on various user-specific, service-specific, and environment-specific parameters, such as

locations of user and service, system properties, network properties, etc.

In a composite (multi-task) application where multiple services are invoked for a user, the

QoS properties are calculated over the whole workflow. To define or measure "satisfaction"

with the global QoS, a user may have specific QoS requirements which define minimal/maximal

satisfactory values for certain QoS properties. These requirements can be part of a Service Level

Agreement (SLA).

In a system with many users (tenants) with minimal requirements on various QoS properties

such as response time, reliability, and price [10, 11], there is a need of a robust model which will

globally optimize the service selection and provide an answer which service instances will be

invoked by which users for which tasks. In order to provide a service selection with high QoS,

or at least with minimal satisfactory QoS (according to the SLA requirements), the selection

model must take the user-service QoS values into account.

However, a challenging fact is that the QoS values are not known for most user-service pairs,

and there are several reasons for that. First, the past invocation data contains only the QoS values

measured for the user-service pairs for which an actual invocation took place, which is a small

subset of all possible user-service pairs. The number of such pairs is quadratic with respect to

the number of users/services (e.g., a million for 1000 users and services), which is too large to

perform measurements. Stress-testing such a network would also suffocate the network, which

would give unrealistic QoS values.

For these reasons, when the actual QoS values are unknown, the QoS prediction takes place

before the service selection. The prediction of an unknown QoS value for a user-service pair is

done based on the known QoS values for similar user-service pairs. Afterwards, in the service

selection phase, the QoS values are assumed to be known or already predicted with reasonable

accuracy. Such a model can take various assumptions on the system properties. It can consider

a single user at the time, or multiple users at the same time, and in both cases it can consider

service compositions (multiple service classes) instead of a single service class. The output of

this phase is a mapping: which service instance is invoked for which user at a particular point

in the composition.
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To better grasp the complexity of such a problem, consider a scenario in which travel agen-

cies act as users (tenants) in a multi-tenant Service-Based System (SBS) [12] with multiple

services responding to application requests such as accommodation search, flight search, insur-

ance queries, popular event search, weather queries, etc. The travel agencies may use different

execution plans in an application, with some tasks (e.g. accommodation search) depending on

the other (e.g. flight search) in a complex compositional structure. Many services may provide

the same functionality, but with different QoS properties (slow/fast response, more/less reliable

results, free/paid with different prices, higher/lower reputation, etc.). The users share the exe-

cution engine of the SBS which performs the service selection for the observed users with the

goal of respecting the individual QoS requirements for each user’s service composition.

Approaching this problem, many considerations must be taken into account. Some service

instances are infeasible to some users because of bad QoS parameters (resulting from e.g. lo-

cation distance [13]); some are more reliable or have a better response time, but the price of

invocation is higher; some of them might lack availability due to their heavy usage and/or inad-

equate throughput. Even for non-composite (single-task) applications, greedy algorithms will

not work: selecting the closest, the fastest, the most reliable or the cheapest service instance

for each request will generally overload the most "popular" service instances (breaking their

throughput limit), and might also fail with respect to other criteria. In a composite case, espe-

cially if there are multiple potential execution paths for a composition (because of probabilistic

branching), it is difficult to locally estimate whether any particular user-service choice leads

to a good solution. For this reason, Mixed Integer Programming (MIP) techniques have been

employed to solve the service selection problem [12], often with local reductions of the search

space based on heuristics and/or greedy algorithms [14, 15, 16], since optimal MIP solution

requires exponential time complexity.

In this disertation, attemps at both QoS prediction model [17] and service selection model

[18] are presented. The models are carefully developed with the aims of accuracy, real-time

applicability, and efficiency in mind. Extensive experiments are made to verify the validity of

the proposed models.

The rest of the dissertation is organized as follows. Chapter 2 describes the context of QoS

in Service-Oriented Architecture (SOA) and explains the tackled problems (QoS prediction

and service selection) in more detail. Some common, recent or influential ("state-of-the-art")

methods for dealing with these problems are presented, with their strengths and weaknesses

outlined.

Chapter 3 describes the proposed QoS prediction model, published by the author in [17].

This model is a real-time support for selection of atomic service candidates based on their

QoS properties while constructing composite applications. The proposed approach satisfies the

following requirements: (i) fast and accurate prediction of QoS values, and (ii) adaptability
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with respect to environment changes. The model precomputes the similarities between users

and services using approximate matrix multiplication to reduce the time complexity. When

calculating a prediction for a user-service pair, the model considers similar users and services,

but enhances the prediction accuracy by incorporating the number of observed records. Time

complexity is further reduced by storing the lists of similar users and services which are updated

in real-time. The model adapts to the changing environment: newer records are set to have

greater influence on the predictions.

Since this model is based on the collaborative filtering paradigm, as a side contribution we

define a quality measure for a collaborative filtering dataset. This Global Correlation Measure

(GCM) is published by the author in [19].

Chapter 4 considers compositional structures in a service composition (a composite ap-

plication) and defines a probabilistic compositional QoS model responsible for computing an

expected number of service invocations for each abstract service in a composition, as well as

computing estimated QoS for any QoS property based on the actual service instances chosen

for the composition. It also defines a novel paradigm for estimating selection utility for a partic-

ular task in a composition, which measures the cost of a given user-service match (choice) with

respect to her/his compositional QoS requirements. This concept is named matching difficulty

and is a prerequisite for the service selection algorithm. Both concepts were published by the

author in [18].

Chapter 5 describes the proposed service selection model, also published in [18] with the

early version published in [20]. This model is a fast heuristic method for multi-criteria service

selection, designed for multi-user composite workflows with the goal of satisfying all, or as

many as possible, of the given QoS requirements. The proposed method reduces the problem

to several independent combinatorial transportation problems, using a global-aware utility cost

based on expected compositional QoS, and iterative solution improvements.

Chapter 6 presents the exhaustive and detailed experiments which analyze different quality

aspects of the proposed models in comparison with the existing approaches. The analysis of

time complexity is given to support the efficiency and scalability claims for the proposed mod-

els. The evaluation results are summarized at the end of the chapter. Scientific contributions

and conclusions are finally discussed in Chapter 7.

4



Chapter 2

QoS in Service-Oriented Architecture

Many of the modern software information systems are built upon principles defined in Service-

Oriented Architecture (SOA) [21]. SOA is an architectural style that assumes a variety of atomic

reusable services which provide certain functionality through their publicly accessible inter-

faces. More advanced functionality is achieved through atomic services composition into more

complex composite services.

The process of atomic services selection is essential for the overall quality of a composite

service [22], [23]. Both functional and non-functional properties of a composite service are

determined by the functional and non-functional properties of selected atomic services. While

functional properties assure correct logical operating, non-functional properties, often called

Quality of Service (QoS), such as availability, reliability, response time, throughput, reputation,

cost, etc., may have a significant impact on the perceived quality of the composite service [9].

Review and classification of QoS attributes of web services can be found in e.g. [24].

Application’s quality of service (QoS) may depend on various user-specific, service-specific,

and environment-specific parameters [25]. User-specific parameters include the user’s location,

network and device capabilities, and usage profiles. Service-specific parameters (for a ser-

vice instance) include its location, computational complexity, and system resources (e.g. CPU,

RAM, disk, and I/O operations). Environment-specific parameters include service provider load

and network performance at the time of invocation. Regarding service-specific parameters, an

important aspect of a service candidate is its throughput (other terms are processing capacity

[26] and service load [27]) which dictates the maximal number of requests it can respond to

in a given time frame. Finally, invocation price – which can correspond to an actual payment

price, or a cost in terms of spent resources – can be taken into account. Price can be treated as

additional QoS parameter, which can be service-specific and also user-specific.

One of the most important non-functional properties that significantly impacts the QoS of

the entire composite application is reliability [28], [29]. Reliability requirements are in focus of

current research in service-oriented systems [30], as well as heterogeneous embedded systems
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Users Services

Past invocation data

QoS prediction algorithm

Service selection algorithm

Usage

Figure 2.1: QoS-aware service recommendation

[31]. We define service reliability as the probability that a service invocation gets successfully

completed, i.e., correct response is retrieved within the specified time constraints. The proposed

reliability definition can be found in literature as successful delivery rate [32], user-perceived

reliability [33] and reliability on demand [34]. We note that the adopted user-centric definition

differs from the traditional system-centric definition that is used for “never-ending” systems

[28]. The reliability-on-demand definition is more suitable for web services due to a nature of

web service invocations which are discrete and relatively sparse events.

According to the adopted reliability definition, the reliability value can be computed from

the past invocation sample as the number of successful invocations divided by the total number

of performed invocations. However, real-world service-oriented systems may contain a very

large number of users and services, and a single user accesses only a very limited and diverse

subset of services. This means that the past invocation sample is very sparse and there is not

enough collected data to compute the reliability value in a straightforward way for each user-

service pair. One possible solution is to collect more data by performing additional service

invocations. Still, there are obstacles which make the proposed solution impractical. For in-

stance, service invocations may be charged, and performing many invocations can significantly

impact service performance and thus make the collected data irrelevant [35]. Moreover, note

that service-oriented systems are deployed on the Internet, which is a highly dynamic environ-

ment where the service invocation outcome is impacted by the variety of different parameters

that determine service invocation context (e.g., network bandwidth, geographical location, ser-

vice load, etc.). In such a dynamic environment, service providers register significant load

variations during the day, which is the main cause why the user-perceived QoS values may

change depending on the actual time of invocation [36], [37], [38], [39].

For such reasons, predicting the unknown values of QoS properties is often done from the

past invocation sample using prediction models. As depicted in Fig. 2.1, service users perceive

different QoS properties while accessing various services on the Internet depending on their

actual invocation context. A partial past invocation sample can be gained by gathering users
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Figure 2.2: Example of a CF prediction model (LUCS) [52]

feedback while accessing services [40], and by collecting records about service invocations by

monitoring service providers [41], [42]. In such circumstances where there is only a limited past

invocation sample, for user-service pairs that lack sufficient data to compute the reliability value

in a straightforward way, the best approach is to utilize prediction models. Finally, based on the

output of a prediction model, the recommendation engine or a service composition framework

selects the most appropriate service candidates for particular users with respect to predicted

QoS properties.

2.1 QoS Prediction

The researchers have proposed a variety of prediction approaches that can be used to model

the reliability of traditional system-centric software [43], [44], [45], [28], [29], [46], [47]. All

these approaches treat software components as "white boxes" whose reliability is known or

can be inferred through behavioral models. Such approaches are not suitable for modeling the

reliability of web services because of two main reasons. First, web services are observed as

"black boxes" that provide certain functionality and there is usually no insight in their internal

structure. Second, services are deployed on the Internet and they get accessed remotely from

different locations worldwide. Hence, a lot of external parameters have a significant impact on

a particular service invocation. These parameters determine the service invocation context and

they can be divided into several categories as already discussed (user-specific, service-specific,

and environment-specific parameters).

We should also mention various approaches that model the reliability of composite services

[48], [34], [49], [50], [51]. Still, those approaches treat atomic web services as components

whose reliability values are already known.

The most successful approaches for predicting reliability of web services rely on users’

previous experience aggregated in the past invocation sample. However, as already discussed,
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Figure 2.3: Example of a user-item reliability matrix

it is not an easy task to acquire a comprehensive past invocation sample. Therefore, the best

approach is to use prediction models to estimate the reliability for ongoing service invocations

based on the limited past invocation data. The most effective prediction models for reliability of

atomic web services are based on collaborative filtering (CF) [53] which, informally, calculates

reliability for user/service based on the known values for users/services which are similar to

them. An example model is sketched in Fig. 2.2.

When services are perceived as black boxes and no extra parameters are taken into account

apart from the known QoS values for some user-service pairs, the QoS prediction problem

can be handled by generic prediction algorithms initially designed for other recommendation

problems, such as predicting user ratings for movies, books, or web shop items. A variety of

prediction models have been proposed that utilize the collaborative filtering technique which

is commonly applied in modern recommendation systems [53], [54], [55], [56], [57], [58].

There are three basic types of collaborative filtering: memory-based, model-based, and hybrid

collaborative filtering. We briefly describe each type and mention its best representatives in the

following sections.

2.1.1 Memory-Based Collaborative Filtering

The memory-based CF is borrowed from the area of recommender systems. The idea behind this

technique is to extract and filter the information from multiple data sources, and then to leverage

this information to estimate the missing data by using the available data from statistically most

similar data sources.

This CF type uses user-item matrix for storing the data for reliability prediction. Each

matrix cell contains a value rui (row u, column i) which represents the reliability value observed

by user u while invoking service i. The user-item matrix is very sparse due to a fact that real-

world service-oriented systems may contain a large number of users and services, and each user

invokes only a small subset of services, which in turn results in a large number of empty cells

in the matrix. Each empty cell represents a reliability value that might need to be predicted; see

Fig. 2.3 for illustration.

To predict the missing values in the matrix, memory-based CF can be applied in two differ-
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ent ways. The first approach, UPCC [59], computes the set of statistically most similar users

(with respect to the current user) and estimates the missing value by combining the available

values from these users. On the other hand, the IPCC approach [60] computes the set of sta-

tistically most similar services (with respect to the current service) and estimates the missing

value based on the available values from these services. Both approaches use Pearson Cor-

relation Coefficient (PCC) as a similarity measure. However, the researchers have shown that

better prediction accuracy can be achieved by combining both approaches, i.e., by computing

the final prediction as a linear combination of UPCC and IPCC which is incorporated in the

Hybrid approach [40], [61].

To formalize the above ideas in a general context, let ru,i denote the rating (e.g. reliability or

another QoS property) of user u on item i (web service, shopping item, movie...). Let r̄u denote

the average rating of user u and let r̄i denote the average rating of item i. The similarity of users

u,v is usually calculated as a Pearson Correlation Coefficient (PCC):

simu,v =
∑i∈Iu,v(ru,i− r̄u)(rv,i− r̄v)√

∑i∈Iu,v(ru,i− r̄u)2
√

∑i∈Iu,v(rv,i− r̄v)2
, (2.1)

where Iu,v is the set of items rated by both users u and v. Analogously, the item similarity is

calculated as

simi, j =
∑u∈Ui, j(ru,i− r̄i)(ru, j− r̄ j)√

∑u∈Ui, j(ru,i− r̄i)2
√

∑u∈Ui, j(ru, j− r̄ j)2
, (2.2)

where Ui, j is the set of users who have rated both items i and j.

We now give prediction formulas for the standard CF approaches based on PCC, which are

the above mentioned user-based (UPCC) and item-based (IPCC) predictions [59]. To predict

the rating ru,i, the user-based approach searches for positive similarities between the current

user u and other users v who have rated item i. The prediction is then calculated using the

weighted average of their ratings, with weights corresponding to similarities (a user with higher

similarity to user u has greater weight in the average):

UPCCu,i = r̄u +
∑v simu,v(rv,i− r̄v)

∑v simu,v
. (2.3)

The item-based prediction works analogously, taking into account the current user’s ratings

for items j with positive similarity to the current item i:

IPCCu,i = r̄i +
∑ j simi, j(ru, j− r̄ j)

∑ j simi, j
. (2.4)
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The predictions can be combined by taking their linear combination:

HybridPredictionu,i = α UPCCu,i +β IPCCu,i, (2.5)

where α and β can be tuned on the known data (a training set) with α +β = 1.

Although memory-based CF approaches demonstrate promising prediction accuracy, they

suffer from serious performance issues stemming from computation of similarities (and re-

computation in case of a changing environment). Hence, our goal is to propose a fast prediction

approach whose accuracy will be close to the accuracy of Hybrid, but whose time performance

will be superior.

2.1.2 Model-Based Collaborative Filtering

The model-based CF approaches are often based on more sophisticated techniques such as ma-

chine learning or data mining algorithms. As such, those approaches can be computationally

more complex and more difficult to implement. They attempt to learn the prediction model by

identifying patterns using the training data in the offline phase, and then they utilize the predic-

tion model to produce predictions for ongoing service invocations during the online phase.

A matrix factorization model [62] is based on latent features. Namely, it tries to describe

each user and each item as a vector of a certain number of factors (e.g. 20) which are learned

from the past interaction data. These factors can capture the more subtle user/item properties

which are often difficult or even impossible to describe in words. It first appeared in 2006 as a

winning model on a large Netflix prize competition dataset [63].

Formally, let K be the chosen number of latent features used in the model. For each item

i we want to learn a K-dimensional vector qi whose elements measure the extent in which the

item possesses the corresponding latent features. At the same time, for each user u we want to

learn a K-dimensional vector pu whose elements measure the "interest" or affinity of the user to

the corresponding latent features. Then the rating estimate rui will be the scalar product pT
u qi.

An input to the model (a training set) R contains the known ratings Rui for some pairs of user

u and item i. The model learns vectors pu and qu for all users and items such that pT
u qi ≈ Rui.

If the model is trained carefully and without overfitting, the same near-equality should hold on

the testing set, i.e., on ratings which are unknown to the model during the learning phase.

Why is the model called "matrix factorization"? If the system contains U users and I items,

if the user-item ratings are assembled in matrix R with dimensions U × I, if the latent vectors

pu are assembled as rows in matrix P with dimensions U ×K, and latent vectors qi as columns

in matrix Q with dimensions K× I, then it will hold

R≈ PQ. (2.6)
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Therefore, we are approximating R as a product of two much smaller matrices P and Q. Because

of sparsity of known ratings, the matrix R is only partially known (and its full size would not fit

into memory). Since K is small, the matricess P and Q can fit into memory and be used in the

online phase to calculate scalar products pT
u qi in order to estimate an unknown rating Rui.

The required matrices P and Q can be learned in multiple ways. Often a stochastic gradient

descent is used, with the idea of starting with random values, calculating training predictions

and moving the parameters pu and qi in direction of the gradient of the error function in order

to reduce the error, i.e. to reduce the difference Rui− pT
u qi [62]. The error function is often

quadratic and contains regularization:

Lu,i = (Rui− pT
u qi)

2 +λ (||pu||2 + ||qi||2). (2.7)

A more recent model element-wise Alternating Least Squares [64] learns P and Q in a

different way. It treats P as fixed while analytically computing the optimal Q (with respect to the

known ratings), then fixes Q while computing the optimal P, and so on, repeating the alternation

until convergence. If carefully implemented, its time complexity is O((U + I))K2 + |R|K)

where |R| is the number of known user-item interactions, U the number of users, and I the

number of items. The pseudocode is given below, where L ("loss") is a cumulative square error

function. Many details are omitted for the case of simplicity, and an interested reader can find

them in [64].

ALGORITHM 1: eALS method of matrix factorization
Input : ratings R, latent dimension K, regularization factor λ , item popularities c
Output: latent factor matrices P and Q
Randomly initialize P and Q;
while no convergence do

Fix Q;
for all u = 1, . . . ,U, f = 1, . . . ,K do

pu f := solution of the equation
∂L

∂ pu f
= 0;

end
Fix P;
for all i = 1, . . . , I, f = 1, . . . ,K do

qi f := solution of the equation
∂L

∂qi f
= 0;

end
end

In the context of QoS prediction, the researchers have recently proposed various prediction

models that can be categorized and labeled as model-based CF. For instance, the researchers

have proposed a QoS prediction approach for grid service composition based on Bayesian net-

work [65]. Yu et al. have proposed a trace norm regularized matrix factorization based approach
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[66]. Another approach based on neighborhood integrated matrix factorization is presented in

[67]. A context-aware reliability prediction (CARP) approach uses invocation context-aware

matrix factorization to alleviate the problem of data sparsity and produce more accurate pre-

dictions [68]. To address the cold start problem (prediction for users/services with no past

invocation data), the researchers have introduced a novel location-aware matrix factorization

prediction approach [69], which is also very similar to the research work presented in [70]. An

interesting approach based on time series reliability prediction using artificial neural networks

has been proposed recently [71]. An approach based on adaptive dynamic programming with

fuzzy neural networks has been proposed in [72]. To enhance the availability of web services,

the researchers have proposed an adaptive prediction framework based on fuzzy sensor web

[73].

It should be noted that model-based CF prediction approaches usually require a fresh exe-

cution of offline learning phase in order to adapt to major changes in the environment, which is

their main drawback in the context of web services reliability prediction.

2.1.3 Hybrid Collaborative Filtering

The hybrid CF approaches utilize some additional domain-specific data which describe the

internals (e.g., structure, organization, or properties of the system) in order to produce more

accurate predictions. These approaches can be very effective in alleviating disadvantages of

memory-based CF such as data sparsity or cold start issues. Still, it appears to be quite chal-

lenging to obtain internal information in practice. Sometimes it requires further reorganization

and restructuring of the existing system by introducing some new standards and conventions.

In such a way, the researchers have combined classical memory-based CF with some addi-

tional content-based features in their approach to produce more accurate services recommen-

dations [74], [75]. Lee et al. [76] propose a novel approach that assumes existence of intelli-

gent agents which constantly monitor the conditions in the environment/system. They utilize

the information gained from agents to run matrix factorization considering dynamic invocation

context for services reliability prediction. Deng et al. have proposed a social network based

prediction approach which assumes that service users form a social network, which is rarely the

case [77].

2.1.4 Shortcomings of Previous Approaches

Although the proposed approaches achieve remarkable performance, they demonstrate several

serious disadvantages. The main disadvantage of the proposed approaches is related to their

time performance. Having large number of users and services in real-world service oriented

systems, those approaches simply do not produce predictions fast enough. Consider nowa-
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days very popular products that offer software as a service (SaaS) for their clients [78], [79].

Those products offer various services located worldwide in the cloud and having different per-

formance characteristics. A particular client may be interested in a service composition whose

nonfunctional properties need to be optimized. With such requirements, a client needs instant

information about the reliability of each atomic service so she can optimize her application re-

garding non-functional properties. To facilitate such requirements, the prediction model needs

to produce relatively accurate predictions in real-time. Although very accurate in their predic-

tions, the existing approaches have a limited support for real-time computation of predictions

when the number of entities in the system is high.

The collabofative filtering based approaches achieve accurate predictions in domains where

collected ratings are relatively stable for a longer period (i.e. movies or books ratings). On the

other hand, web services are deployed on the Internet, which is a highly dynamic enviroment

where actual data is prone to frequent changes. These frequent changes make the QoS prediction

task even more difficult since the data collected in the past could be obsolete. In order to

achieve accurate predictions, the model needs to automatically adapt to frequent changes in

the environment. The approaches proposed in [25], [80], [81] handle situations in which fast

and accurate predictions are needed. In that work, all three different groups of parameters that

may impact the QoS are considered: user-specific, service-specific, and environment-specific

parameters. However, all those approaches share the same disadvantage which is the inability to

automatically adapt to eventual changes in the environment during the online prediction phase.

In case the environment significantly changes, all these approaches require a fresh execution of

the offline precompute phase.

2.1.5 Data Quality in CF Datasets

CF models are evaluated on various datasets, and results of a single model across different

datasets are highly variable, since datasets typically exhibit different properties and yield dif-

ferent prediction accuracies. This introduces the need to measure the quality of a dataset which

would be an indication of its prediction difficulty. This measure can be used as a reference point

when proposing and evaluating a prediction model on a certain dataset. Developing a prediction

model is expensive and time consuming, and quick heuristic indicators of potential prediction

accuracy on a dataset can be very valuable; for example, when deciding which additional data

to take into account.

For instance, an e-commerce provider can use this approach when designing the CF process.

Specifically, the item vector can be structured in a way to take into account newly collected

data, e.g. in case a new type of rating is introduced. A quality measure can then be used to

evaluate how the new dataset would behave if collaborative filtering was to be extended to these

new attributes. In effect, the measure would estimate the level of maturity that the available
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collected data would give to the newly designed CF process. In other words, knowing the

proposed measure of a dataset could help us predict whether high prediction accuracy can be

expected.

Other potential uses of a data quality measure can be found for educational and scientific

purposes. It is often the case when examining a new approach that the required specific dataset

is not available. In such cases, the researchers often rely on synthetically generated data. The

proposed measure could be used to assess if the generated dataset resembles a realistic CF

dataset (is it suitable for making predictions) or its values behave as if they were random, and

if so, to which degree. Consequently, the measure can be used to further fine-tune the artificial

dataset generators.

Data quality has multiple aspects, discussed in e.g. [82] and [83]. Natural noise, based on

user inconsistency, was discussed in [84], [85], and showed to constrain the prediction ability

beyond some maximal ("magic barrier") value [86]. Another aspect is missing data, which is

related to dataset sparsity, specifically discussed in [87]. However, sparsity is information about

the amount of available data, not about its properties; for example, it does not capture whether

there are many (or any) users with similar preferences. Marlin et al. [88] have analyzed which

data is missing, showing and utilizing non-randomness of the missing data distribution.

However, to make reasonable predictions, all CF models explicitly or implicitly rely on the

assumption of similarity between (some) users and/or similarity between (some) items. Pre-

diction accuracy, and therefore the reliability of a recommender system, depends on the degree

of correlation of datasets’ values, which is opposed to randomness and noise. To the best of

our knowledge, there are not many global correlation-based measures of a dataset quality, and

existing ones include calculation of many user-user or item-item similarities, which is not more

efficient then calculating all predictions. Namely, user-user and item-item correlations are usu-

ally calculated using Pearson Correlation (PCC) and less often using vector cosine, Spearman

rank or Kendall’s τ correlation [89]. However, these measures are defined on the level on in-

dividual users/items only. Computing all pairwise similarities to count the number of similar

pairs (e.g., with PCC > 0.5) is infeasible for large datasets. Recently, [90] measured sparsity

and redundancy for setting the sampling levels in a CF model. Redundancy was defined using

the number of users, items, and ratings, as well as the average pairwise similarity of users hav-

ing at least one jointly rated item. As it is the case for the number of similar pairs, this measure

is computationally demanding as it potentially calculates O(N2) user-user similarities, each of

which takes at least O(ratings per user) time, which gives a very impractical time complexity

for datasets with e.g. 105 users.

Therefore, as a side contribution of this dissertation, in the next chapter we will define

two novel heuristic measures of a CF dataset quality, designed to quickly estimate the amount

of global user correlation and item correlation. Using comprehensive experiments on synthetic
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and real-world data, we will show that the proposed measures satisfy several desirable properties

such as correlating with the the accuracy of standard prediction models. We will derive several

applicable principles from the results.

2.2 Service Selection

In a composite (multi-task) application where multiple services are invoked for a user, the user’s

QoS requirements are usually not observed for individual invocations but for the whole compo-

sition. Therefore, QoS properties are calculated over the whole workflow. These requirements

can be part of a Service Level Agreement (SLA). The SLA usually considers multiple aspects

of QoS (e.g. availability, reliability, and response time) and can be violated even when all as-

pects except one are satisfied. The issue becomes more complex when various compositional

possibilities (Sequence, Parallel, Branch, Loop) have to be considered [6]. In a system with

many users (a multi-tenant system) with minimal requirements on various QoS properties such

as response time, reliability, and price [10, 11], there is need for a robust method which will

globally optimize the service selection. Namely, the output of the method should be an answer

to the following question: which service instances will be invoked by which users for which

tasks?

The simplest idea that first comes to mind is a greedy approach: select a service with best

QoS for each user. However, there are several problems with such an idea. First, QoS has many

properties, so the meaning of "best QoS" is unclear: there might be (and often are) possible

tradeoffs. For example, a service with higher reliability can be more costly; a service with

the fastest response time can be unreliable. Another issue is that, in a composite case, we are

not concerned only about the QoS of atomic services. What ultimately matters is QoS of the

whole composition, not just of a single task. Furthermore, as mentioned in the Introduction,

composition can be non-deterministic and probabilities and expected values might be taken

into account. If there are multiple potential execution paths for a composition (because of

probabilistic branching), it is difficult to locally estimate whether any particular user-service

choice leads to a good global solution. But most importantly, a service has a throughput limit:

the maximal number of requests (users) it can handle in a given time frame. Therefore, even for

non-composite applications (containing only a single task), greedy algorithms will not work:

selecting the "best" service instance for each request (by any criterion) will generally break the

throughput limit of the most "popular" services by asigning them too many requests to handle.

Therefore, more complex approaches need to be considered.

There has been a lot of work on QoS-based service selection, covering different aspects

and problem variations. Most of them assume the QoS values are already known or predicted

with reasonable accuracy, focusing on the constrained selection phase instead. The following
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sections briefly introduce the most influential selection strategies.

2.2.1 Single-User Case

Multi-criteria service selection is difficult even when focusing on a single user’s composite

service pipeline. To see why, consider a very simple case where there are two tasks in the

user’s composition (A and B) with services a1,a2 handling A, and b1,b2 handling B. Assume

that a1 and b1 have better reliability than a2 and b2, but on the other hand, a2 and b2 have a

better response time than a1 and b1. Then any of the choices (a1,b1), (a1,b2), (a2,b1), (a2,b2)

for service selection can be the best, depending on the actual QoS values of services and QoS

requirements of the user. By increasing the number of tasks and available services, the number

of possible selections grows exponentially.

To name a few approaches, [91] and [92] employ iterative multi-attribute combinatorial auc-

tion between services providers, while [93] seeks to improve this approach using an incentive

mechanism. BigData-space service selection was tackled by [94], taking into account both qual-

itative and quantitative user QoS preference with the service trust. Recently, [95] studied the

problem from a general Pareto-optimal angle in order to reduce search space in service compo-

sition. A polynomial time approximation for Pareto optimality was done by [96]. Similar work

was done by [97], trying to overcome the limitations of Pareto optimality. Approach by [98]

selects representative services adaptively: it divides the value range of each quality attribute

into sub-ranges, considering the QoS values of a sub-range as local constraints, and selects the

appropriate services from the divided QoS ranges so they can maximize the utility of a user

task. Some recent papers such as [99, 100] took into account the possible correlation of ser-

vices’ QoS attributes in a composition, while the probabilistic QoS values are considered in

[101]. Recently, [102] developed a mobility-aware approach.

To find the optimal solution for a single user’s service selection with composite service

pipeline, [103] reduced the problem to a Multiple Choice Knapsack Problem (MCKP) which

is NP-hard, but solvable in pseudo-polynomial time. However, they considered only a single

execution path in a composite pipeline. Taking into account a directed graph which contains

all execution paths in a dynamic pipeline, the problem becomes a Multiple Choice Multiple

Dimension Knapsack (MMKP), which is more complex and is usually solved by mixed integer

programming (MIP) [104, 105]. Others tried to improve on this exponential solution by reduc-

ing the search space: papers such as [14, 106] decompose each global QoS constraint c0 into a

set of local constraints c1, . . . ,ck, one for each task in the composite pipeline. The most influ-

ential approach seems to be [107], which identifies representative "skyline" services to improve

the efficiency along with determining local QoS quality levels.
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Figure 2.4: Multi-user service selection

2.2.2 Multi-User Case

In a multi-user scenario (Fig. 2.4), services’ throughputs are taken into account, making the

problem more complex than a sum of single-user problems, since the union of the solutions for

single-user problems can overload some services. Again, the problem can be solved by mixed

integer programming (MIP), which was done by [12, 15, 16]. To reduce the exponentially large

MIP search space, [108] formed a reduced service set by dismissing the services dominated by

another service, while [27] reduced the single-task problem size by clustering the services.

A polynomial, non-MIP approach on multi-user service selection was done by [26]. It con-

siders a single-task problem and reduces it to an instance of the assignment problem. Namely,

to account for throughput limits (T HRi = max. number of reqests to service i), this approach

creates T HRi "virtual services" for each service i, each being able to handle a single request.

For example, instead of a single service which can process 20 requests, we imagine 20 services

which can process one request each. Using this approach, the problem is reduced to finding

a one-to-one weighted matching between users and "virtual services" with minimal total cost.

This becomes a combinatorial problem, known as the assignment problem (AP), illustrated in

Fig. 2.5. In the mentioned paper, it is first tackled by a greedy algorithm (for efficiency pur-

Figure 2.5: Service selection seen as assignment problem
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poses), and then if the greedy algorithm does not find a satisfactory solution, the standard Hun-

garian (Kuhn-Munkres) algorithm for AP is applied [109]. The downside of this approach is

that multiplying the number of entities in the algorithm (because of "virtual services") degrades

the efficiency when throughputs are high.

The same idea is applied to a multi-task model by [106] using heuristic decomposition

of global QoS constraints into single-task constraints. However, this model depends on the

simplistic assumption that QoS values depend only on a service and not on a user. Similar

drawback is present in recent MIP-based solutions for multi-user multi-task service selection

[12, 15, 16]. In particular, the MIP search space in [16] is reduced using service clustering

based on their user-independent QoS values.

2.2.3 Shortcomings of Previous Approaches

Instead of assuming that a service instance has the same QoS for all users, our work focuses

on a more realistic scenario where each QoS value depends on a user-service pair. This as-

sumption was present in our previous discussion of QoS prediction models and supported by

the fact that QoS prediction models usually assume personalized QoS [110]. On the other hand,

service selection models (named in the previous two sections) tend to simplify this, because

personalized QoS increases the dimensionality of the problem input (QoS values form a matrix

instead of an array) which might lead to higher computational complexities, depending on the

chosen algorithm, or invalidate the approaches to reduce the search space by ranking or clus-

tering the services. However, personalized QoS increases the accuracy of the obtained solution,

since user-specific parameters (such as poor bandwidth) have a significant impact on the actual

received QoS. This was the motivation for our choice of user-dependent (personalized) QoS.

Another limitation of previous works is their handling of service compositions, where each

user’s execution plan allows many potential actual execution paths (sequences of performed

tasks) because of branching and loops. A compositional quality model proposed in [15] and

subsequently used in [12, 16] calculates the aggregated QoS either too simplistically, by sum-

ming/multiplying QoS of all potential services (in case of cost and availability), or inefficiently,

by taking max/min of all possible execution paths (in case of response time and throughput).

The latter approach is also unsuitable for integer programming where the constraints are linear.

In general, the QoS aggregation of such an approach is based on the worst-case execution path,

which may have low probability, leading to poor accuracy in practice.

The work which will be presented in this dissertation models the compositional QoS in a

more accurate and efficient way, focusing on expected QoS instead of a worst-case one. It

overcomes the timing limitations of MIP by avoiding it completely, opting for a faster but

potentially suboptimal solution instead. Summarized comparison with most related references

discussed above is given in Table 2.1. This table shows some of the key aspects in which our
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Table 2.1: Comparison of the most related papers (recent or influential)

multi-task user-dependent worst-case

year multi-user (service composition) QoS main approach complexity

He et al. [12] 2015 3 3 × mixed integer programming (MIP) exponential

Alrifai et al. [107] 2010 × 3 × enhanced MIP exponential

He et al. [15] 2012 3 3 × greedy + MIP exponential

Wang et al. [16] 2015 3 3 × clustering + MIP exponential

Wang and Cheng [27] 2016 3 × × clustering + MIP exponential

Wang et al. [26] 2014 3 × 3 assignment problem polynomial

our work 2019 3 3 3 transportation problem polynomial

work tries to overcome the limitations of the representative previous works, also showing the

difference in the main approach. The limitations shown in the table (and discussed above) are

the exponentially large search space, the failure to consider multi-task service compositions (or

realistic compositional QoS), or the assumption of QoS which does not depend on a user.
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Chapter 3

Real-time Adaptive QoS Prediction Using
Approximate Matrix Multiplication

The main motivation for the real-time adaptive QoS prediction model is a fact that much of

recent work focuses on real-time applications in heterogeneous systems [111] and real-time

workflows in various systems such as cyber-physical cloud systems [112]. Many of these sys-

tems depend on adaptive behavior [113]. Adaptability is especially crucial in highly dynamic,

changing environments such as service-oriented systems, where predictions of QoS should be

up to date. Therefore, this requirement is in focus of the present work. We propose a model that

can be used as a real-time support for atomic service selection while constructing composite

applications. The model was published in [17].

The proposed prediction model is based on collaborative filtering (CF). Before describing

the model itself, in Sect. 3.1 we will present our related contribution: a quality measure for

a CF dataset (published in [19]). Then, Sect. 3.2 describes the high-level overview of the

proposed QoS prediction model, Sect. 3.3 introduces the basic notation used in the model

description, while the later sections describe the three major phases of the proposed model: the

precomputation phase (Sect. 3.4), the prediction phase (Sect. 3.5), and the update phase (Sect.

3.6).

3.1 Global Correlation Measures for a CF Dataset

As suggested in Sect. 2.1.5, we attempt to estimate the prediction ability of a CF dataset (such

as a user-service QoS prediction dataset) based on user-user and item-item similarities, assum-

ing that in a "high-quality" dataset there are groups of highly correlated users (we can predict

the behavior of one based on the others) and groups of highly correlated items (we can predict

the ratings of one based on the others). As these are, in general, two distinct properties, we are

actually proposing two measures: one for the user correlation degree and one for the item cor-
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relation degree. As a consequence, we can compare the two measures when deciding between

the user-based and the item-based prediction model, as their prediction ability can differ. This

is useful only if the measures can be computed efficiently, which is the case for the proposed

measures.

Since high similarities among users and items imply better prediction ability (not only when

using PCC-based CF approaches), we attempt to estimate the dataset quality using real numbers

GUCM (Global User Correlation Measure) and GICM (Global Item Correlation Measure) with

the following properties:

∙ GUCM, GICM∈ [0,1] with a low value corresponding to low similarities and a high value

corresponding to high similarities.

∙ GUCM and GICM correlate with prediction accuracy, i.e., higher GUCM/GICM implies

higher Top-N precision rates.

∙ GUCM and GICM are close to 0 on artificial random datasets (with random real-valued

ratings).

∙ GUCM is close to 1 on a dataset where all users are like-minded. Analogously for GICM

and items.

∙ GUCM negatively correlates with the number of natural clusters of similar users, i.e.,

with the variability of user types. Analogously for GICM and items.

The following subsection gives definitions of GUCM and GICM with the algorithm for their

calculation. The properties described above are confirmed in the experimental results, Sect. 6.1.

3.1.1 Calculating GUCM and GICM

As the definitions and the calculation algorithms for GUCM and GICM are completely analo-

gous (symmetrical), we will describe GUCM in detail; GICM is then easily defined and calcu-

lated by switching the roles of "users" and "items" (for example, by transposing the user-item

matrix).

The basic idea is that if there are groups of like-minded users, this will reflect in their ratings

of a single item: the ratings of this item will not be uniformly distributed, but will be divisible

into groups of mutually close ratings. We will therefore focus on the ratings distribution at item

level and estimate its divergence from the uniform distribution.

Namely, looking at a single item i, we estimate the degree of users’ agreement on the item

rating as a real number in [0,1] as follows. We first compute the number of close pairs, de-

noted by CPi, which is the number of user pairs whose normalized ratings (with the average

subtracted) differ by less than a certain threshold T :

CPi = |{{u,v} ⊆Ui : |(ru,i− r̄u)− (rv,i− r̄v)|< T}|, (3.1)
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where Ui is the set of all users who have rated item i. If their number is |Ui|= Ki, the percentage

of close pairs, denoted by pi, equals the number of close pairs divided by the number of all

considered pairs:

pi =
CPi

Ki(Ki−1)/2
. (3.2)

This represents the probability that a random pair of users have close ratings on item i. Since

some close ratings naturally appear in random datasets as well, and since the threshold value

T has a direct impact on pi, we will "correct" pi by subtracting the expected value of the same

probability for the random distribution, i.e., the probability that two uniformly distributed ran-

dom ratings from the same range differ by less than T . This probability equals

q =
T (2D−T )

D2 , (3.3)

where D is the given range, i.e., the difference between the maximum and the minimum value

in the dataset: D = rmax− rmin. The proof of (3.3) is given in the Appendix.

We therefore define the user agreement degree on item i, denoted by UADi, as pi− q, i.e.,

the difference between the percentage of close pairs and the expected percentage for the random

dataset. In the unlikely case that pi−q < 0, we set the value to zero:

UADi = max{pi−q,0} ∈ [0,1]. (3.4)

Finally, GUCM is defined as the weighted average of user agreements across items, with the

weight wi equal to Ki (the amount of data used in calculating UADi):

GUCM =
∑

M
i=1 Ki ·UADi

∑
M
i=1 Ki

∈ [0,1], (3.5)

where M is the total number of items. We propose to set the aforementioned "closeness"

threshold Tuser to be the standard deviation of the user averages r̄u, because a small standard de-

viation implies similar subjective scales and, therefore, smaller differences between close pairs.

We have also tried other threshold values and found that the proposed choice gives meaningful

results in practice.

In order to compute CPi efficiently, we first sort the known ratings of item i as an increasing

sequence a1, . . . ,aKi . We want to find the number of pairs (k, l) such that k < l and al − ak <

T . For a fixed k, we find the largest possible l still within the threshold, i.e., the largest al

less than ak + T , and then the number of pairs for this fixed k equals l− k because all pairs

(k,k+ 1),(k,k+ 2), . . . ,(k, l) are close. When moving to the next k (i.e., increasing k by one),

we update l, but it obviously increases or stays the same. This means that, after initial sorting

in O(Ki logKi), the time complexity of calculating CPi is O(Ki) as we only move the indices k
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and l from the beginning to the end of the sorted ratings sequence.

The complete GUCM algorithm is given in Alg. 2 and computing GICM is entirely sym-

metrical (users←→ items).

ALGORITHM 2: The algorithm for calculating GUCM
Data: User-item ratings ru,i (u ∈ {1, . . . ,N}, i ∈ {1, . . . ,M})
D := rmax− rmin

for u = 1 to N independently do
r̄u := average{ru,i : u has rated i}

end
T := standardDeviation{r̄u : u = 1, . . . ,N}
q := T (2D−T )/D2

for i = 1 to M independently do
Ki := |{u : u has rated i}|
(a1,a2, . . . ,aKi) := sorted({ru,i : u has rated i})
CPi := 0
l := 1
for k = 1 to Ki do

while l < Ki and al+1−ak < T do
l := l +1

end
CPi :=CPi + l− k

end
pi :=CPi/(Ki(Ki−1)/2)
UADi := max{pi−q,0}

end
Return GUCM := (∑M

i=1 Ki ·UADi)/(∑
M
i=1 Ki)

Since calculations of UADi are mutually independent (as well as calculations of r̄u), they

can be computed concurrently.

The properties of GCM are evaluated in the experiments (Chapter 6). In further study, the

proposed measures could be refined to take into account semantic domain knowledge [114],

fuzziness [115], and multirelational networks [116].

3.2 QoS Prediction Model Overview

We now describe our adaptive QoS prediction model for accurate predictions in real-time [17].

We assume a system with M users and N services. A high-level overview of the proposed model

is depicted in Fig. 3.1. As can be seen in the figure, the model consists of the following phases:

∙ The precompute phase (1) : calculates approximate user-user and service-service simi-

larities, as well as lists of similar users/services for each user/service. Its time complexity

is between O(M2 logM +N2 logN) and O(M2N +N2M) and depends on the chosen ac-

curacy of approximation.
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Figure 3.1: Prediction model high-level overview

∙ The prediction phase (2) : calculates the prediction in point, i.e., estimates the QoS

value for user u on service i. It combines the user-based and service-based prediction,

taking into account the K1 users most similar to u and K2 services most similar to i. Apart

from the known QoS values, it also takes into account the support of each value, which is

the number of observed invocations used to calculate this value. Another advantage over

similar predictions is that it takes only O((K1+K2)/d) time, where d is the density of the

observed user-item matrix values.

∙ The update phase (3) : when a new record of QoS for user u on service i arrives, the

values used for further predictions are updated accordingly, in O(M +N) time. If the

environment changes over time, more recent records have greater weight, which enhances

the predictions. This makes the model adaptive.

3.3 Basic Notation

Throughout the rest of this chapter we will use the following notation.

∙ u,v ∈ {1, . . . ,M} denote users, and i, j ∈ {1, . . . ,N} denote services.

∙ ru,i ∈ [0, inf⟩ is the QoS value (e.g. reliability) of service i observed by user u.

∙ nu,i ∈ [0, inf⟩ is the number of observed invocations (records) of service i by user u in

the past invocation sample, used in computing the known value ru,i (which is usually the

average value of these records).

∙ r̄u is the average QoS value of user u on different services observed by u.

∙ r̄i is the average QoS value of service i for different users who observed it.
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∙ simu,v ∈ [−1,1] is the similarity between users u and v.

∙ simi, j ∈ [−1,1] is the similarity between services i and j.

∙ Iu ⊆ {1, . . . ,N} is the set of all services invoked by user u.

∙ Ii ⊆ {1, . . . ,M} is the set of all users who invoked service i.

∙ Iu,v ⊆ {1, . . . ,N} is the set of all services invoked by both users u and v.

∙ Ii, j ⊆ {1, . . . ,M} is the set of all users who invoked both services i and j.

3.4 The Precomputing Phase

This section describes the precomputing phase. Since the prediction formula (given in Sect. 3.5)

requires finding the most similar items to a given item, as well as their corresponding similarities

and average QoS values (r̄), we need to precompute them in order to have a fast prediction. The

first part describes how precomputing similarities can be reduced to matrix multiplication, the

second part discusses the matrix multiplication method, and the third part describes the rest of

the precomputing phase.

3.4.1 Precomputing the Similarities

Let us focus on the user similarities first. According to the standard Pearson Correlation for-

mula, the similarity of users u and v is calculated as

simu,v =
∑i∈Iu,v(ru,i− r̄u)(rv,i− r̄v)√

∑i∈Iu,v(ru,i− r̄u)2
√

∑i∈Iu,v(rv,i− r̄v)2
. (3.6)

Clearly, we can compute the similarity for a single pair in the O(N) time complexity, which

would give an O(M2N) time complexity for computing the similarities for all pairs of users. In

order to do it faster, we break down the similarity formula into three parts:

simu,v =
U1[u,v]√

U2[u,v]
√

U3[u,v]
, (3.7)

where

U1[u,v] = ∑
i∈Iu,v

(ru,i− r̄u)(rv,i− r̄v), (3.8)

U2[u,v] = ∑
i∈Iu,v

(ru,i− r̄u)
2, (3.9)

U3[u,v] = ∑
i∈Iu,v

(rv,i− r̄v)
2. (3.10)
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The basic idea is to see U1, U2, U3 as M×M matrices which can be calculated by multiplying

other matrices. For example, it looks like U1[u,v] is a product of the row-vector with values

ru,i− r̄u and the column-vector with values rv,i− r̄v, but the i ∈ Iu,v condition makes things a

little more complicated.

To actualize the idea, we create three auxiliary M×N matrices: B, U , and U ′, defined as

follows:

Bu,i :=

1, if user u has invoked service i,

0, otherwise,
(3.11)

Uu,i := Bu,i(ru,i− r̄u), (3.12)

U ′u,i := Bu,i(ru,i− r̄u)
2. (3.13)

Now we can calculate U1, U2, and U3 using the following theorem.

Theorem 1. It holds that

U1 =UUT , (3.14)

U2 =U ′BT , (3.15)

U3 =UT
2 . (3.16)

Proof. From definition of B it follows that

i ∈ Iu,v ⇐⇒ Bu,iBv,i = 1. (3.17)

Now we have

U1[u,v] = ∑
i∈Iu,v

(ru,i− r̄u)(rv,i− r̄v)

=
N

∑
i=1

Bu,iBv,i(ru,i− r̄u)(rv,i− r̄v)

=
N

∑
i=1

Uu,iUv,i

=
N

∑
i=1

Uu,iUT
i,v,
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which proves (3.14). Similarly,

U2[u,v] = ∑
i∈Iu,v

(ru,i− r̄u)
2

=
N

∑
i=1

Bu,iBv,i(ru,i− r̄u)
2

=
N

∑
i=1

U ′u,iBv,i

=
N

∑
i=1

U ′u,iB
T
i,v,

which proves (3.15). To prove (3.16), notice that U2[u,v] = U3[v,u] follows directly from defi-

nitions (3.9) and (3.10).

The theorem implies that all similarities simu,v can be calculated at once using two matrix

multiplications and other, faster operations. The situation with service similarities is analogous:

simi, j =
∑u∈Ii, j(ru,i− r̄i)(ru, j− r̄ j)√

∑u∈Ii, j(ru,i− r̄i)2
√

∑u∈Ii, j(ru, j− r̄ j)2
(3.18)

=
S1[i, j]√

S2[i, j]
√

S3[i, j]
. (3.19)

The auxiliary matrices for computing S1, S2, S3 are B (defined above), S and S′, all of dimensions

M×N:

Su,i := Bu,i(ru,i− r̄i), (3.20)

S′u,i := Bu,i(ru,i− r̄i)
2. (3.21)

Then, S1, S2, and S3 can be calculated using the following theorem, which is analogous to

Theorem 1.

Theorem 2. It holds that

S1 = ST S, (3.22)

S2 = S′T B, (3.23)

S3 = ST
2 . (3.24)

Proof. Analogous to the proof of Theorem 1.
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Apart from being intermediary results in precomputing the similarities, matrices U1, U2, U3,

S1, S2, S3 should be kept in the case of a real-time adaptive model, since the only way to quickly

update a similarity is to update each of its three components (see Sect. 3.6.2).

3.4.2 Matrix Multiplication

We now discuss the method of matrix multiplication. If we use a standard matrix multiplication

algorithm, the time complexity (assuming M = N for simplicity) is O(N3), which is no better

than the naive precomputing without matrix multiplication. But there are faster algorithms. For

example, Strassen matrix multiplication takes O(N2.807355) time.*

Apart from the exact matrix multiplication algorithms, there are much faster algoritms which

compute an approximation of the product AB for given matrices A and B. As proposed by

researchers in [117], in order to estimate (AB)i j, instead of multiplying the whole i-th row of

A with the whole j-th column of B, we randomly pick S elements from i-th row of A and the

corresponding S elements from j-th column of B. The sum of their products, appropriately

scaled, is an approximation of (AB)i j. In our model we use uniform sampling, i.e., the elements

of a row/column are picked with equal probabilities each time. The pseudocode is given in

Algorithm 3 and describes the multiplication of an a×b matrix with a b× c matrix.

ALGORITHM 3: The approximate matrix multiplication (source: [117], Sect. 5.) with uniform sam-
pling.
Data: matrices A (size a×b) and B (size b× c)

1 for i = 1, . . . ,a, and j = 1, . . . ,c independently do
2 for t = 1 to S independently do
3 k := randomElement{1, . . . ,b}
4 X i j

t := b
S AikBk j

5 end
6 Return ∑

S
t=1 X i j

t as the approximation to (AB)i j.
7 end

The time complexity clearly depends on the sample size S and equals O(ac ·S). In our model,

the multiplications are done for (a,b,c) = (M,N,M) and (a,b,c) = (N,M,N), which gives the

time complexity of O(M2 · S+N2 · S) = O(S(M2 +N2)). By choosing the constant S, we can

control the speed and the accuracy of the computation. Greater S gives a more accurate, but

slower approximation. The experimental results (Sect. 6.2) show that the approximate matrix

multiplication is useful for our purposes.

Finally, we could utilize parallel computing for the exact or the approximate matrix mul-

tiplication, which would lead to even lower time complexities, but is beyond the scope of this

*There are matrix multiplication algorithms with even better asymptotic time complexity (i.e., about O(N2.37)
for the Coppersmith–Winograd algorithm), but they only provide advantage for matrices too large for current
practical purposes.
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dissertation.

3.4.3 Precomputing Lists of Similar Items

After all similarities have been computed, for each user u we prepare a list of all other users v

such that simu,v > 0, and we sort it from the most similar to the least similar user. We denote

this list by SimilarUsers[u]. We analogously create the list SimilarServices[i] for each service

i. These lists will be used for fast prediction (see the following section).

The total time complexity of creating these lists is O(M2 logM +N2 logN). Namely, for

each of M users we are sorting a list of at most M elements, so each sorting takes O(M logM)

time; analogously for the services.

We also need to precompute the user averages r̄u and the service averages r̄i, using the

standard formulas:

r̄u =
∑i∈Iu ru,i

|Iu|
, r̄i =

∑u∈Ii ru,i

|Ii|
. (3.25)

3.5 Prediction in Point

Suppose that we are to predict the QoS value for user-service pair (u, i). We first calculate the

user-based prediction and the service-based prediction.

The standard formula for user-based prediction (UPCC) [59] is

UPCCu,i = r̄u +
∑v∈Ii simu,v(rv,i− r̄v)

∑v∈Ii |simu,v|
(3.26)

Our model uses a slightly different approach which gave better experimental results (described

in Sect. 6.2), namely:

∙ The summation goes over the set of K1 users with greatest positive similarity to u which

have observed service i. Let best(u,K1, i) denote this set. These users are found by

iterating the precomputed list SimilarUsers[u], which is sorted by similarity, until we

find K1 users that have observed service i, or reach the end of the list. Depending on the

list length, we need to check between 0 and M users; the complexity analysis is given in

Sect. 6.2.7.

∙ The value rv,i is not only multiplied (weighted) with simu,v, but also with the support of

this value, which is the number of observed invocations nv,i, since the accuracy of the

value increases with the number of records. Namely, weight of the value rv,i (for a given

u) is computed as

w[rv,i] := simu,v nv,i. (3.27)

∙ Scaling of rv,i is not done by subtracting r̄v and then adding the weighted sum to r̄u.
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Instead, scaling is done by multiplying rv,i with the ratio r̄u/r̄v.

Therefore, in our model, the user-based prediction (UP) is calculated as

UPu,i =
∑v∈best(u,K1,i)w[rv,i]rv,i

r̄u

r̄v

∑v∈best(u,K1,i)w[rv,i]
. (3.28)

The service-based prediction (IP) is calculated analogously:

IPu,i =

∑ j∈best(i,K2,u)w[ru, j]ru, j
r̄i

r̄ j

∑ j∈best(i,K2,u)w[ru, j]
, (3.29)

where

w[ru, j] := simi, j nu, j. (3.30)

After UPu,i and IPu,i have been calculated, we combine them into final prediction:

Pu,i = λ1UPu,i +λ2IPu,i, (3.31)

where λ1,λ2 ∈ [0,1], λ1+λ2 = 1 are arbitrarily chosen constants which control the influence of

the user-based and service-based predictions. This idea is called Hybrid prediction [40].

In some special cases, when the available data is very sparse or unreliable, instead of con-

stant weights λ1,λ2 of UP and IP, we can make the weights depend on the current support of

the predictions UPu,i and IPu,i. For example, if the data used for calulating UPu,i (this data is

rv,i for all v ∈ best(u,K1, i)) is more numerous and/or more reliable than the data for IPu,i, then

UPu,i should have a larger influence on the prediction (λ1 > λ2). Since (3.27) and (3.30) are our

measure of support, we can set

λ1 = ∑
v∈best(u,K1,i)

w[rv,i], λ2 = ∑
j∈best(i,K2,u)

w[ru, j], (3.32)

with the appropriate scaling to ensure that λ1 + λ2 = 1. This formula gives better results in

Stochastic experiment (see Sect. 6.2).

If there are no users similar to u (i.e., the list SimilarUsers[u] is empty), we define UPu,i = ru

as the average QoS value of this user, and analogously, IPu,i = ri in case of no services similar

to i. In case that u is a new user which has not previously experienced any QoS values (a cold

start problem), the value of UPu,i is not calculated and IPu,i is used as prediction, and vice versa

in case of a new service.
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3.6 Handling Updates

We now describe the mechanisms by which the model adapts to dynamic environment with

many updates. Suppose that a new record for user u and service i has arrived with the value

of val, meaning that the recently measured QoS value for the corresponding user-service pair

equals val. The adaptive model should update all values used for futher predictions that this

record affects. This section describes how various values are updated. The first part deals with

updating ru,i and nu,i. The second part deals with updating the averages r̄u and r̄i, as well as

the similarities that have changed. The third part deals with updating the SimilarUsers and

SimilarServices lists that have changed.

3.6.1 Updating ru,i and nu,i

If nu,i is the number of previous records for this user-service pair, and ru,i the previous average

value of these records, then the previous total value equals nu,iru,i. The new total value is

nu,iru,i + val, so the new average value is ru,i := (nu,iru,i + val)/(nu,i +1). Also, nu,i should be

increased by one.

However, in case of environment that changes over time, we want to make new records

contribute more to the average, i.e., their weight w will not necessarily be equal to 1, and will

increase with each new update. We therefore have the general formulas:

ru,i :=
nu,iru,i +w · val

nu,i +w
, (3.33)

nu,i := nu,i +w, (3.34)

w := w+∆w. (3.35)

Initially, w = 1. The weight increment constant ∆w can be arbitrarily set depending on how fast

the environment changes. If the environment is not subject to significant change, we set ∆w= 0,

i.e., the weight of each record will be equal to 1.

3.6.2 Updating the Averages and the Similarities

We proceed to update the averages r̄u and r̄i. This can be done by simply calculating them again

with time complexity of O(M+N) using (3.25), since we have to update the similarities as well,

which will also take O(M+N) time.

Namely, we have to update simu,v for all users v, and simi, j for all services j, which is a

total of M+N values. To update a single similarity in O(1) time, we have to keep the similarity
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components (U1, U2, U3 or S1, S2, S3) introduced in the precomputing phase (Sect. 3.4). Each

of these components is a sum, and we need to change a single summand, which is easily done

in O(1) time by subtracting the previous value of the summand and adding the new value of the

summand. Then we update the similarity according to the formula (3.7) or (3.19).

3.6.3 Updating Lists of Similar Items

Upon updating a similarity simx,y, we might need to update the lists SimilarUsers[x] and

SimilarServices[y]. Namely, if the similarity has changed from negative to positive, a new item

is added to the list. If the similarity has changed from positive to negative, an item should be

removed from the list. This does not affect the overall time complexity since a similarity rarely

changes its sign. When it does, its value is usually close to zero, so adding/removing is done

around the end of a sorted list, which does not take much time.

However, even if the similarity stays positive, over time it can change enough to make a list

of similar items not sorted anymore. This is not a big issue since prediction depends only on

the set of the top K appropriate items in a list, regardless of their exact order; also, the items

with high similarity to a certain item (those with greatest influence on the prediction) are likely

to stay in the top K set. We should be concerned about this issue only when the environment or

the available data is subject to a quite significant change.

In that case, there are several ways to keep the lists sorted (or roughly sorted). One way is

to keep an auxiliary matrix to quickly tell the position of an item x in the list of an item y; then

it is easy to move x a few places to the left or to the right in the list when simx,y is changed.

The second way is to sort the lists SimilarUsers[u] and SimilarServices[i] when the update for

the pair (u, i) arrives, which slightly increases the time complexity of the update step: from

O(M+N) to O(M logM+N logN). The third way is to sort all the lists periodically, when we

estimate that cumulative similarity changes have been significant or when the model is idle.

3.6.4 Adding a New User/Service

The model should initially allocate arrays with enough memory for potential new users and

services; in other words, M and N can be larger than the actual number of users and services

at that point. With that assumption, adding a new user (or a new service) simply amounts to

handling new updates to previously unused elements of similarity arrays. This is simulated in

the "Changing Stochastic" and "Scalability" experiments (Sect. 6.2.2) where no QoS values

are initially known to the model – in effect, no users and services are present. The "addition"

of a new user u is equivalent to receiving the first update of her QoS value for any service.

Analogously, the "addition" of a new service i is equivalent to receiving the first update of its

QoS value for any user.
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Chapter 4

Compositional QoS Model

In this chapter we introduce and define two important tools (prerequisites) for our service se-

lection method which will be presented in Chapter 5.

First, we describe a realistic QoS model for service compositions where the actual execution

path is non-deterministic, i.e., not known in advance. For a given execution plan consisting of

standard compositional structures (Sequence, Parallel, Conditional Branch, and Loop), based

on probabilities, it estimates the expected number of service invocations per task, as well as

the expected QoS. The QoS model is defined is Sect. 4.1 along with the required formulas for

recursive calculation of expected QoS values.

Next, in Sect. 4.2 we propose a novel paradigm for estimating selection utility for a partic-

ular task in a composition, which measures the cost of a given user-service match with respect

to her/his compositional QoS requirements. This concept is named matching difficulty. In other

words, we define a heuristic cost of assigning a particular service instance for a particular task to

a particular user. This cost is composition-aware, meaning that it takes into account other tasks

in the user’s service composition, as well as the corresponding service candidates and their QoS

values. This cost will then be minimized in the proposed service selection algorithm.

4.1 Probabilistic Compositional QoS

The main idea of the proposed compositional QoS model is to work with expected QoS since, in

general, different execution paths have different probabilities. The model takes a composition

(execution plan) as input and calculates the expected number of invocations for each task, as

well as the expected aggregated QoS values if actual services selected for the tasks are given.

The given execution plan can be a complex composition containing all standard compositional

structures: Sequence, Branch, Parallel, and Loop (see Fig. 4.1 for illustration). The proposed

model is recursive: each execution plan is either an atomic task or consists of several execution

plans composed by a standard compositional structure.
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Figure 4.1: Example of a service composition with tasks T1, . . . ,T6
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Figure 4.2: Composition example [12]: multi-tenant travel booking service-based system

Let us formalize the ideas from the previous paragraph by defining the expected number of

invocations for each task in a composition and the expected compositional QoS. We assume that

for each of the q considered QoS properties (such as response time, reliability, price...) there is

an input matrix of size |U |× |I| describing the corresponding QoS values for each user-service

pair. These values are either known or obtained by a QoS prediction model (such as the one

presented in Chapter 3). Namely, let QoSk
ui denotes the k-th QoS property for invocation of

service i ∈ I by user u ∈U , where k = 1,2, . . . ,q. (A complete list of notations used in this and

the following chapter is given in Table 4.1.)

Definition 4.1.1 (Expected invocations). Let C ("composition") be an execution plan of user

u, let {T1,T2, . . . ,Tn} be the set of all tasks in the system, and let q be the number of observed

QoS properties. Then EI(C) denotes an n-dimensional vector such that EI(C) j is the expected
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Table 4.1: Notation list for Chapters 4 and 5

U set of users

u single user from U

I set of services

n number of tasks (service classes)

Tj a functionality (task) performed by service class I j ( j = 1, . . . ,n)

I j set of functionally equivalent services (service class) corresponding to task Tj

i single service from I or I j

T HRi throughput limit (max. throughput) for service i

q number of considered QoS properties

QoSk
ui value of k-th QoS property for (u, i) pair

Reqk
u requirement (min/max value) for obtained k-th QoS property for user u

xui is service i selected for user u (0 or 1)

cui utility cost of selecting service i for user u

Cu execution plan (composition of tasks) for user u

EI(Cu) j expected number of invocations for task Tj in composition Cu

EI(Cu) n-dimensional vector of values EI(Cu) j ( j = 1, . . . ,n)

QoS(C,s1, ...,sn)k expected value of k-th QoS property in composition C if services s1, . . . ,sn are selected for
tasks T1, . . . ,Tn

QoS(Cu) q-dimensional vector of expected QoS(Cu,s1, . . . ,sn)k values for k = 1, . . . ,q

p-choicek(u, I j) service positioned at the p-th percentile when I j is sorted by QoSk
ui

MDk
j(i→ u) matching difficulty of selecting service i ∈ I j for user u with respect to k-th QoS property

U j set of users for which task Tj appears in their composition plan

T Pj transportation problem for users in U j and services in I j

cui(T Pj) utility cost of selecting service i for user u in T Pj

wk
u weight of k-th QoS property for user u

α(r) weight adjustment factor in r-th iteration of the algorithm

TP transportation problem

VAM Vogel Approximation Method for TP

TSM Transportation Simplex Method for TP

SS-VAM proposed service selection algorithm which uses VAM to solve TP

SS-TSM proposed service selection algorithm which uses VAM+TSM to solve TP

AP assignment problem (alternative approach)

MIP mixed integer programming (alternative approach)
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number of invocations of Tj in execution plan C.

For example, if the number of tasks in the composition is n = 3, and if we expect two

invocations of T1, one invocation of T2, and 0.5 invocations of T3, then EI(C) = [2, 1, 0.5].

Definition 4.1.2 (Expected QoS). Assume that services s1,s2, . . . ,sn are given such that s j is

selected for task Tj (for all j = 1,2, . . . ,n). Then QoS(C,s1, . . . ,sn) denotes the q-dimensional

vector, written as QoS(C) for simplicity, such that QoS(C)k is the expected value of k-th QoS

property in execution plan C.

As an example, let us assume three QoS properties (q = 3): reliability, response time, and

price. The expected compositional values of these properties depend on a particular service

selection. If the selection of service candidates s1, . . . ,sn for composition C leads to expected

reliability of 0.99, expected response time of 0.1s, and expected price of $5, then QoS(C) =

QoS(C,s1, . . . ,sn) = [0.99, 0.1, 5].

We now give the recursive formulas for calculating EI(C) and QoS(C) based on the compo-

sitional structure. For the sake of simplicity, we unify the formulas for different QoS properties.

For example, since availability/reliability is the only QoS property where aggregation is cal-

culated by multiplication (since this property represents success probability), we work with

logarithms of actual values to convert multiplication into addition.

∙ Atomic task. If C consists of a single task Ti, then:

EI(C)i = 1, and EI(C) j = 0 for tasks j ̸= i; (4.1)

QoS(C)k = QoSk
usi

for QoS properties k = 1, . . . ,q. (4.2)

∙ Sequence (execution one-by-one). If C is a sequential composition of execution plans

C1,C2, . . . ,Cm, then

EI(C) =
m

∑
j=1

EI(C j), (4.3)

QoS(C) =
m

∑
j=1

QoS(C j). (4.4)

∙ Branch (execution of one out of several paths). If C is a composition which branches into

execution plans C1,C2, . . . ,Cm with respective probabilities p1, p2, . . . , pm with p1 + · · ·+
pm = 1, then

EI(C) =
m

∑
j=1

p j EI(C j), (4.5)

QoS(C) =
m

∑
j=1

p j QoS(C j). (4.6)
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∙ Parallel (concurrent execution). Let C be a parallel composition of execution plans C1,

C2, . . . , Cm. Then,

EI(C) =
m

∑
j=1

EI(C j). (4.7)

The formula for QoS(C) in this case depends on the specific QoS property. In the case of

e.g. price,

QoS(C) =
m

∑
j=1

QoS(C j). (4.8)

In the case of availability or reliability, the values for parallel plans are multiplied (be-

cause all of them must succeed). Since we work with logarithms to convert multiplication

into addition (as already mentioned), the formula is again 4.8.

However, in the case of response time,

QoS(C) =
m

max
j=1

QoS(C j), (4.9)

since the total response time will correspond to the longest plan in the parallel structure.

∙ Loop (repetitious execution). If C is a loop in which execution plan C′ is repeated m

times, where m is the expected number of repetitions in case that the precise number of

repetitions is unknown, then

EI(C) = m ·EI(C′), (4.10)

QoS(C) = m ·QoS(C′). (4.11)

If C′ is repeated until some success condition is met, and if the probability of success in

a single repetition is p(C′), then the number of repetitions m is geometrically distributed.

Namely, it is the number of Bernoulli trials needed to get one success, and its expected

value is known to be E[m] =
1

p(C′)
. (For example, if C′ is successful in 50% cases, then

two repetitions until success are expected on average.) In this case, therefore,

EI(C) = E[m] ·EI(C′) =
EI(C′)
p(C′)

, (4.12)

QoS(C) = E[m] ·QoS(C′) =
QoS(C′)

p(C′)
. (4.13)

The probabilities used in the above formulas depend on the functional properties of the

application ("what it does") and can be estimated empirically depending on the application. For

instance, in the travel-agent SBS example (similar to Fig. 4.2), branching into flight search or

train search can depend on the condition "travelling abroad or not?". A simple log statistics can
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estimate the probability of such a condition.

In the proposed service selection algorithm, the vector EI(Cu) for each user u is calculated

initially, while vectors QoS(Cu) are calculated when testing specific service selections in later

steps. The algorithm will be thoroughly described in Chapter 5.

4.2 Composition-Aware Utility Cost

After having derived the formulas for expected compositional QoS for a particular service se-

lection, we are going to use them in order to define a good estimate to answer the following

question:

How useful would it be to choose service candidate i ∈ I (for the corresponding task Tj) in

a service composition of user u ∈U?

Such a cost will then guide the service selection algorithm, which will aim to optimize it.

A single value of a utility cost is local, but it we expect the cost to lead to good performance,

it should also be global-aware. This means that other tasks in the composition should be taken

into account when estimating the cost, not only the QoS value of a connection i→ u (or the

QoS values of other service instances in task Tj only).

The idea of our utility cost is to reflect both the global QoS requirements of the user and

the actual QoS values of all services, including the services corresponding to other tasks. For

example, consider a situation where a relatively good QoS value of the observed service i might

still be insufficient for user u because services in other tasks mostly have lower QoS values for

this user. In this case, we need a better service: matching i→ u should be expensive because it

is still difficult to satisfy u’s global QoS requirement considering other tasks. This will force the

optimization algorithm to choose a service with even better QoS in task Tj. In another situation,

if matching i→ u is good enough even if the corresponding local QoS value is not high, the

algorithm should be guided to make that choice based on the low utility cost.

Let us estimate how feasible it is (from 0 to 1) to match i→ u for task Tj, considering the

k-th QoS property. Informally:

∙ The matching difficulty of i→ u is equal to 0 ("easy") if selecting i→ u for task Tj along

with the worst services for other tasks still satisfies Reqk
u, i.e. the k-th QoS requirement

for user u.

∙ On the other hand, if selecting i→ u for task Tj requires us to select only the best services

for other tasks to satisfy the requirement, then the match i→ u is 1 ("difficult").

∙ If selecting i→ u for task Tj requires us to select at least the average services for other

tasks to satisfy the requirement, then the match i→ u is 0.5 ("medium").

To formalize the above intuitions, let us first formalize the notions of "worst", "best", and "aver-

age" service for a corresponding user, task and QoS property. For that purpose, we will perform
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the QoS-based ranking of services in each task. Since the number of services differs from task

to task, we use percentiles as normalized ranks, as in the following definition ("p" stands for

"percentile").

Definition 4.2.1 (p-quality). For user u, QoS property k, and task Tj, we say that service i ∈ I j

has p-quality if it is positioned at the p-th percentile in the list of services I j sorted in ascending

order by their k-th QoS property for user u (high percentile – better QoS). Such a service is

denoted by p-choicek(u, I j).

For example, if service i ∈ I j is such that QoSk
ui is better than (or equal to) 90% of all QoSk

us,

s ∈ I j, then it has 90%-quality, i.e., i = 90%-choicek(u, I j). A service with the best QoSk for

user u in I j has 100%-quality (it is 100%-choicek(u, I j)), and a service with the worst QoS has

0%-quality.

We are now ready to define the matching difficulty of i→ u as an answer to the following

question (informally):

If i→ u is selected in task Tj, do we need low or high quality services in other tasks to satisfy

Reqk
u?

Of course, if we need to choose high-quality services, there are less possibilities for selection

and the difficulty is higher. This is formalized in the following definition.

Definition 4.2.2 (Matching difficulty). The matching difficulty MDk
j(i→ u), defined for user u

and service i corresponding to task Tj, with respect to the k-th QoS property, is defined as the

smallest number p ∈ [0,1] for which the following statement is true:

∙ We can satisfy the k-th QoS requirement Reqk
u by the obtained QoS(Cu) if we select the

following services for user u: service i for task Tj, and services with p-quality for other

tasks Tj′ ( j′ ̸= j).

Formally,
MDk

j(i→ u) = min{p ∈ [0,1] :

Reqk
u ≤ QoS(Cu, i∪{p-choicek(u, I j′), j′ ̸= j}).

(4.14)

The precision of p is not essential: the cost is heuristic so it is reasonable to approximate

MD with the error of up to 0.1. Therefore, to calculate MD, we suggest to iterate over p =

0,10%,20%, . . . ,100% and select the first p in this sequence for which the corresponding p-

quality selection satisfies Reqk
u ≤ QoS(Cu). Note that the global QoS(Cu) are expected values,

computed according to the proposed compositional QoS model in the previous section, Eq.

4.2-4.13.

Fig. 4.3 illustrates the concept of matching difficulty. To compute the utility of selection

i→ u in task Tj, we simulate selecting services in other tasks at different levels of quality.

MDk
j(i→ u) is the lowest level for which the corresponding selection is enough to satisfy Reqk

u.

For example, MDk
j(i→ u) = 0.2 means that selecting the services ranked at 20-th percentiles for
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Figure 4.3: Illustration of the concept of matching difficulty i→ u for a fixed user u, service i
and QoS property k

all tasks other than Tj is just enough, and such a selection is easy to obtain (low difficulty, i.e.,

low heuristic cost). In a different case, MDk
j(i→ u) = 0.8 means that selecting much "better"

services is necessary, and such a selection is harder to obtain (high difficulty, i.e., high heuristic

cost).

If implemented carefully, without calculating the same QoS sums multiple times for differ-

ent tasks, computation of MD is not a dominating factor in the overall time complexity of the

service selection algorithm. In other words, this computation does not significantly contribute

to the overall execution time.

Since MDk corresponds to a single k-th QoS property, the actual utility cost of a given match

i→ u should take into account all QoS properties, as in the following definition.

Definition 4.2.3 (Utility cost). The utility cost cui for matching the service instance i to user

u (for task Tj) is the sum of matching difficulties MDk
j(i→ u) over all QoS properties k =

1,2, . . . ,q:

cui =
q

∑
k=1

MDk
j(i→ u). (4.15)
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Chapter 5

Fast Multi-Criteria Service Selection for
Multi-User Composite Applications

In this chapter we describe an efficient approach to the most general service selection prob-

lem, published by the author in [18]. Namely, we have found that the general service selection

problem under certain heuristic assumptions can be reduced to a combinatorial transportation

problem, which has the advantages of a polynomial solution and allows for an iterative heuris-

tic algorithm which can be applied instead of exact, but more time consuming mixed integer

programming approaches.

Sect. 5.1 describes the solution for a single-task scenario, which is a special case of the

general algorithm and also serves as a starting point to make the general algorithm easier to

understand. Sect. 5.2 describes the proposed general algorithm.

5.1 Single-Task Model

For a single-task model (published by the author in [20]), we consider a set U of active users,

each with an execution plan consisting of a single (atomic) task. We assume that all users

demand the same task, with a set I of the available service instances (a service class). In case

of different tasks for different users, we can separately solve the selection subproblems for each

task, which can be parallelized.

Each service instance (or simply service) i ∈ I has a throughput limit T HRi which is the

maximal number of requests it can handle in the given time frame. For each considered QoS

property (such as response time, reliability, price...) there is an input matrix of size |U | × |I|
describing the corresponding QoS values for each (user, service) pair. Namely, QoSk

ui denotes

the k-th QoS property for invocation of service i ∈ I by user u ∈U .

As in the general model, at this point we do not explore how the QoS matrices are obtained.

Their values can be derived either by QoS prediction (as in Chapter 3) or by estimating values
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using service monitoring approaches, a variety of which have been described in the literature

[118, 119]. Although sometimes effective, service monitoring methods can have limitations in

practice as frequent service polling for purposes of reliability estimation can lead to degradation

in service performance. One way to mitigate the issues present in service monitoring is to

utilize predictive methods, either by fitting the collected data to predefined models or by using

statistical methods [17, 61, 80, 81].

Each user’s request has to be mapped to a service such that, for each (k-th) QoS property, the

user’s requirement for maximal/minimal QoS value Reqk
u is respected. In addition, throughput

limits must be satisfied: for each i ∈ I it must hold that T HRi is not less than the number of

requests mapped to i. The goal is to find a solution respecting all (or as many as possible) QoS

requirements.

Our approach constructs an instance of transportation problem (TP), a well known problem

in operational research [120]. Let us first briefly define the (abstract) transportation problem in

general terms, and then describe how our service selection problem can be reduced to it. In a

transportation problem there are two kinds of entities, which can be represented as nodes on

the left and the right side of a bipartite graph. On one side there are suppliers (e.g. factories),

each having a given number of items to ship. On the other side there are demanders (e.g.

shops), each having a given number of items to receive. Each supplier-demander connection

(represented by an edge in the bipartite graph) has a shipping cost: the price of shipping a single

item from the particular supplier to the particular demander. The goal is to find a shipping

distribution (how many items to ship from a particular supplier to a particular demander) which

Supply THR2

Supply THR1

Supply THRi

... ...

Demand 1

Demand 1

Demand 1

UsersServices

cost cui

Figure 5.1: Reduction of single-task service selection to the transportation problem (T HRi is a
throughput limit of service i)
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will minimize the total shipping cost. That cost is equal to the sum of shipping costs for each

supplier-demander connection multiplied by the chosen number of items shipped along that

connection. The requirement to satisfy is that each demander receives as many items as its

given demand and that each supplier ships no more items than its given supply.

The applied transportation problem in the case of a single-task service selection is depicted

in Fig. 5.1. As can be seen in the figure, nodes on the right side of the bipartite graph repre-

sent users, each having a demand which in our case equals to the number of required requests

– usually, one request per user is made in a single-task scenario. Nodes on the left side of

the bipartite graph represent services, each having a supply which is in our case equal to its

throughput* T HRi. Matching user u to service i has a cost cui of "shipping" a single request

through the corresponding user-service edge, which in our case equals 0 ("free shipping") if the

corresponding QoSk
ui values satisfy all the QoS requirements of user u, and otherwise equals the

number of unsatisfied requirements.

For example, if user u has three QoS requirements (for reliability, response time, and price),

and if service i satisfies all of them, the shipping cost cui is zero. If service i satisfies the QoS

requirements for response time and price, but not for reliability, then cui = 1 because one re-

quirement is not satisfied. If none of the three QoS requirements would be satisfied by selecting

i→ u, then cui = 3. Minimizing the total shipping cost in the service selection will, therefore,

lead to minimization of the total number of unsatisfied QoS requirements (or, equivalently, max-

imization of the number of satisfied QoS requirements). Note that this definition is special to

the single-task scenario only. In the general algorithm with service composition, utility cost

defined in the previous chapter (based on matching difficulty) will be used as cui. It is not used

here because of the nature of its definition, which is meaningless in the single-task case.

In our transportation problem, the goal is to find the shipping distribution (i.e., to choose

edges) from the suppliers (services) to the demanders (users) which minimizes the total shipping

cost while satisfying all demands and supply constraints. If the obtained total cost is 0, it

means that the obtained user-service matching satisfies all of users’ QoS requirements. This is

formalized in the following definition.

Definition 5.1.1 (Single-task TP solution). Let xui ∈ {0,1} denote whether an edge i→ u is

chosen for shipping; i.e., whether service i is selected for user u’s request. The unknowns

{xui : u ∈U, i ∈ I} form a solution of the corresponding transportation problem if the following

constraints are satisfied:

∙ Request demands: for each user u ∈U,

∑
i∈I

xui = 1, (5.1)

*Throughput is abbreviated as THR since we use the abbreviation TP for the transportation problem.
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i.e., exactly one service is chosen for the request of user u.

∙ Request supplies: for each service i ∈ I,

T HRi ≥ ∑
u∈U

xui, (5.2)

i.e., the total number of users invoking i does not exceed its throughput limit.

∙ The total cost

Ctotal = ∑
u,i

xuicui (5.3)

is minimized, where the edge cost cui is equal to the number of unsatisfied QoS require-

ments of user u ∈U in case that service i ∈ I is chosen for her request.

The transportation problem in our case is unbalanced because not all supplies have to be

used, i.e., service throughputs do not have to be exhausted. In other words, some services will

not have to process as many requests as they are maximally able to. In the balanced TP, for

which the standard TP algorithms are used, the difference between the total demand and the

total supply is equal to zero, meaning that all supply must be spent, which makes the algorithms

simpler. To balance the problem, we add an artificial "dummy user" with the demand equal to

this difference (∑T HRi−#requests) and connect it to all services with zero cost, making them

able to "spend" their unused throughput on the dummy user. In this model, each service i will

process exactly T HRi requests, but only those which do not correspond to the dummy user will

be actually realized. We thus have equality in the second constraint (for request supplies):

T HRi = ∑
u

xui. (5.4)

We solve the transportation problem in two steps, combining two standard and well-known

algorithms for TP:

1. Finding an initial (heuristic) solution using Vogel Approximation Method (VAM) [120,

121].

2. Iteratively improving the solution until it is optimal, using the Transportation Simplex

Method (TSM) which is a (polynomial) specialization of the simplex method designed

for TP [122, 123].

This two-step approach we call SS-TSM (Service Selection by Transportation Simplex Method).

If we stop after the first step, we get a faster, but possibly suboptimal solution, which we call

SS-VAM (Service Selection by Vogel Approximation Method). The tradeoff between speed and

optimality will be investigated in the experimental results (Chapter 6). We have experimented

with other optimal solutions of TP, such as reducing it to a minimum cost flow problem, but the

time performance was inferior to the proposed algorithm by an order of magnitude.
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5.2 General Service Selection Algorithm

This section generalizes the approach from the previous section, describing the proposed algo-

rithm for multi-user service selection in the multi-task case. Namely, we assume that each user

runs an application which can, in the observed time frame (which is chosen based on the system

properties), be described as a composition of tasks – a service composition. Such execution

plans can incorporate various compositional structures including Sequence, Branch, Parallel,

and Loop. This means that the actual execution path is not necessarily known in advance. In

addition, users are not necessarily synchronized with each other – they can have different exe-

cution plans, sharing some or all of the tasks.

The procedure is performed by e.g. the execution engine in a multi-tenant Service-Based

System (SBS). This corresponds to the "third multi-tenancy maturity level" from [12] where all

tenants (users) share the execution engine of the SBS and a set of services which compose the

SBS. The proposed algorithm is performed in three steps:

1. Expected user demands for each task are derived according to the proposed compositional

QoS model (described in Sect. 4.1).

2. Heuristic user-service utility cost is derived according to the proposed concept of match-

ing difficulty which is based on the global QoS requirements and QoS values (described

in Sect. 4.2).

3. Local instances of transportation problem for each task (with user demands from step 1

and utility cost from step 2) are solved in several iterations until a global solution is found.

The high-level illustration of the algorithm is given in Fig. 5.2. The main phase of the

algorithm (step 3) is solving a transportation problem T Pj for each task Tj that appears in any

of the given service composition plans. A problem instance is similar to the single-task case,

with the following setup:

∙ T Pj includes only the users for which Tj appears in their composition plan, and only the

services corresponding to task Tj. Let U j and I j denote the corresponding set of users and

the corresponding service class.

∙ The TP demand (number of requests) of user u ∈U j now equals EI(Cu) j (expected num-

ber of invocations of Tj). The TP supply of a service instance i ∈ I j is equal to its T HRi

limit as before.

∙ The T Pj utility cost cui is now equal to the matching difficulty between user u and service

i according to the definition from Sect. 4.2:

cui(T Pj) =
q

∑
k=1

MDk
j(i→ u). (5.5)

The iterative procedure starts by computing utility costs and solving the transportation prob-

45



Fast Multi-Criteria Service Selection for Multi-User Composite Applications

Transportation 
problems’ demands

Transportation 
problems’ supplies

Transportation 
problems’ cost

4.3. Iterative algorithm

Matching difficulty

Transportation 
problems’ solution

4.2. Global-aware 
utility cost

4.1. Compositional model

Service selection

Demand 
for task 1

Demand 
for task 2

Demand 
for task N

Users Tasks Services

Inputs = {user-service QoS values, service throughputs, user execution plans, user QoS requirements}

T1T1 T2T2

T4T4

T3T3

T5T5

EI(Cu) for all users u

Utility cost for 
transportation problems 

expected number of invocations
EI(user composition Cu)

Figure 5.2: High-level algorithm illustration

lems T Pj for each task Tj, obtaining a global service selection (see Fig. 5.3). If the selection

satisfies all users’ QoS requirements, the algorithm is finished. Otherwise, we will tweak the

utility cost to put more weight on the unsatisfied QoS requests and make another iteration of the

algorithm. This is formalized in the following definition.

Definition 5.2.1 (Utility cost by iterations). Let wk
u denote the weight (significance) of k-th QoS

property for user u. Initially we set wk
u := 1. After each iteration, if Reqk

u is not satisfied,

wk
u is multiplied by a factor of α(r) = 1 + e3−r, where r ("round") is the iteration number

(r = 0,1,2, . . . ). For the subsequent iteration, the utility cost is redefined as follows:

cui(T Pj) =
q

∑
k=1

wk
u MDk

j(i→ u). (5.6)
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Figure 5.3: Illustration of the global selection: services a2, b2, c4 are selected for tasks T1, T2,
T3 for user u.

Increasing weights for an unsatisfied requirement Reqk
u ensures that the corresponding QoS

values QoSk
ui have a significant influence on the utility cost in all service candidates for user u, so

the algorithm will lean towards satisfying that requirement by minimizing the most significant

cost summands for that user.

The reasoning behind the choice of a decreasing exponential function in α(r) = 1+ e3−r is

to ensure that the increments are initially large (α(0) ≈ 21.1), allowing for larger changes in

early iterations, but they quickly drop in subsequent iterations. In case that some requirements

remain unsatisfied, the algorithm converges after about 10 iterations as the factor α(r) becomes

close to 1.0. We have found that the proposed choice of the exponent in e3−r is a good balance

between initial aggressive weight increments and low total number of iterations, both of which

are important for efficiency.

In case of convergence without global success, the service selection from the best iteration

in terms of the total number of satisfied QoS requirements (or any chosen measure) is selected

as the "best effort" output of the algorithm.

The summary of the proposed algorithm is shown in Algorithm 4. In short, given the users’

compositions plans, QoS requirements, and user-service QoS values, the algorithm first employs

the compositional QoS model to calculate the expected number of invocations for each user

and task. Then it estimates the matching difficulties and uses them to compute utility costs

which are being minimized in iterative solutions of transportation problems. The solution of a
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transportation problem in each task gives an appropriate service to select for each user.

ALGORITHM 4: General Service Selection Algorithm
Data: n tasks with |I1|, . . . , |In| service instances
Data: users’ composition plans C1, . . . ,C|U |
Data: user-service QoS matrices QoSk

ui for each QoS property k = 1, . . . ,q
Data: QoS requirements Reqk

u, k = 1, . . . ,q for each user u = 1, . . . , |U |
— Compute expected invocations EI(Cu) for each user (Eq. 4.1-4.12)
— Compute matching difficulty MDk

j(i→ u) for each user u, QoS property k, task Tj, and service
i ∈ I j (Eq. 4.14)

— Set wk
u := 1 for each u = 1, . . . , |U |, k = 1, . . . ,q

for r = 0,1, . . . until success or convergence do
for each task Tj independently do

Calculate utility cost for T Pj (Eq. 5.6)
Assign EI(Cu) j, u ∈U j as demands of T Pj

Assign T HRi, i ∈ I j as supplies of T Pj

Selection j := Solve(T Pj) by SS-TSM (or SS-VAM)
end
Selection :=

⋃n
j=1 Selection j

if all Reqk
u are satisfied by Selection then

success := true
bestSelection := Selection

else
wk

u := wk
u · (1+ e3−r) for each unsatisfied Reqk

u
if #satisfied(bestSelection) < #satisfied(Selection) then

bestSelection := Selection
end

end
end
return bestSelection

5.2.1 Complexity Analysis

As the maximal number of algorithm iterations is small, the overall time complexity is domi-

nated by solving n transportation problems. Under careful implementation, the complexity of

solving a single T Pj by Vogel Approximation Method (VAM) is O(|U j| · |I j|) [124], where U j

and I j are sets of users and services corresponding to task Tj. Since the transportation prob-

lems for different tasks can be solved independently (concurrently) on several processors, the

complexity of the proposed SS-VAM model is

O
(

1
#processors

n

∑
j=1
|U j||I j|

)
. (5.7)

In the proposed SS-TSM model, where the Transportation Simplex Method is used to optimize

the initial VAM solution, the exact complexity depends on the actual cost values and the num-

ber of TSM iterations, which can be (almost) zero if VAM already finds the (almost) optimal
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solution. In other words, SS-TSM does little improvement over SS-VAM. The experiments will

show that this is often the case, i.e., the average complexity of SS-TSM is the same as for SS-

VAM up to a constant factor. The theoretical worst-case complexity is proven to be polynomial

even for the more general Network Simplex Method [125].
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Chapter 6

Evaluation

In this chapter we present the extensive experiments covering the contributions of this disser-

tation. The chapter is organized as follows. First, in Sect. 6.1 we evaluate the proposed GCM

measure for a collaborative filtering dataset (described in Sect. 3.1). Then, in Sect. 6.2 we

evaluate the proposed QoS Prediction model (described in Chapter 3). Finally, in Sect. 6.3 we

evaluate the proposed compositional service selection model from Chapters 4-5. The results

presented here were also published by the author in [19], [17] and [18].

6.1 Global Correlation Measures for a CF dataset

The goal of the experiments was to check whether the defined GUCM and GICM measures of

correlation for a collaborative filtering dataset satisfy the required properties of such a measure,

outlined in Sect. 3.1.

6.1.1 Results on Random Categorical Sets

In this experiment, we have randomly generated several categorical user-item matrices of size

5000×5000 with rating values in {0,1, . . . ,K−1}, where K is the number of categories (pos-

sible rating values). The results are given in Fig. 6.1. We can see that a higher number of

categories results in a lower measure value, which is a desired property because increasing the

number of possible rating values increases the randomness ("entropy") in the dataset, making

the users (or items) less likely to be similar. Also, as expected, the measure approaches the

value of 0 for highly random datasets.

6.1.2 Results on Artificial Sets with Natural Clusters

To show that the measure is roughly proportional to the amount of agreement in the dataset,

we have created several complete 5000×5000 user-item matrices and filled them with random
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Figure 6.1: Random categorical sets, N = M = 5000

integer values from [0,10000] so that there are K clusters of equal users, where K was varied

(K = 1,2, . . . ,10,20, . . . ,90,100). The results are given in Fig. 6.2. As expected, GUCM ≈ 1

when all users agree, and GUCM decreases as the number of natural clusters (user variability)

increases; moreover, GUCM ≈ 1/K. Since we only clustered the users, GICM is lower than

GUCM as expected. High correlation between users implies some correlation between items,

which explains why GICM is also negatively correlated with the number of user clusters.
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Figure 6.2: Artificial sets with natural user clusters, N = M = 5000
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Table 6.1: Real-world datasets description

Dataset users items ratings range reference

Amazon QoSa 50 49 2450 [0.0, 1.0] [25]

FilmTrustb 1508 2071 35497 0.5, 1, . . . , 4 [126]

Ciaoc 17615 16121 72665 1, 2, 3, 4 [127]

Epinionsd 40163 139738 664824 1, 2, 3, 4 [128]

Flixtere 147612 48794 8196077 0.5, 1, . . . , 5

MovieLens 100Kf 943 1682 100000 1, 2, . . . , 5

MovieLens 1Mg 6040 3706 1000209 1, 2, . . . , 5

Jesterh 50691 150 1728830 [-10.0, 10.0] [129]

Netflixi 50000 17770 10375459 1, 2, . . . , 5

Animej 69600 9927 6337241 1, 2, . . . , 10

YahooMoviesk 7642 11916 211231 1, 2, . . . , 13

BookCrossingl 105281 340541 1149763 0, 1, . . . , 10 [130]

MovieTweetingsm 51503 29564 656276 0, 1, . . . , 10 [131]
a http://ccl.fer.hr/people/research-assistants/marin-silic/clus-evaluation-dataset
b http://www.librec.net/datasets/filmtrust.zip c http://www.librec.net/datasets/CiaoDVD.zip
d http://www.trustlet.org/downloaded_epinions.html
e http://www.cs.ubc.ca/ jamalim/datasets f http://grouplens.org/datasets/movielens/100k
g http://grouplens.org/datasets/movielens/1m h http://eigentaste.berkeley.edu/dataset
i http://www.netflixprize.com j https://www.kaggle.com/CooperUnion/anime-recommendations-database
k https://webscope.sandbox.yahoo.com l http://www2.informatik.uni-freiburg.de/∼cziegler/BX/
m https://github.com/sidooms/MovieTweetings

6.1.3 Results on Real-World Data

For each of 13 considered real-world datasets (see Table 6.1), we have randomly divided the

data into training and testing sets (ratio 90:10) and the GUCM/GICM measures for each dataset

were computed using the training set only. We have compared these measures with two other,

computationally much more demanding measures. The first was the percentage of pairs with

(PCC) similarity higher than 0.5, called similar user pairs and similar item pairs. The second

was the average similarity of pairs which have at least one common rating, i.e., ratings different

by at most 10% of the rating scale. We called this measure user similarity degree and item

similarity degree. This measure is an ingredient of Redundancy measure from [90]. *

We have also implemented standard user-based (UPCC) and item-based (IPCC) collabo-

rative filtering approaches based on similar users/items as described in Sect. 2.1.1, using the

training set data to predict the values in the testing set, as well as the predictions based on

*The Redundancy measure itself, having other ingredients besides similarity and being made for a different
purpose, did not correlate with the proposed measures.
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Matrix Factorization (MF) algorithm using stochastic gradient descent [62], where the hyper-

parameters were learned from the training set using cross-validation. The accuracy was defined

using relevance of the items with highest (Top 10) ratings for a given user; namely, we used

Normalized Discounted Cumulative Gain (nDCG) measure [132, 133].

Table 6.2: Numerical results for the real-world datasets

dataset GUCM GICM sim. user pairs sim. item pairs user sim. deg. item sim. deg. UPCC nDCG IPCC nDCG MF nDCG

Netflix 0.078 0.109 0.155 0.285 0.161 0.469 0.902 0.904 0.889

MovieLens1M 0.068 0.121 0.201 0.168 0.215 0.199 0.909 0.868 0.910

MovieLens100K 0.068 0.124 0.179 0.211 0.171 0.276 0.914 0.920 0.905

BookCrossing 0.109 0.115 0.001 0.002 0.513 0.328 0.882 0.950 0.878

Jester 0.162 0.141 0.146 0.031 0.144 0.347 0.955 0.941 0.948

FilmTrust 0.142 0.213 0.147 0.028 0.113 0.246 0.958 0.979 0.955

Epinions 0.178 0.212 0.012 0.001 0.647 0.296 0.968 0.980 0.969

YahooMovies 0.159 0.235 0.307 0.029 0.435 0.300 0.971 0.971 0.968

Flixter 0.223 0.255 0.045 0.282 0.161 0.614 0.943 0.971 0.940

CiaoDVD 0.267 0.287 0.001 0.005 0.268 0.226 0.988 0.983 0.987

Anime 0.250 0.342 0.206 0.208 0.266 0.342 0.961 0.947 0.957

MovieTweetings 0.377 0.400 0.019 0.015 0.299 0.268 0.983 0.976 0.981

AmazonQoS 0.684 0.650 1.000 0.989 0.988 0.877 0.999 0.993 0.999

Table 6.3: Correlations between GUCM/GICM and other prediction ability indicators across 13
real-world datasets

perspective proposed metric other metric Pearson corr. coef. p-value

user-based GUCM similar user pairs 0.705 0.007

item-based GICM similar item pairs 0.679 0.011

user-based GUCM user similarity degree 0.689 0.009

item-based GICM item similarity degree 0.633 0.020

user-based GUCM UPCC Top-10 nDCG 0.728 0.005

item-based GICM IPCC Top-10 nDCG 0.622 0.023

general (GUCM+GICM)/2 MF Top-10 nDCG 0.751 0.003

Numerical results are given in Table 6.2 and the correlations between the proposed measures

and other prediction ability indicators (i.e., between columns of Table 6.2) are given in Table

6.3. For each row in Table 6.3, Pearson correlation coefficient (in range [−1,1]) was calculated

for two 13-element vectors, each containing the values of a given metric for all datasets. p-

value is the probability that the obtained correlation coefficients were accidental. Relatively

high coefficients (0.62− 0.75) and low p-values confirm the relation between the proposed

53



Evaluation

measures and other prediction ability indicators, showing that higher GUCM and GICM tend

to imply more similarities and greater prediction ability.

Table 6.4: Correlations between existing (less efficient) measures and prediction accuracies
across 13 real-world datasets

perspective metric prediction accuracy Pearson corr. coef. p-value

user-based similar user pairs UPCC Top-10 nDCG 0.356 0.233

item-based similar item pairs IPCC Top-10 nDCG 0.088 0.775

general (sim. user pairs + sim. item pairs)/2 MF Top-10 nDCG 0.285 0.345

user-based user similarity degree UPCC Top-10 nDCG 0.371 0.212

item-based item similarity degree IPCC Top-10 nDCG 0.299 0.320

general (user sim. deg. + item sim. deg.)/2 MF Top-10 nDCG 0.360 0.227

For the sake of comparison, Table 6.4 presents the results for the alternative measures sim-

ilar user/item pairs and user/item similarity degree. As we can see, the correlations between

these measures and the prediction accuracies, although expectedly positive, are weaker and less

significant than the same correlations for GUCM/GICM measures. This means that GUCM and

GICM are better estimators of prediction accuracies, apart from being computationally much

more efficient.

Relations between the proposed measures and the precision of prediction algorithms are

illustrated in Fig. 6.3 (GUCM vs. user-based predictions), Fig. 6.4 (GICM vs. item-based

predictions), and Fig. 6.5 (average of GUCM and GICM vs. MF-based predictions). In each

figure, black columns represent the proposed measures (scale on the left y-axis), while red

columns represent the Top-10 nDCG precision of the prediction algorithms (scale on the right

y-axis). The figures show that usually, when GUCM and GICM are higher, Top-10 predictions

are better. There are anomalies since the proposed measures are not more than heuristics, but
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the following observation can be empirically derived from these results: a proposed measure

lower than 0.13 usually implies the corresponding Top-10 precision lower than 94% (supported

in 11/12 cases), while a proposed measure higher than 0.14 usually implies the corresponding

Top-10 precision of at least 94% (supported in 27/27 cases). This is illustrated in the figures:

the vertical line separates GCM measures lower and higher than 0.135, while the horizontal line

separates precisions lower and higher than 94%.

6.2 QoS Prediction

In this section, we present the detailed evaluation results that analyze the prediction accuracy

and time performance of the proposed real-time adaptive QoS prediction model. In our ex-

periments, we have compared our model to the model called Hybrid [40], which is based on

collaborative filtering and uses a similar formula:

Pu,i = λ1UPCCu,i +λ2IPCCu,i, (6.1)
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also considering only the most similar users/services, but calculating UPCC and IPCC in a

standard way (as in Eq. (3.26)), while the proposed model uses a different formula (as in Eq.

(3.28)).

To evaluate prediction accuracy, we used the standard error measures Mean Absolute Error

(MAE) and Root Mean Square Error (RMSE):

MAE =
∑

K
j |p j− p̂ j|

K
, RMSE =

√
∑

K
j (p j− p̂ j)2

K
, (6.2)

where K is the cardinal number of the prediction set consisting of user-service prediction

queries: p j is the actual value, and p̂ j is the predicted value for a given query. Note that MAE

and RMSE can range from 0 to ∞. It is a negatively-oriented score, which means that lower

values are better. When the range of values was large (i.e. RT and TP datasets, see Sect.6.2.1),

instead of MAE and RMSE we used Mean Absolute Percentage Error (MAPE) and Root Mean

Square Percentage Error (RMSPE):

MAPE =
∑

K
j |(p j− p̂ j)/p j|

K
, (6.3)

RMSPE =

√
∑

K
j ((p j− p̂ j)/p j)2

K
. (6.4)

Sect. 6.2.1 describes the datasets used in the experiments. Sect. 6.2.2 describes types

of experiments that were conducted in order to evaluate the proposed approach. Sect. 6.2.3

describes the parameters selection. Sect. 6.2.4 presents the results for AmazonQoS dataset.

Sect. 6.2.5 presents the results for the Failure Probability (FP) dataset. Sect. 6.2.6 presents the

results for the Extended RT and TP datasets. The time performance results, along with the time

complexity discussion, are given in Sect. 6.2.7 and threats to validity are discussed in Sect.

6.2.8.

6.2.1 Datasets Overview

To evaluate the proposed model, we have used multiple datasets with different characteristics.

In all experiments, some of the values in a dataset were given to the model as an input (training

set); other values were unknown to the model (testing set). The model predicts the unknown

values and the error is calculated by comparing predictions with actual values. Details are

described in the next subsection.

The AmazonQos dataset† was obtained as described in [25]. This dataset contains reliability

†http://ccl.fer.hr/people/research-assistants/marin-silic/clus-evaluation-dataset/
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values in range [0,1] for 50 users and 49 services. The Failure Probability (FP), Response time

(RT), and Troughput (TP) datasets are taken from http://www.wsdream.net/dataset.html [134].

The FP dataset is a user-item matrix (150 users, 100 services) consisting of values in range [0,1],

with 82.27% of the values being equal to 0.000. The RT and TP datasets are user-item matrices

(339 users, 5825 services) consisting of positive values in range [0,20] for RT and [0,1000] for

TP. To analyze the time performance, we have artificially extended the mentioned RT and TP

datasets: each user vector in the user-item matrix was cloned 17 times and modified by +/-5%,

giving the Extended RT and Extended TP datasets with 5763 users and 5825 services.

All experiments were conducted with various densities (5-50%). Density is the percentage

of QoS values ru,i in the user-item matrix which are known to the model.

6.2.2 Types of Experiments

The following types of experiments have been conducted:

∙ "Fixed Value Support" experiment. We have predicted Pu,i for all unknown values in the

user-item matrix, using the known values ru,i which we assumed were equally reliable.

The experiment compares the proposed model with Hybrid.

∙ "Variable Value Support" experiment. We have predicted Pu,i for all unknown values in the

user-item matrix, but the known values were modified: assuming that ru,i was obtained

from 150 invocations, we have selected a random number (1-100) of invocations and

calculated ru,i based only on these invocations. Thus, the modified value ru,i (which

is used to predict the unknown values) is less accurate. The point of the modification

is to utilize the information about the number of invocations nu,i as the support of the

corresponding value ru,i (as in Eq. (3.27) and (3.30)), since a greater nu,i suggests a more

accurate ru,i. Utilizing this information is an important feature of our model (see details

in Sect. 3.5). The experiment compares the proposed model with Hybrid.

∙ "Stochastic" experiment. The experiment starts with user-item matrix of a given density,

using the variable support data (see the previous point). Then it generates a sequence of

randomly shuffled events, containing 80000 updates (user-service invocations) and 400

predictions. The proposed model (labeled "Real-time" in figures) is compared to the same

model which ignores the updates (labeled "Static") to see how well the model incorporates

the updates to make predictions. Note that, in this experiment, the environment does not

change, but the model’s knowledge of QoS values changes (increases) as the user-service

invocation records arrive.

∙ "Changing Stochastic" experiment. The experiment simulates the changing environment

in which the QoS values change in each of the 7 time slots. The environment-specific

parameters are stable in each time slot, i.e., the matrix of actual ru,i values (unknown

to the model) is stable in each slot, but different for different slots. The corresponding
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7 matrices were taken from different loads in the dataset from [25]. Initially, no values

ru,i are known to the model. In each time slot, a sequence of randomly shuffled events

is generated, containing 200000 updates (user-service invocations) and 1000 predictions

based on the user-item matrix of the current time slot. To see how well it adapts to the

changing environment, the proposed model (labeled "Proposed" in figures) with weight

increment constant ∆w = 0.01 (which makes the more recent records contribute more to

the predictions) is compared to the same model with ∆w = 0 (labeled "Control") where

the weight is not incremented in time.

∙ "Scalability" experiment. The experiment simulates handling more and more updates and

predictions. Using a constant matrix of ru,i values unknown to the model, a sequence

of randomly shuffled events is generated, containing 100 updates and 100 predictions in

the 1st time slot, 1000 updates and 1000 predictions in the 2nd time slot, 104 in the 3rd,

105 in the 4th, and 106 in the 5th time slot. We measure accuracy, as well as update

and prediction time of the proposed model (labeled "Proposed") compared to the same

model which ignores the updates (labeled "Control"). Note that the term scalability in

this experiment is not related to the number of users and services, but to the number of

incoming updates the system handles.

6.2.3 Model parameters

In the experiments, we investigated the impact of the approximate matrix multiplication versus

the exact one. In figures depicting the results, the used value of S (sampling constant), which

controls accuracy and time complexity of the approximation, is noted in the graph legend. If

exact matrix multiplication is used instead of the approximate one, the word "Exact" is put

instead of the S value. Special cases are the Changing Stochastic experiment and the Scalability

experiment: since no values are known to the model initially, the precompute phase results with

default (zero) values in all matrices so any matrix multiplication is redundant.

As for other parameters, such as K1 (number of similar users in user-based prediction), K2

(number of similar services in item-based prediction), and (λ1,λ2) which are weights for user-

based and item-based predictions, in the experiment results presented below, for each of the

tested models (except where noted) we used the parameter values which we empirically found

to give the best results, among several tested possibilities, for the corresponding model and

experiment on the ratings initally known to the model. In a practical system it is also expected

that the administrator empirically finds the appropriate parameter values. These parameters are

specified in the text as a triple (λ1,K1,K2); note that λ2 = 1−λ1.
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Figure 6.6: Density impact on MAE and RMSE, AmazonQoS Fixed Value Support experiment

6.2.4 Results for the AmazonQoS Dataset

For this dataset (50 users, 49 services) we have performed all five types of experiments. Fig.

6.6 depicts the results for Fixed Value Support experiment for the proposed model and Hybrid.

The parameters (λ1,K1,K2) were (0.1,4,12) for Hybrid and (0.1,4,5) for the proposed model

(Exact and S = 15). It can be seen that the exact approach outperforms the Hybrid approach for

all data densities. For instance, for data density value of 10%, the Hybrid approach achieves the

RMSE value of 0.050, while the exact approach achieves the RMSE value of 0.043. We obtain

similar results if we consider MAE measure, as can be seen in Fig. 6.6a. The approximate

matrix multiplication approach with the S value equal to 15 provides more accurate prediction

for higher data densities (i.e., the RMSE value of 0.024 at density of 30%) when compared

to the Hybrid approach (the RMSE value of 0.037 at density of 30%). On the other hand, for

lower data densities, the approximate multiplication approach provides slightly less accurate

predictions when compared to Hybrid approach.

Fig. 6.7 depicts the results for Variable Value Support experiment for the proposed model

(Exact and S = 15) and Hybrid. The parameters (λ1,K1,K2) were (0.2,25,25) for all models.

Notice that K1 and K2 are larger than in the Fixed Value Support experiment. This is because

the values used for prediction are less accurate so more of them need to be taken into account.

As expected, all models are less successful than in the Fixed Value Support experiment. For

density of 10%, the most accurate prediction is achieved by the proposed model with S = 15

(with RMSE of 0.082 and MAE of 0.059). For higher densities, the most accurate prediction is

achieved by the proposed Exact model (i.e., the RMSE of 0.044 and MAE of 0.032 at density of

30%), while the model with S = 15 provides less accurate predictions (the RMSE of 0.063 and

MAE of 0.041 at density of 30%), as well as the Hybrid approach, which gives results similar

to S = 15 except for densities 15-30% where Hybrid is slightly better.
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Figure 6.7: Density impact on MAE and RMSE, AmazonQoS Variable Value Support experi-
ment

Figs. 6.8 and 6.9 depict the results for Stochastic experiment. The parameters (λ1,K1,K2)

were (0.2,25,25) for the Static model, as in the Variable Value Support experiment. As for

the Real-time model, λ1 and λ2 were set according to (3.32), and K1,K2 were maximal (K1 =

M, K2 = N) to allow the model to take all updates into account. The results show that Real-

time model is much more accurate than Static model: for higher densities and exact matrix

multiplication (Fig. 6.8), the MAE and RMSE values are approximately 2 times lower in the

Real-time model than in the Static model. If the approximate matrix multiplication is used (Fig.

6.9), the difference is still quite significant (at density of 30%, Real-time model gives RMSE of

0.031 and MAE of 0.020 while Static gives RMSE of 0.056 and MAE of 0.038). The difference

is even larger for lower densities since Real-time model takes into account much more records
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Figure 6.8: Density impact on MAE and RMSE, AmazonQoS Stochastic experiment (exact
matrix multiplication)
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Figure 6.9: Density impact on MAE and RMSE, AmazonQoS Stochastic experiment (S = 15)
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Figure 6.10: AmazonQoS Changing Stochastic experiment

than Static model. The results show that the proposed model handles the updates well, i.e.,

successfully incorporates new records.

Fig. 6.10 depicts the results for Changing Stochastic experiment. For both models, λ1 and

λ2 were set according to (3.32), and K1,K2 were again maximal (K1 = M, K2 = N) to allow

the model to take all updates into account. The time slots (x-axis) were numbered 0-6. The

results show that the proposed model adapts well to the changing environment by incrementing

weights of the more recent records, since the control model (without the weight increment) is

significantly less accurate (i.e., for slot 5, Control achieves RMSE of 0.120 and MAE of 0.106

while Proposed achieves RMSE of 0.086 and MAE of 0.074) and the differences increases

over time. Notice that the Control model is better in the first time slot (i.e., for slot 0, Control

achieves RMSE of 0.053 and MAE of 0.022 while Proposed achieves RMSE of 0.056 and MAE

of 0.025): this is because the environment does not change within this slot.

61



Evaluation

1 2 3 4 5
Time slot

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
AE

MAE (Proposed)
MAE (Control)

(a)

1 2 3 4 5
Time slot

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
M

SE

RMSE (Proposed)
RMSE (Control)

(b)

Figure 6.11: AmazonQoS Scalability experiment, accuracy

Fig. 6.11 depicts the results for Scalability experiment. Again, to allow the model to take

all updates into account, λ1 and λ2 were set according to (3.32), and K1,K2 were maximal

(K1 = M, K2 = N). The time slots (x-axis) were numbered 1-5. The results in Fig. 6.11 show

that, as expected, the proposed model is more and more accurate when more and more updates

are being received: i.e., in time slot 3 (104 updates and 104 predictions) MAE and RMSE are

0.071 and 0.103, respectively.

6.2.5 Results for the Failure Probability Dataset

For the FP dataset (150 users, 100 services) we have performed the Fixed Value Support exper-

iment. The dataset is very specific: most values (82.27%) in the user-item matrix are zero.

Fig. 6.12 depicts the results for Fixed Value Support experiment for the proposed model

and Hybrid. The parameters (λ1,K1,K2) were (0.3,14,15) for Hybrid and (0.8,29,1) for the

proposed model (Exact and S = 15). The Exact and S = 15 model give similar results, with

Exact being slighly more accurate, but both models are outperformed by Hybrid (i.e., at density

of 20% Hybrid achieves RMSE of 0.083 and MAE of 0.023, while S = 15 achieves RMSE of

0.146 and MAE of 0.039). This means that the standard formula for UPCC and IPCC (see Eq.

(3.26)) is more suited for this specific dataset than the formula used by the proposed model (see

Eq. (3.28)).

Fig. 6.13 depicts the results for Scalability experiment. Again, to allow the model to take

all updates into account, λ1 and λ2 were set according to (3.32), and K1,K2 were maximal

(K1 = M, K2 = N). The time slots (x-axis) were numbered 1-5. The results in Fig. 6.13 show

that, as expected, the proposed model is more and more accurate when more and more updates

are being received: i.e., in time slot 3 (104 updates and 104 predictions) MAE and RMSE are

0.036 and 0.105, respectively.
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Figure 6.12: Density impact on MAE and RMSE, FP experiment
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Figure 6.13: FP Scalability experiment, accuracy

6.2.6 Results for Extended RT and TP Datasets

For the Extended RT and TP datasets (5763 users, 5825 services), obtained by artificially ex-

panding the RT and TP datasets as described in Sect. 6.2.1, we have performed the Fixed Value

Support experiment. However, unlike the previous Fixed Value Support experiments, we have

not predicted all unknown values in the user-item matrix, but only 25000 randomly selected

ones, since the size of the matrix implies large prediction times (see Sect. 6.2.7 for details).

For the Hybrid and the proposed model, the parameters (λ1,K1,K2) were (0.9,15,70) for both

datasets.

The results are depicted by Figs. 6.14 and 6.15. In the Extended RT experiment (Fig. 6.14),

we see that Hybrid usually outperforms all proposed models: i.e., at density of 15%, Hybrid

achieves (MAPE, RMSPE) of (0.879,2.573), while the proposed models S = 10, S = 100,

and S = 1000 achieve (1.465,6.809), (1.312,4.238), and (1.241,4.208), respectively. In the
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Figure 6.14: Density impact on MAPE and RMSPE, Extended RT experiment
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Figure 6.15: Density impact on MAPE and RMSPE, Extended TP experiment

Extended TP experiment (Fig. 6.15), Hybrid generally outperforms the proposed models, which

come close to Hybrid in RMSPE at densities 10−20%: i.e., at density of 15%, Hybrid achieves

(MAPE, RMSPE) of (1.072,5.307), while the proposed models S = 10, S = 100, and S = 1000

achieve (1.726,13.431), (1.359,4.865), and (1.259,4.856), respectively. We see that in both

experiments there are oscillations in RMSPE behavior, which is explained by high variance in

the dataset values.

6.2.7 Time Complexity and Performance Results

Let us first summarize the time complexity results from the model description. As before, let M

denote the number of users and N the number of services.

Time complexity of the precompute phase is O(S(M2 +N2)+M2 logM +N2 logN). The
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first summand S(M2 +N2) corresponds to approximate matrix multiplication and depends on

the chosen sampling constant S. The second summand M2 logM + N2 logN corresponds to

precomputing (sorting) lists of similar items. Time complexity of a single update equals O(M+

N).

We now analyze the time complexity of a single prediction. Recall that, in the prediction

step for the pair (u, i), the list of users similar to user u (which is sorted by similarity) is iterated

until we find K1 users that have observed service i, or reach the end of the list. The actual

number of iterations can be estimated using the density of the observed values in the user-item

matrix, denoted by d. If an examined user has observed service i with the probability of d, the

expected number of iterations to find K1 observations is K1/d. Analogously, when iterating the

list of similar services, the expected number of iterations to find K2 services observed by user u

equals K2/d. Thus, the average time complexity of a single prediction is O((K1 +K2)/d).

Duration of the precompute phase and the prediction phase were measured for the Extended

RT and TP experiments, for both Hybrid and the proposed model with various values of S.

However, it is important to note that even in Hybrid, we included the precompute step, i.e.,

we precomputed all user-service similarities based on the known values in user-item matrix,

using the standard way without matrix multiplication. Otherwise, calculating predictions in

Hybrid model would take too much time because of all the similarities being computed for each

prediction. However, the difference in prediction times for Hybrid and the proposed model lies

in the fact that Hybrid does not have lists of similar users/services precomputed; it has to sort the

required similarities before finding the K1 (or K2) most similar users (or services), thus having

the prediction complexity of O(M logM+N logN).

Fig. 6.16 depicts the precompute and prediction times for the Extended RT experiment.

(The graphs for the Extended TP experiment are almost the same since the matrix dimensions
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Figure 6.16: Precompute and prediction time, Extended RT experiment
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are the same.) As expected, Hybrid’s precompute time increases with the density, while the pre-

compute time for the proposed model (which uses the approximate matrix multiplication) does

not depend on the density. Also, as expected, higher constant S gives a higher multiplication

time. Fig. 6.16a shows that Hybrid’s (standard) similarities precomputation is slower than ap-

proximate matrix multiplication for S = 100, but faster than approximate matrix multiplication

for S = 1000 (there are four matrix multiplications to perform, and multiplication steps use a

random number generator which consumes time). The values for the proposed model are 280,

2300 and 16100 seconds (with slight variations) for S = 10, S = 100 and S = 1000, respectively.

As for the average prediction time, Fig. 6.16b shows that Hybrid is expectedly much slower

than the proposed model (O((K1 +K2)/d) vs. O(M logM +N logN)). At the first glance, the

constant S for the approximate matrix multiplication should not affect the prediction time: why

is the prediction time different for different S at low densities? To explain this, note that for

S= 10 not many samples will be taken into account during similarity computation, which means

that lists of similar entities will have few elements with strictly positive similarity to a given

entity, and iteration of these lists during prediction will thus be shorter than in cases S = 100

or S = 1000 where more samples are taken into account in similarity computation. Apart from

this differences at low densities, the graphs for S = 10, S = 100 and S = 1000 almost perfectly

match (especially for S = 100 and S = 1000), as expected. For S = 1000, the values are 2.176s

for d = 0.05 and 0.691s for d = 0.50. We see that the complexity bound O((K1+K2)/d) is only

approximately accurate: the decrease in prediction time does not precisely match the decrease

in density, which is also explained by shorter lists of similar entities at lower densities.

The results in Fig. 6.17 depict the total time taken for processing all updates and predictions

in the corresponding time slot of the Scalability experiment. For the AmazonQoS dataset (50

users, 49 services) the model takes 0.505s for 104 updates and 104 predictions (time slot 3) and
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Figure 6.17: Scalability experiment, timing: a) AmazonQoS Dataset, b) FP dataset
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4.422s for 105 updates and 105 predictions (time slot 4), which means that the model supports

up to 105 events in real-time. Similarly, in the FP dataset (150 users, 100 services) the model

takes 0.446s for 104 updates and 104 predictions (time slot 3) and 12.295s for 105 updates and

105 predictions (time slot 4).

6.2.8 Threats to Validity

Here we mention some possible threats to validity of the proposed model and the conducted

experiments. The first threat is randomized approximate matrix multiplication, which gives

slightly different results for different random seeds. The results regarding the expected accuracy

of such multiplication are derived in [117].

Secondly, the data for Extended RT and TP experiments was created artificially, which

means that the corresponding accuracy results are slightly less realistic than the accuracy results

for other conducted experiments. However, we believe this dataset to reflect the realistic data

since we used the actual RT and TP datasets to generate it, as described above. Furthermore, this

does not affect the validity of time performance results on these datasets, because they mostly

do not depend on actual numerical values.

6.3 Service Selection

In this section, we present the detailed evaluation results for the proposed compositional service

selection model.

For experimental purposes we have used a mixture of artificial and actual data. In all exper-

iments, three user-service QoS properties were considered: reliability, price, and response time.

Also, throughput was considered as a processing capacity limit: maximal number of requests

for a service instance.

Reliability values were generated artificially as

1−0.1max{N (2,0.5),1} ∈ [0.9,1⟩, (6.5)

where N (avg, std.dev.) is a normal distribution.

Price values were generated artificially as

max{0,U(−1,4)} ∈ [0,4], (6.6)

where U(a,b) is a uniform distribution on [a,b].

For the response time values we used the WS-DREAM dataset [118]. From the same dataset

we used the throughput values to generate the service throughput limits: they range from 1 to
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1000 with the average of 47.

Services were uniformly distributed among n tasks and there was a 50% probability that a

specific user invokes a specific task; namely, EI(Cu) j ∈ {0,1}. User QoS requirements were

generated under three levels of difficulty: easy (satisfiable by taking 40%-quality services un-

der definitions from Sect. 4.1), medium (satisfiable by taking 60%-quality services) and hard

(satisfiable by taking 80%-quality services).

The execution times were measured under Python 3 implementations‡ on a 3.20 GHz pro-

cessor with 4 cores, which means that 4 parallel processes were solving the TP tasks. Our own

implementations of the proposed and all the competing algorithms were used, except in the case

of mixed integer programming problems where we utilized the Pulp library [135].

The measured quantities were accuracy (percentage of satisfied QoS requirements), execu-

tion time, and QoS improvement which measured the average relative gain of the obtained QoS

value vs. the corresponding QoS requirement over all users and QoS properties. More precisely,

Avg. QoS improvement =
1

Uq

U

∑
u=1

q

∑
k=1

QoSk
u−Reqk

u

|Reqk
u|

, (6.7)

assuming that a higher QoS value means a higher improvement. If the QoS requirement is not

satisfied (QoSk
u < Reqk

u), the QoS improvement is negative. As almost all QoS requirements

turn out to be satisfied (QoSk
u ≥ Reqk

u), the average QoS improvement is positive. For reliability,

logarithms of actual values were used in all formulas.

In the experiments, we have varied the number of users, services, and tasks. Three main

types of experiments were performed:

∙ Single-Task Experiment, where we tested the model proposed in Sect. 5.1 against the

alternatives.

∙ User-Independent-QoS experiment, where data was generated with additional condition

that it always holds that QoSk
ui = QoSk

vi for different users u, v. The purpose of this as-

sumption (non-personalized QoS) was to compare the proposed models with MIP-based

models which depend on it.

∙ General experiment without special assumptions.

Each variation of each experiment was run 200 times with different random seeds and the

results were averaged. For comparison with related work, we have chosen the recent models

suitable for the corresponding service selection scenarios. The competing models were:

∙ AP ("assignment problem") [26] for the Single-Task scenario.

∙ Clus2-MIP and Clus3-MIP ("clustering + mixed integer programming") [16] for the User-

Independent-QoS scenario where services are clustered into two or three clusters.

∙ MIP for the general mixed integer programming solution [12] in all experiments.

‡Implementation can be found on https://bitbucket.org/satja/rels.
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∙ Greedy-MIP as an attempt of improvement over MIP in General experiment, based on

the idea from [15], modified and adapted to the general setting. Namely, aiming to reduce

the search space of MIP, only 10 "best" services for each task are considered, and if

the solution is not found, another 10 are added to consideration after each unsuccessful

iteration of MIP. The priority of adding a service is defined by ranking the services by each

QoS property for each user, and then adding up the ranking positions for each service.

∙ SS-VAM and SS-TSM, our proposed models.

6.3.1 Single-Task Experiment

Two basic variations of the Single-Task experiment both contained 500 users and 100 services

with medium QoS difficulty, but differed in the service throughput limits, which were either low

THR (1-50) in the first variation, or high THR (50-1000) in the second variation. This was done

to differentiate between cases of higher and lower efficiency of the alternative AP approach

which creates as many virtual instances as the total THR. QoS improvement was not calculated

in this experiment due to the nature of problem reduction in this case, which takes the number of

satisfied QoS requirements as cost (as explained in Sect. 5.1), instead of the actual QoS values

or their utility.

The results in Fig. 6.18a confirm that all approaches are optimal except for SS-VAM which

is slightly suboptimal, satisfying 99.7% requirements on average. Results in Fig. 6.18b show

that, in terms of computational efficiency, the proposed approaches equally outperform AP in

case of high THR (by 28.6%), and the opposite is true in case of low THR where SS-VAM is by

55.6% slower than AP. Due to its optimality, SS-TSM is slower than SS-VAM by 17.8% under

low THR. All approaches outperform MIP by an order of magnitude.

Fig. 6.19 shows timing results for variations of this experiment where number of services
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Figure 6.18: Single-Task Experiment: basic results
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Figure 6.19: Single-Task Experiment: efficiency vs. number of services/users

varies from 40-200 with 300 users (Figs. 6.19a-6.19b), or the number of users varies from

50-500 with 100 services (Figs. 6.19c-6.19d). All approaches show linear growth of execution

time when the number of users/services grows linearly. In particular, SS-VAM shows a 3.63x

increment in execution time for a 5x increment in the number of services, and a 12.4x incre-

ment in execution time for a 10x increment in the number of users. The proposed algorithms

outperform AP when THR is high and problem dimensions are not small (at least 40 services

for 300 users, and at least 200 users for 100 services). In Fig. 6.19c, SS-TSM shows a slightly

non-linear growth for low THR and more than 400 users.

The difference in results between the cases of low and high THR stems from the fact that

high THR significantly affects the execution time of AP because that model creates an additional

amount of T HRi virtual services, while THR has no such influence on the proposed SS-VAM

and SS-TSM models.
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6.3.2 User-Independent-QoS Experiment

Basic variations of the User-Independent-QoS experiment contained 50 users, 4 tasks, and 200

services. The QoS values depended only on a service; in other words, for a fixed service i ∈ I

and a QoS property k ∈ {1, . . . ,q}, the value QoSk
ui was equal for all users u ∈U . As described

earlier, the generated QoS requirements differed in difficulty (easy, medium, hard).

The results in Fig. 6.20a confirm that all approaches are optimal in terms of the QoS require-

ment satisfaction except for SS-VAM which is slightly suboptimal, satisfying 99.8% require-

ments on average. Results in Fig. 6.21a show that, in terms of time efficiency, the proposed

approaches significantly outperform MIP, Clus2-MIP, and Clus3-MIP. On average, SS-TSM

takes 14.2x less time than MIP, 22.7x less time than Clus2-MIP, and 22.5x less time than Clus3-

MIP. Also, SS-TSM outperforms SS-VAM, which can be explained by noting that even though
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Figure 6.20: Accuracy vs. difficulty: results
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Figure 6.21: User-Independent-QoS Experiment: results
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SS-VAM takes less time per iteration, SS-TSM takes less iterations, i.e., there is no need to

reiterate the algorithm with adjusted utility cost if the solution by SS-TSM is already successful

in terms of global QoS requirements. We note that, in this experiment, SS-TSM dominates

SS-VAM in both accuracy and efficiency. Fig. 6.21b shows that the QoS improvement did not

significantly differ across models. MIP gave most improvement, 3.5% higher than SS-TSM on

average, while Clus2-MIP and Clus3-MIP gave less improvement than SS-TSM.

The difference in the effect of easy, medium, and hard QoS requirements can be seen in

Fig. 6.21a. The execution time of MIP does not depend on the QoS requirement difficulty: as

a generic approach, it performs equally fast for all difficulties. For easy QoS requirements, we

see that MIP is indeed made faster by Clus2-MIP (by a factor of 2.0x) and Clus3-MIP (by a

factor of 2.1x). For medium and hard QoS requirements, MIP is more efficient than variations

of Clus-MIP because of the higher number of iterations needed by Clus-MIP to find a solution.

It is important to note that the execution time of the proposed approach shows no significant

dependence on the QoS requirement difficulty: SS-TSM is only 22% slower under hard (vs.

easy) QoS requirements.

6.3.3 General Experiment

Basic variations of the General experiment contained 100 users, 8 tasks, and 300 services,

differing in QoS difficulty (easy, medium, hard). The results of basic variations are shown in

Fig. 6.20b and Fig. 6.22. As in the previous experiments, the proposed SS-TSM approach

dominates the proposed SS-VAM approach in all measures (with the same explanation). Also,

we see that Greedy-MIP approach dominates MIP in all measures, so the focus can be put to

the comparison between SS-TSM and Greedy-MIP.

The results in Fig. 6.20b confirm success of the approaches in terms of the QoS requirement
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Figure 6.22: General Experiment: basic results
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satisfaction. Results in Fig. 6.22a show that, in terms of time efficiency, SS-TSM outperforms

Greedy-MIP by a factor of 4.15–5.0x. Fig. 6.22b shows that QoS improvement did not signifi-

cantly differ across models: on average, Greedy-MIP and SS-TSM gave similar improvements

of ≈ 67%.

The difference in the effect of easy, medium, and hard QoS requirements can be seen in Fig.

6.22a. The proposed approach is more significantly affected by the requirement difficulty than

in the User-Independent-QoS Experiment: SS-TSM is 2.22x slower under hard (vs. easy) QoS

requirements. However, under hard requirements it is still 9.4x faster than MIP and 5.0x faster

than Greedy-MIP. Fig. 6.22b shows that higher QoS requirement difficulty (hard vs. easy)

affects the obtained QoS values in all approaches, reducing the QoS improvement for Greedy-

MIP from 84% to 49%, and for SS-TSM from 75% to 56%, showing that reduction for SS-TSM

is less significant. Compared to MIP and Greedy-MIP, the proposed SS-TSM gives a slightly

lower QoS improvement under easy requirements, but higher under hard requirements.

More detailed variations of the General experiment are depicted in Figs. 6.23-6.24. Here,

the number of services varied from 80 to 400, with 4 tasks and 100 users; the number of users

varied from 20 to 200, with 8 tasks and 200 services; and the number of tasks varied from 2 to

10, with 100 users and 200 services. Fig. 6.23 shows that the execution time for the proposed
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Figure 6.23: General Experiment: time vs. number of services/user/tasks
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Figure 6.24: General Experiment: QoS improvement vs. number of services/user/tasks
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approach grows linearly, but slowly, with respect to the linear growth of services/users/tasks. In

particular, for SS-TSM the 5x increment in the number of services induced the 2.25x increment

in execution time; the 10x increment in the number of users induced the 8.0x increment in

execution time; and the 5x increment in the number of tasks induced the 2.1x increment in

execution time. The execution time for Greedy-MIP grows faster, with the respective increments

in execution time equal to 15.9x (for 10x more users) and 3.4x (for 5x more tasks), with the

exception of a negligible increment when the number of services is increased, owing to the fact

that it greedily considers only the best of them. Finally, Fig. 6.24 shows that QoS improvement

for SS-TSM does not significantly depend on the number of services, users, or tasks, while for

the Greedy-MIP the improvement is slowly reduced by increasing the number of users or tasks.

6.3.4 Matching Difficulty and Results by Iteration

For the General experiment, which is the most representative for the scope of the proposed

approach, we have measured additional output for the basic variation of the experiment, shown

in Fig. 6.25. Namely, Fig. 6.25a shows how the average matching difficulty MD, which is the

main ingredient of the proposed utility cost, (expectedly) grows with the increasing difficulty of

the input QoS requirements. Figs. 6.25b and 6.25c show the behavior of the proposed methods

across iterations, demonstrating that the algorithm quickly converges and that the actual number

of iterations is usually lower than the maximal number, especially in the SS-TSM model where

a single iteration is often sufficient to satisfy all QoS requirements. This explains the advantage

of SS-TSM over SS-VAM in terms of total execution time.

6.3.5 Threats to Validity

Regardless of our effort to make the test data realistic, the numerical results partly depend on

the values generated artificially for testing purposes. They will certainly change in different

environments, along with the actual implementation of the approach, which will make use of

a more specific and more efficient hardware. Still, the experiments make their point, which

was to give relations between the competing models in reasonably constructed service selection

scenarios.
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Figure 6.25: General Experiment: matching difficulty and results by iterations
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Chapter 7

Conclusion

As cloud computing becomes the prevailing aspect of software engineering, paradigms such as

Service-Based Systems (SBSs) or Software as a Service (SaaS) are coming into focus. They are

based on principles defined in Service-Oriented Architecture (SOA) and assume a number of

cloud services responding to numerous client requests. Selecting the actual service instance for

request can be an issue, if requirements for multiple Quality of Service (QoS) properties need

to be satisfied for many users simultaneously. The problem becomes more complex if we take

into account the compositeness of users’ applications, which consist of many tasks with non-

deterministic execution plan, where QoS properties are calculated over the whole composition.

The existing approaches for this problem lack either efficiency or generality.

Therefore, the main goal of this thesis was to propose a fast heuristic model for multi-criteria

service selection, designed for multi-user non-deterministic composite workflows with the goal

of satisfying all, or as many as possible, of the given QoS requirements. To develop such

a method, some essential tools were developed, such as probabilistic formulas for estimating

QoS in non-deterministic service compositions. Another contribution was the real-time adaptive

QoS prediction model, which can be used before service selection to provide its QoS input.

Our service selection model was motivated by the need of creating a method that is, un-

like previous works, both efficient (polynomial time complexity) and very general (multi-user,

multi-task composition with non-deterministic branching, user-dependent QoS). Namely, the

model considers multiple users, each having a multi-task execution plan with requirements of

minimal (or maximal) performance values for several QoS parameters. The execution plans

allow for all standard compositional structures (Sequence, Parallel, Conditional Branch, and

Loop), taking into account probabilities in case of branching and loops. The model is respon-

sible for selecting the service instances to be invoked for all tasks, considering their respective

throughput limits, as well as QoS values which depend on the user-service pairs. The goal was

to satisfy all (or as many as possible) of users’ QoS requirements.

As a result, we have proposed a fast general service selection heuristic, aimed at satisfy-
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ing multi-user multi-criteria QoS requirements. It can handle complex service compositions,

differing across users, based on a novel probabilistic QoS compositional model. It takes into

account personalized QoS values which depend on a service and a user, which is a realistic

scenario that is missing in a significant part of related work. The proposed service selection

method reduces the problem to several independent transportation problems with iterative solu-

tion improvements, using a global-aware utility cost which is based on expected compositional

QoS and the novel concept of matching difficulty. Two variations were proposed: SS-TSM and

SS-VAM, differing in their approach to solve individual transportation problems.

Efficiency, more than accuracy, stays in the focus of most current cloud computing efforts

dealing with an increasing amount of users and service instances. Therefore, it was the most

important measure in our model evaluation. We have performed extensive experiments covering

both special and more general cases, where the proposed methods were compared with both

optimal service selection approaches (based on mixed integer programming) and their heuristic

improvements when they are applicable. Our experiments demonstrate that the proposed SS-

TSM model is the dominating approach in most experiments, mainly because of a significant

reduction in execution time. A partial exception is a single-task scenario, where the proposed

(slightly less accurate) SS-VAM approach can be faster in cases of high service throughput

limits, while the AP approach from literature (based on reduction to assignment problem) can

be faster when throughputs are lower. To conclude, apart from being more general than the

existing approaches, the proposed method (namely, SS-TSM) also turns out to be more efficient

than the alternatives (up to 5x faster).

In order to perform an effective service selection, the QoS values must be either known or

predicted with reasonable accuracy. Therefore, as another contribution in this dissertation, we

presented a QoS prediction model as a real-time support for selection of atomic "black-box"

service candidates based on their QoS properties while constructing composite applications.

The proposed approach satisfies the following main requirements: fast and accurate prediction

of QoS values, and adaptability with respect to environment changes. The model precomputes

the similarities between users and services using approximate matrix multiplication to reduce

the time complexity. When calculating a prediction for a user-service pair, the model considers

similar users and services, but enhances the prediction accuracy by incorporating the number of

observed records. Time complexity is further reduced by storing the lists of similar users and

services which are updated in real-time. The model adapts to the changing environment: newer

records are set to have greater influence on predictions.

We have quantitatively compared the proposed approach with the existing state-of-the-art

memory-based collaborative filtering approach considering both prediction’s accuracy and time

performance. In order to evaluate the performance of our approach, we have collected pub-

licly available web services QoS datasets. We have designed and conducted a series of ex-
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periments that challenge different aspects of competing prediction approaches. The extensive

evaluation results confirm that our approach supports the requirements set during the design

process. The evaluation results show that our approach can produce predictions faster than

standard UPCC/IPCC/Hybrid approaches while keeping the prediction accuracy very close or

even better than the state-of-the-art. For instance, the proposed approach with random sample

size in approximate multiplication set to S = 15, achieves 10.7% better RMSE value on average

than the Hybrid approach while measuring on the AmazonQoS dataset. Furthermore, the exper-

iments that simulate changing dynamic environment demonstrate runtime adaptability feature

of our model. In such conditions, our approach obtains 25.6% better RMSE value that the com-

peting approach. Finally, the conducted scalability experiments demonstrate that our approach

can support in real-time up to 105 update and prediction requests.

The proposed approach is based on approximative matrix multiplication technique, which

is flexible in a sense that its performance can be adjusted by parameterizing the random sample

size S. This flexibility feature is also preserved in our approach. We can produce more accurate

predictions by increasing the random sample size, which in turn results in worse time perfor-

mance. On the other hand, we can enhance prediction time by decreasing the random sample

size, which will result in less accurate predictions. Due to its flexibility, our approach can bal-

ance between two opposite requirements: accuracy and efficiency. To conclude, the proposed

approach with its flexible design can be applied in different environments.

Since our prediction model is based on collaborative filtering, as a side contribution, we

have proposed global correlation measures for a collaborative filtering dataset. Recommender

systems based on collaborative filtering (CF) rely on datasets containing users’ taste preferences

for various items, and accuracy of various prediction approaches depends on the amount of sim-

ilarity between users and items in a dataset. As a heuristic estimate of this data quality aspect,

which could serve as an indicator of the prediction ability, we have defined the Global User

Correlation Measure (GUCM) and the Global Item Correlation Measure (GICM) of a dataset

containing known user-item ratings. The measures can be used to quickly estimate whether a

dataset is suitable for collaborative filtering and whether we can expect high prediction accuracy

of user-based or item-based CF approaches. The proposed measures range from 0 to 1 and de-

scribe quality of a dataset regarding the user-user and item-item similarities: a higher measure

indicates more similar pairs and better prediction ability.

The proposed correlation measures (GUCM, GICM, and their average GCM) have been

experimentally shown to satisfy the desired requirements. Namely, they do correlate with the

amount of user-user and item-item similarities, as well as with the accuracy of standard pre-

diction models. They approach a value of 1 on datasets with equal items and a value of 0 on

datasets with random ratings, and negatively correlate with the number of natural clusters of

similar users/items. Since the proposed measures can be computed efficiently, in time propor-
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tional to the number of known ratings, they can be useful when deciding whether to apply CF

on a given dataset – the results suggest that a GCM value higher than 0.14 tends to imply a

high prediction accuracy. In case one needs to choose whether to include some additional or

questionable records in a dataset, GCM can be used to estimate if the dataset quality would

increase or decrease with a considered change. GCM can also be used to choose or differentiate

between multiple datasets in various educational and research purposes, such as evaluating a

new CF model.
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Chapter 8

Appendix

8.1 Proof of Eq. (3.3)

Here we prove Eq. (3.3) which gives the probability that two random values from the uniform

distribution on the interval of length D differ by less than T . If we rescale the interval to become

[0,1], the threshold difference should also be rescaled by factor 1/D, i.e., we are looking for the

probability that the difference between two random values in [0,1] is less than T/D.

More precisely, let us assume that X and Y are independent uniformly distributed random

variables from [0,1]. We are looking for the probability density function of their difference X−
Y ∈ [−1,1], which is given by the convolution of the corresponding separate density functions:

fX−Y (x) = ( fX * f−Y )(x) =
∫

fX(y) f−Y (x− y)dy

=
∫

1[0,1](y)1[−1,0](x− y)dy =
∫ 1

0
1[−1,0](x− y)dy =

∫ x

x−1
1[−1,0](t)dt

= min{x,0}−max{x−1,−1}= min{x,0}− (max{x,0}−1)

= 1−|x|.

Therefore, Pr[−T/D≤ X−Y ≤ T/D] equals

∫ T/D
−T/D(1−|t|)dt

= 2
∫ T/D

0 (1− t)dt

= 2
(

x− x2

2

)∣∣∣∣T/D

0

= 2
(

T
D −

T 2

2D2

)
= T (2D−T )

D2 ,

which proves Eq. (3.3).
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5. Čaklović, L., Kurdija, A. S., "A universal voting system based on the Potential Method",

European Journal of Operational Research, Vol. 259, No. 2, June 2017, pp. 677-688
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