No public access
doctoral thesis
Hybrid compliance control and feet trajectory optimization for a bioinspired quadruped robot

Edin Kočo (2017)
University of Zagreb
Faculty of Electrical Engineering and Computing
Department of Control and Computer Engineering
Cite this document...

Kočo, E. (2017). Hybrid compliance control and feet trajectory optimization for a bioinspired quadruped robot (Doctoral thesis). Retrieved from https://urn.nsk.hr/urn:nbn:hr:168:747123

Kočo, Edin. "Hybrid compliance control and feet trajectory optimization for a bioinspired quadruped robot." Doctoral thesis, University of Zagreb, Faculty of Electrical Engineering and Computing, 2017. https://urn.nsk.hr/urn:nbn:hr:168:747123

Kočo, Edin. "Hybrid compliance control and feet trajectory optimization for a bioinspired quadruped robot." Doctoral thesis, University of Zagreb, Faculty of Electrical Engineering and Computing, 2017. https://urn.nsk.hr/urn:nbn:hr:168:747123

Kočo, E. (2017). 'Hybrid compliance control and feet trajectory optimization for a bioinspired quadruped robot', Doctoral thesis, University of Zagreb, Faculty of Electrical Engineering and Computing, accessed 26 June 2019, https://urn.nsk.hr/urn:nbn:hr:168:747123

Kočo E. Hybrid compliance control and feet trajectory optimization for a bioinspired quadruped robot [Doctoral thesis]. Zagreb: University of Zagreb, Faculty of Electrical Engineering and Computing; 2017 [cited 2019 June 26] Available at: https://urn.nsk.hr/urn:nbn:hr:168:747123

E. Kočo, "Hybrid compliance control and feet trajectory optimization for a bioinspired quadruped robot", Doctoral thesis, University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, 2017. Available at: https://urn.nsk.hr/urn:nbn:hr:168:747123